説明

シュラウド冷却に関連する方法及び装置

【課題】タービン冷却部品を提供する。
【解決手段】本タービン冷却部品(100)は、前縁(110)と、後縁(114)と、前縁(110)及び後縁(114)に連結された第1の側面パネル(116)と、前縁(110)及び後縁(114)に連結された第2の側面パネル(116)と、後縁(114)及び前縁(110)に連結され、かつ加圧空気(105)を受けるように作動する空洞(118)並びに弓形内側表面(132)を部分的に形成した弓形基部(108)と、基部(108)内に設けられかつ第1の側面部分(116)に沿って前方部分(110)から後方部分(114)に延びる第1の側方冷却空気通路(204)と、基部(108)の前方部分内に設けられ、側方冷却空気通路(204)及び空洞(118)と連通しておりかつ該空洞(118)から加圧空気(105)を受けるように作動する前方冷却空気通路(202)とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タービンエンジンに関し、具体的には、タービンエンジンにおけるシュラウド冷却に関連する方法及び装置に関する。
【背景技術】
【0002】
タービンエンジンの高圧タービンセクションは、ケーシング内部に取付けられたディスクアセンブリから半径方向に延びるロータ動翼を含む。タービンエンジンは、ロータ動翼を囲むケーシングの周辺上に取付けられたシュラウドアセンブリを含む。ロータ動翼及びシュラウドアセンブリは、ロータ動翼の回転を生じさせる高温ガス流に曝される。ロータ動翼は、該ロータ動翼の遠位端に動翼先端を含む。動翼先端とシュラウドアセンブリとの間には、小さいギャップが形成される。ギャップを通って流れるガス流は、ロータ動翼の回転を生じさせるのに有効でないので、エンジン効率には小さいギャップが望ましい。
【0003】
実際には、シュラウドアセンブリは、多くの場合、ケーシングに取付けられて円周方向シュラウドアセンブリを形成した幾つかのセグメントを含む。シュラウドアセンブリは高温に曝され、セグメントは、加圧空気を流すことにより冷却されることが多い。加圧空気は、シュラウドセグメントの表面に接触し、かつシュラウドセグメントの内部通路を通ってケーシング内部のガス流パス内に流入することができる。ひとたび加圧空気がシュラウドセグメントを冷却すると、ガス流パスに流入する加圧空気は、流れの方向を変更することによってガス流パスに望ましくない影響を与える可能性がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第7131814号明細書
【特許文献2】米国特許第7121790号明細書
【特許文献3】米国特許第7033138号明細書
【特許文献4】米国特許第6726391号明細書
【特許文献5】米国特許第6602048号明細書
【特許文献6】米国特許第6508623号明細書
【特許文献7】米国特許第6406256号明細書
【特許文献8】米国特許第6361274号明細書
【特許文献9】米国特許第6361273号明細書
【特許文献10】米国特許第6322320号明細書
【特許文献11】米国特許第6302642号明細書
【特許文献12】米国特許第6224329号明細書
【特許文献13】米国特許出願公開第2007/0237630号明細書
【特許文献14】欧州特許出願公開第1256695号明細書
【特許文献15】欧州特許出願公開第1245792号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
従って、シュラウドセグメントを冷却するのに用いられる加圧空気の量を減少させ、かつガス流パスへの影響を小さくするように加圧空気をガス流パス内に吐出することが望ましい。
【課題を解決するための手段】
【0006】
本発明の1つの態様によると、タービン冷却部品は、円周方向前縁と、前縁から間隔を置いて配置された円周方向後縁と、前縁及び後縁に連結された第1の側面パネルと、前縁及び後縁に連結され、第1の側面パネルに対して間隔を置いて配置されかつ該第1の側面パネルに対して対向した第2の側面パネルと、後縁及び前縁に連結され、かつ前方部分、中間部分、後方部分、対向する第1の側面部分及び第2の側面部分、加圧空気を受けるように作動する空洞を部分的に形成した外側表面、並びに該タービン部品の前縁から後縁への方向に移動するタービンエンジンのガス流パスと接触した弓形内側表面を有する弓形基部と、基部内に設けられかつ第1の側面部分に沿って前方部分から後方部分に延びる第1の側方冷却空気通路と、基部の前方部分内に設けられ、側方冷却空気通路及び空洞と連通しておりかつ該空洞から加圧空気を受けるように作動する前方冷却空気通路とを含む。
【0007】
本発明の別の態様によると、タービン冷却部品を製作する方法は、円周方向前縁及び該前縁から間隔を置いて配置された円周方向後縁を有するシュラウドセグメントの基部内に該円周方向前縁及び円周方向後縁を貫通するように第1の側方冷却空気通路を形成するステップと、第1の側方冷却空気通路と連通しておりかつ前縁及び後縁に連結された該シュラウドセグメントの第1の側面パネルと該前縁及び後縁に連結されかつ第1の側面パネルに対して間隔を置いて配置されかつ該第1の側面パネルに対して対向した第2の側面パネルとを貫通するように前方冷却空気通路を形成するステップとを含む。
【0008】
本発明のさらに別の態様によると、部品内に冷却空気通路を形成する方法は、プローブを使用して部品内に、第1の内径を有する空気通路の第1の部分を形成するステップと、プローブを使用して部品内に、第1の内径を有しかつ該空気通路の第1の部分と連通した空気通路の第2の部分を形成するステップと、プローブの移動速度を変化させて、該プローブにより空気通路の第2の部分の内径を第2の内径に増大させるようにするステップとを含む。
【0009】
上記その他の利点並びに特徴は、図面と関連させてなした以下の詳細な説明から明らかになるであろう。
【0010】
本発明は、本明細書と共に提出した特許請求の範囲において具体的に指摘しかつ明確に特許請求している。本発明の上記その他の特徴並びに利点は、添付図面と関連させてなした以下の詳細な説明から明らかである。
【図面の簡単な説明】
【0011】
【図1】シュラウドアセンブリの形態でのタービン冷却サブアセンブリの側面部分断面図。
【図2】図1のシュラウドセグメントの例示的な実施形態の上面部分断面図。
【図3】図1のシュラウドセグメントの別の例示的な実施形態の上面部分断面図。
【図4】図1のシュラウドセグメントのさらに別の例示的な実施形態の上面部分断面図。
【図5】図1のシュラウドセグメントを製作する例示的な方法の上面部分断面図。
【図6】図5の線A−Aに沿った前面部分断面図。
【図7】通路の例示的な輪郭付き内表面の一部分の上面断面図。
【図8】図7の通路の輪郭付き内表面を形成する例示的な方法の一部の上面断面図。
【発明を実施するための形態】
【0012】
この詳細な説明は、図面を参照しながら実施例によって、その利点及び特徴と共に本発明の実施形態を説明する。
【0013】
図1は、タービン動翼112と囲繞関係で配置されたその全体を参照符号100で示すシュラウドアセンブリの形態でのタービン冷却サブアセンブリの側面部分断面図を示している。タービン動翼112は、タービンエンジンの高圧タービンセクション内においてロータ(図示せず)に連結される。矢印101の方向で、ガス流パスを示している。シュラウド冷却アセンブリ100は、弓形シュラウドセグメントの環状列を有するシュラウドを含む。シュラウドセグメントは、その全体を参照符号102で示す。シュラウドセグメント102は、弓形ハンガセクションの環状列によって適所に保持される。ハンガセクションは、その全体を参照符号104で示す。ハンガセクション104は、その全体を参照符号106で示すエンジン外側ケースによって支持される。
【0014】
シュラウドセグメント102は、基部108と、該基部108から半径方向かつ前向きに延びて該シュラウドセグメント102の円周方向前縁を形成した前方レール110と、該シュラウドセグメント102の円周方向後縁を形成した後方レール114と、基部108から半径方向外向きに延びる傾斜して間隔を置いて配置された側面レール116とを含む。基部108は、シュラウドセグメント空洞118を部分的に形成する。
【0015】
作動中に、例えばタービンエンジンの圧縮機セクションからの加圧空気103は、ハンガセクション104によって形成された上部プレナム空洞120に流入し、かつ該ハンガセクション104内の孔122を介してシュラウドセグメント空洞118に流入する。シュラウドセグメント空洞118内の加圧空気103は、基部108の半径方向外側表面124上に衝突する。衝突(インピンジメント)空気105は、基部108を冷却し、かつ基部108の外側表面124から該基部108内に延びる通路126の入口孔130に流入して、シュラウドセグメント102の対流冷却を行う。インピンジメント空気105は、シュラウドセグメント102の後方レール114内に設置された出口孔128を介して通路126から流出する。インピンジメント空気105が出口孔128から流出すると、インピンジメント空気105は、矢印101で示すガス流パスに流入する。
【0016】
図2は、シュラウドセグメント102の例示的な実施形態の上面部分断面図を示している。シュラウドセグメント102は、入口孔130を介してシュラウドセグメント空洞118と連通した前方通路202を含む。前方通路202は、出口孔128を備えた側方通路204と連通している。作動中に、インピンジメント空気105(図1の)は、入口孔130に流入し、前方通路202及び側方通路204を通って流れ、かつ出口孔128を介してガス流パス内に流出する。この図示した実施形態は、補助圧力孔206を含み、この補助圧力孔206は、付加的なインピンジメント空気105を側方通路204に供給するように設けることができる。補助圧力孔206は、入口孔130から離れた側方通路204の領域におけるインピンジメント空気105の圧力低下を補う。
【0017】
前方通路202及び側方通路204を設置することにより、シュラウドセグメント102の前方レール110及び側面レール116領域における対流冷却が増大する。実験によると、シュラウドセグメント102の前方レール110及び側面レール116領域は、シュラウドセグメント空洞118の下方に位置しまたシュラウドセグメント空洞118に集積しかつ該シュラウドセグメント空洞118を冷却するインピンジメント空気105によって冷却される基部108の領域よりも相対的により高温になることを示した。
【0018】
以前のシュラウドセグメントの実施形態は、側面レール116、前方レール110、及び後方レール114に沿って配置された通気孔を含み、これら通気孔は、シュラウドセグメント空洞118からインピンジメント空気105を受けかつ該インピンジメント空気105をシュラウドセグメント空洞118の外側表面に沿ってガス流パス内に送出していた。図2の例示した実施形態は、前方通路202及び側方通路204を用いて前方レール114及び側面レール116領域を冷却し、そのような通気孔を含む可能性はない。通気孔を省略することの1つの利点は、シュラウドセグメント102が、半径方向内側表面132(図1の)に沿って断熱皮膜を含むことができることである。製作において、皮膜は、通気孔を製作した(シュラウドセグメント102内に鋳造又は穿孔した)後に施工することができ、或いは通気孔を製作する前に施工することができる。通気孔を製作した後に皮膜を施工する場合には、通気孔は、皮膜が該通気孔を塞ぐのを防止するために覆われる。通気孔を製作する前に皮膜を施工した場合には、通気孔の製作に先立って該通気孔の領域から皮膜が除去される。これらの製作方法のいずれも、シュラウドセグメント102の製作費用を増加させる。
【0019】
前方通路202及び側方通路204を設置することによって得られた前方レール114及び側面レール116における冷却の増大は、シュラウドセグメント102の設計から通気孔を省略して製作費用を低減する機会を可能にすることができる。他の利点には、シュラウドセグメント102から流出するインピンジメント空気105の量を減少させることを含むことができる。流出するインピンジメント空気105は、該流出インピンジメント空気105がタービンエンジンの高圧セクションに流入しかつガス流パスに悪影響を与え、それによってエンジンの効率を低下させるおそれがあるので、望ましくないことが多い。インピンジメント空気105は、多くの場合、タービンエンジンの圧縮セクション内で加圧された空気から送出される(ブリード空気)。冷却のために用いるブリード空気は、燃焼のためには用いられず、従って冷却のために用いるブリード空気を減少させることは、タービンエンジンの効率を増大させることになる。
【0020】
図2の例示した実施形態は、2つの入口孔130及び2つの出口孔128を含むことに限定されるものではなく、単一の入口孔130又は複数の入口孔130並びに単一の出口孔128又は複数の出口孔128を含むあらゆる数の入口孔130及び出口孔128を含むことができる。
【0021】
図3は、シュラウドセグメント102の別の例示的な実施形態を示している。図3におけるシュラウドセグメント102は、図2のシュラウドセグメント102と同様であるが、側方通路204と連通した後方通路208を含む。後方通路208は、インピンジメント空気105を導いてシュラウドセグメント102の後方レール114領域を対流冷却する。
【0022】
図4は、シュラウドセグメント102のさらに別の例示的な実施形態を示している。図4におけるシュラウドセグメント102は、図2のシュラウドセグメント102と同様であるが、側方通路204及び側面レール116の外側表面と連通した複数の通気孔210を含む。通気孔210は、側面レール116の外側表面の冷却を増大させるように使用することができるが、通気孔210は、製作費用を増加させる可能性がある。
【0023】
図5は、シュラウドセグメント102を製作する例示的な方法の上面部分断面図を示している。前方通路202、側方通路204及び後方通路208は、前方レール110、側面レール116及び後方レール114の外側表面を貫通して形成されている。通路が穿孔(ドリル加工)されると、望ましくないドリル加工孔は、領域501において密封することができる。通路の形成は、例えばドリル加工、放電加工(EDM)、電解加工(ECM)などを含む多様な技法を用いて行うことができる。
【0024】
図6は、シュラウドセグメント102を製作する例示的な方法の線A−A(図5の)に沿った前面部分断面図を示している。シュラウドセグメント102の半径方向内側表面132は、環状輪郭を備える。環状輪郭は、前方通路202をドリル加工するのを困難にする可能性がある。前方通路202の穿孔は、各側面レール116から角度θで前方通路202をドリル加工することによってより容易に行うことができる。例えば、ドリル加工手順は、側面レール116の1つからシュラウドセグメント102の中間点まで角度θで第1の通路601をドリル加工するステップを含むことができる。第2の通路603は次に、対向する側面レール116から同じ角度でシュラウドセグメント102の略中間点で第1の通路601と交差することができるドリル深さでドリル加工することができる。別の実施形態では、互いに交差しない第1の通路601及び第2の通路603を含むことができる。対向する側面レール116から使用角度で前方通路202をドリル加工することにより、環状輪郭に適応する。後方通路208(図5の)は、同様にドリル加工することができる。側方通路204は、必要に応じて1回のドリル加工手順でドリル加工することができ、前方通路202及び後方通路208の一部分と交差することになる。通路がドリル加工されると、シュラウドセグメントの外側表面を真直ぐ貫通した通路の部分を密封することができる。所望の入口孔130及び出口孔128は、後続工程でドリル加工することができる。上述した通路の製作方法はドリル加工するステップを含むが、シュラウドセグメント102内の通路は、例えば鋳造法などを含むその他の方法を用いて製作することができる。
【0025】
上述した通路を製作するために(EDM/ECM)法を用いる利点は、この穿孔法を用いて通路の輪郭付き内表面を形成することができることである。図7は、通路の例示的な輪郭付き内表面の一部分の上面断面図を示している。通路の輪郭付き内表面は、前方通路202、後方通路208及び側方通路204を含む上述した通路のあらゆる通路の特徴形状として設けることができる。図7を参照すると、通路701は、該通路701の内径を縮小したリッジ部705を含む。リッジ部705は、インピンジメント空気105(図1の)の流れを乱すことによって、通路701内を流れるインピンジメント空気105の対流冷却を向上させることができる。リッジ部705の望ましい効果には、インピンジメント空気105の流れ内に渦を発生させ、それにより該インピンジメント空気105の対流冷却作用を増大させることを含むことができる。
【0026】
図8は、リッジ部705を形成する例示的な方法を示している。EDMプローブ801を使用して通路701を穿孔する。穿孔の間に、プローブ801は、回転されかつ矢印805の方向に前方に材料807内に駆動されて通路701を穿孔する。リッジ部705を形成するために、プローブ801の前方駆動を一時的に停止させ、その間にプローブ801により領域803内で材料除去を継続させて、領域803における通路701の内径を増大させる。通路701の部分に沿ったプローブ801の前方駆動を停止させることにより、リッジ部705が形成される。
【0027】
限られた数の実施形態のみに関して本発明を詳細に説明してきたが、本発明がそのような開示した実施形態に限定されるものではないことは、容易に理解される筈である。むしろ、本発明は、これまで説明していないが本発明の技術思想及び技術的範囲に相応するあらゆる数の変形、変更、置換え又は均等な構成を組込むように改良することができる。さらに、本発明の様々な実施形態について説明してきたが、本発明の態様は説明した実施形態の一部のみを含むことができることを理解されたい。従って、本発明は、上記の説明によって限定されるものと見なすべきでなく、本発明は、特許請求の範囲の技術的範囲によってのみ限定される。
【符号の説明】
【0028】
100 シュラウドアセンブリ
101 矢印
102 シュラウドセグメント
103 加圧空気
104 ハンガセクション
105 インピンジメント空気
106 エンジン外側ケース
108 基部
110 前方レール
112 タービン動翼
114 後方レール
116 側面レール
118 シュラウドセグメント空洞
120 上方プレナム空洞
122 孔
124 外側表面
126 通路
128 出口孔
130 入口孔
132 内側表面
202 前方通路
204 側方通路
206 圧力孔
208 後方通路
210 通気孔
501 領域
601 第1の通路
603 第2の通路
701 通路
705 リッジ部
801 プローブ
803 領域
805 矢印
807 材料

【特許請求の範囲】
【請求項1】
タービン冷却部品(100)であって、
円周方向前縁(110)と、
前記前縁(110)から間隔を置いて配置された円周方向後縁(114)と、
前記前縁(110)及び後縁(114)に連結された第1の側面パネル(116)と、
前記前縁(110)及び後縁(114)に連結され、前記第1の側面パネル(116)に対して間隔を置いて配置されかつ該第1の側面パネル(116)に対して対向した第2の側面パネル(116)と、
前記後縁(114)及び前縁(110)に連結され、かつ前方部分、中間部分、後方部分、対向する第1の側面部分及び第2の側面部分、加圧空気(105)を受けるように作動する空洞(118)を部分的に形成した外側表面(124)、並びに該タービン部品(100)の前記前縁(110)から前記後縁(114)への方向に移動するタービンエンジンのガス流パスと接触した弓形内側表面(132)を有する弓形基部(108)と、
前記基部(108)内に設けられかつ前記第1の側面部分(116)に沿って前記前方部分(110)から前記後方部分(114)に延びる第1の側方冷却空気通路(204)と、
前記基部(108)の前方部分内に設けられ、前記側方冷却空気通路(204)及び空洞(118)と連通しておりかつ該空洞(118)から前記加圧空気(105)を受けるように作動する前方冷却空気通路(202)と
を備える部品。
【請求項2】
該部品が、前記第1の側方冷却空気通路(204)及び後縁(114)と連通しておりかつ前記ガス流パス内に前記加圧空気(105)を放出するように作動する第1の出口(128)をさらに含む、請求項1記載の部品。
【請求項3】
該部品が、前記基部(108)内に設けられかつ前記第2の側面部分(116)に沿って前記前方部分から前記後方部分に延びる第2の側方冷却空気通路(204)をさらに含む、請求項1記載の部品。
【請求項4】
前記第2の側方冷却空気通路(204)が、前記前方冷却空気通路(202)と連通している、請求項1記載の部品。
【請求項5】
該部品が、
前記基部(108)の後方部分内に設けられかつ前記側方冷却空気通路(204)及び空洞(108)と連通した後方冷却空気通路(208)と、
前記後方冷却空気通路(208)及び後縁(114)と連通しておりかつ前記ガス流パス内に前記加圧空気(105)を放出するように作動する第2の出口(128)と
をさらに含む、請求項1記載の部品。
【請求項6】
該部品が、前記基部(108)内に設けられ、前記第2の側面部分に沿って前記前方部分から前記後方部分に延びかつ前記前方冷却空気通路(202)及び後方冷却空気通路(208)と連通した第2の側方冷却空気通路(204)をさらに含む、請求項5記載の部品。
【請求項7】
前記第1の側方冷却空気通路(204)が、前記空洞(108)と連通しておりかつ前記加圧空気(105)を受けるように作動する入口(130)を含む、請求項1記載の部品。
【請求項8】
前記第2の側方冷却空気通路(204)が、前記空洞(108)と連通しておりかつ前記加圧空気(105)を受けるように作動する入口(130)を含む、請求項3記載の部品。
【請求項9】
前記第1の側方冷却空気通路(204)が、前記加圧空気(105)の流量に影響を与えるように作動するリッジ部(705)を備えた内表面を有する、請求項1記載の部品。
【請求項10】
前記前方冷却空気通路(202)が、前記加圧空気の流量に影響を与えるように作動するリッジ部(705)を備えた内表面を有する、請求項1記載の部品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−112374(P2010−112374A)
【公開日】平成22年5月20日(2010.5.20)
【国際特許分類】
【出願番号】特願2009−245011(P2009−245011)
【出願日】平成21年10月26日(2009.10.26)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】