説明

ターボ分子ポンプ用表面処理層

【課題】高い耐食性・熱放射性を持つと共に耐プラズマ性も高く、しかも安価に実現し得るターボ分子ポンプ用表面処理層を提供する。
【解決手段】ターボ分子ポンプの内部部品に形成された表面処理層であって、アルミニウムまたはアルミニウム合金よりなる基材21の表面に、無電解Niめっき層22と無電解黒色Niめっき層23の2層重ねの皮膜24を形成してなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体製造設備の排気ラインなどにおいて使用されるターボ分子ポンプ用表面処理層に関する。
【背景技術】
【0002】
この種のターボ分子ポンプの概略構造を図3に示す。ターボ分子ポンプは、ケーシング1の上部に吸気口2、ケーシング1の下部に排気口3を設け、ロータ4に設けた動翼5をケーシング1に設けた静翼6間の空間内で高速回転させることにより、排気作用を発揮させて吸気口2側を高真空にするものである。7は駆動用のモータである。
【0003】
このターボ分子ポンプでは通常、翼材として、軽量、低コスト、強度などの面からアルミニウム合金が用いられている。しかし、アルミニウム合金は、半導体製造工程で排出される塩素ガスなど腐食性ガス環境下では著しく腐食するため、優れた耐食処理を表面に施す必要がある。また、翼材に不可欠なもう一つの条件として、熱放射性(放射率)が高いことが挙げられる。その理由は、通常の対流による熱放散を期待できない高真空下で、ロータの高速回転により発生する大量の熱を放射で逃がす必要があるからである。
【0004】
従来、アルミニウム合金よりなるターボ分子ポンプ用の内部部品の表面処理技術として、以下に示すような種々のものが知られている。
【0005】
(1)基材表面に陽極酸化処理により酸化皮膜を形成するもの。
(2)基材表面に無電解Niめっき層を形成するもの。
(3)基材表面に無電解Niめっき層を形成し、その上にエポキシ層を形成するもの。
(4)基材表面にセラミック等の微粒子を分散させた無電解Ni分散めっき層を形成するもの。
(5)基材表面に無電解黒色Niめっき層を形成するもの。
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、上述した(1)〜(5)の技術のうち、(1)は、安価で放射率が高いものの、空孔が無数にあるため脱ガスが多く耐食性が弱い欠点がある。
(2)は、耐食性は高いものの、放射率が低い欠点がある。
(3)は、エポキシ層の付加により、放射率及び耐食性は高くできるものの、プラズマ環境に弱い欠点がある。
(4)は、放射率及び耐食性は高いものの、コストがかかる欠点がある。
(5)は、放射率は高いものの、耐食性が劣る欠点がある。
【0007】
このように、上述した従来の技術は一長一短あり、ターボ分子ポンプ用の内部部品の材料として、最適な条件を充分満足するまでには至っていなかった。
【0008】
本発明は、上記事情を考慮し、高い耐食性・熱放射性を持つと共に耐プラズマ性も高く、しかも安価に実現し得るターボ分子ポンプ用表面処理層を提供することを目的とする。
【課題を解決するための手段】
【0009】
参考例にかかるターボ分子ポンプ用表面処理層は、ターボ分子ポンプの内部部品に形成された表面処理層であって、フッ素化合物及びケイフッ化アンモニウムを含む処理液に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、前記基材表面にフッ素化合物の皮膜を形成してなることを特徴とする。
【0010】
ターボ分子ポンプの内部部品に形成された表面処理層には、高い耐食性と高い熱放射性を持たせることが必要であるが、アルミニウムまたはアルミニウム合金よりなる基材の表面に、上記の処理によってフッ素化合物の皮膜を形成することにより、耐食性と放射率とを共に高めたターボ分子ポンプ用表面処理層を得ることができる。因みに、放射率εは0.7〜0.8程度に設定することができる。また、上記の皮膜は、厚さを非常に薄く(約3μm)することが可能であり、部品の寸法変化を少なくできる。従って、予め皮膜厚さを考慮して基材の寸法設計をする必要がなくなる。また、上記の皮膜は、ポーラスではないので、反応性ガスに接しても脱ガスの心配がない。また、酸素プラズマに対する耐久度も高いし、前述の処理液に浸漬するだけで皮膜形成できるから、極めて簡単且つ安価に実現し得る。
【0011】
本発明のターボ分子ポンプ用表面処理層は、ターボ分子ポンプの内部部品に形成された表面処理層であって、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成してなることを特徴とする。
【0012】
ターボ分子ポンプの内部部品に形成された表面処理層には、高い耐食性と高い熱放射性を持たせることが必要であるが、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成することにより、耐食性と放射率とを共に高めたターボ分子ポンプ用表面処理層を得ることができる。この場合は、耐食性は主に無電解Niめっき層で受け持ち、熱放射性は無電解黒色Niめっき層で受け持つ。即ち、無電解Niめっき層の熱放射率の低さを無電解黒色Niめっき層が補い、無電解黒色Niめっき層の耐食性の低さを無電解Niめっき層が補うことになり、両者の長所を生かすことができる。また、両層とも金属めっき層であるから、従来のようにエポキシ樹脂をコーティングした場合と違い、酸素プラズマ等のプラズマ環境にも強くなる上、安価なコーティングが可能である。
【発明の効果】
【0013】
以上説明したように、参考例にかかるターボ分子ポンプ用表面処理層は、フッ素化合物及びケイフッ化アンモニウムを含む処理液に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、前記基材表面にフッ素化合物の皮膜を形成してなるものであるため、耐食性と放射率とを共に高めることができる。しかも、前記の皮膜を薄くできるので、部品の寸法変化を少なくでき、予め皮膜厚さを考慮して基材の寸法設計をする必要がなくなる。また、前記の皮膜はポーラスではないので、反応性ガスに接しても脱ガスの心配がない。また、酸素プラズマに対する耐久度も高いし、前述の処理液に浸漬するだけで皮膜形成できるから、極めて簡単且つ安価に実現し得る利点がある。
【0014】
本発明のターボ分子ポンプ用表面処理層は、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成してなるものであるため、耐食性と放射率とを共に高めることができる。また、両層とも金属めっき層であるから、酸素プラズマ等のプラズマ環境にも強くなる上、安価なコーティングが可能である。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施形態を図面に基づいて説明する。実施形態として示す表面処理層は、半導体製造システムで使用するターボ分子ポンプの動翼あるいは静翼を構成するものである。
【0016】
参考例として示す表面処理層は、フッ素化合物及びケイフッ化アンモニウムを含む処理液(加熱水溶液)に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、図1に示すように、アルミニウムまたはアルミニウム合金よりなる基材11の表面にフッ素化合物の皮膜12を形成してなるものである。
【0017】
ここで使用する処理液(加熱水溶液)としては、水100重量部に対し、フッ素化合物0.1〜20重量部(好ましくは0.2〜15重量部)、及び、ケイフッ化アンモニウム0.05〜15重量部(好ましくは0.1〜10重量部)を含むものを使用するのがよい。また、フッ素化合物としては、ケイフッ化アンモニウム((NHSiF)を除くフッ素化合物を使用するものとし、ケイフッ化塩、特にケイフッ化マグネシウムMgSiF・6HOを用いるのが好ましい。その他には、ケイフッ化亜鉛(ZnSiF・6HO)、ケイフッ化カリウム(KSiF),ケイフッ化ソーダ(NaSiF),ケイフッ化マンガン(MnSiF・6HO)等のケイフッ化塩、ホウフッ化塩、フッ化ジルコニウム塩またはフッ化チタン塩などが挙げられる。これらのフッ素化合物の中でも、ケイフッ化塩が好ましく用いられ、特にケイフッ化マグネシウム、ケイフッ化マンガン等が好ましく用いられる。
【0018】
このような処理液を用いることによって、アルミニウムまたはアルミニウム合金の表面に、均一な薄さの耐食性及び熱放射性に優れた皮膜を形成することができる。因みに、放射率εは0.7〜0.8程度に設定することができる。また、上記の皮膜は、厚さを非常に薄く(約3μm)することが可能であり、部品の寸法変化を少なくできる。従って、予め皮膜厚さを考慮して基材の寸法設計をする必要がなくなる。また、上記の皮膜は、ポーラスではない(空孔を持たない)ので、反応性ガスに接しても脱ガスの心配がない。また、酸素プラズマに対する耐久度も高いし、前述の処理液に浸漬するだけで皮膜形成できるから、極めて簡単且つ安価にターボ分子ポンプ用として優れた表面処理層を提供し得る。
【0019】
なお、前記処理液において、フッ素化合物が0.1重量部未満の場合、あるいはケイフッ化アンモニウムが0.05重量部未満の場合には、反応が遅くなり、処理時間が長くなってしまうので好ましくない。一方、フッ素化合物が20重量部を超える場合、あるいはケイフッ化アンモニウムが15重量部を超える場合には、溶解が困難となるため好ましくない。
【0020】
また、アルミニウムまたはアルミニウム合金よりなる基材を浸漬する際の処理液の温度は、通常70℃〜100℃の範囲内であり、好ましくは75℃〜99℃の範囲内、より好ましくは80℃〜98℃の範囲内に設定するのが望ましい。処理液の温度が70℃未満であるような温度の低い場合には、反応が遅くなり、処理時間が長くなってしまうので好ましくない。一方、処理液の温度が100℃を超えてしまうような高い温度の場合には、処理液の蒸発が多くなってしまうので好ましくない。処理時間については、成膜反応は約1分間程度で終了するため、2分間程度の浸漬を行えば、表面処理としては十分である。但し、この皮膜は保護作用があるので、一旦成膜した後は30分以上浸漬しておいても何ら問題は生じない。
【0021】
本発明の実施形態として示す表面処理層は、図2に示すように、アルミニウムまたはアルミニウム合金よりなる基材21の表面に、無電解Niめっき層22と無電解黒色Niめっき層23の2層重ねの皮膜24を形成してなるものである。この表面処理層においては、下地に無電解Niめっき層22を形成し、その上に無電解黒色Niめっき層23を形成する。
【0022】
このようにアルミニウム基材21の表面に、無電解Niめっき層22と無電解黒色Niめっき層23の2層重ねの皮膜24を形成することにより、耐食性と放射率とを共に高めた表面処理層を提供することができる。この場合、無電解Niめっき層22の熱放射率の低さを無電解黒色Niめっき層23が補い、無電解黒色Niめっき層23の耐食性の低さを無電解Niめっき層22が補うことができるので、両者の長所を生かした、耐食性と放射率の高いターボ分子ポンプ用の材料を得ることができる。また、両層とも金属めっき層であるから、従来のようにエポキシ樹脂をコーティングした場合と違い、酸素プラズマ等のプラズマ環境にも強くなる上、安価なコーティングが可能である。
【図面の簡単な説明】
【0023】
【図1】参考例の表面処理層の拡大断面図である。
【図2】本発明の実施形態の表面処理層の拡大断面図である。
【図3】ターボ分子ポンプの概略構成図である。
【符号の説明】
【0024】
11,21 アルミニウムまたはアルミニウム合金よりなる基材
12 フッ素化合物の皮膜
22 無電解Niめっき層
23 無電解黒色Niめっき層
24 2層重ねの皮膜

【特許請求の範囲】
【請求項1】
ターボ分子ポンプの内部部品である動翼または静翼に形成された表面処理層であって、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成してなることを特徴とするターボ分子ポンプ用表面処理層。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2007−262581(P2007−262581A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2007−120846(P2007−120846)
【出願日】平成19年5月1日(2007.5.1)
【分割の表示】特願2002−53871(P2002−53871)の分割
【原出願日】平成14年2月28日(2002.2.28)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】