説明

チタンアルミナイド合金の製造方法,チタンアルミナイド合金製構造材の製造方法,及びチタンアルミナイド合金製構造材

【課題】 高い耐酸化性を備えたチタンアルミナイド合金の製造方法を提供する。
【解決手段】 チタンアルミナイド金属溶融物から得た金属液滴が、ガス噴霧法を用いながらハロゲン含有ガスに晒されることで、前記金属液滴がハロゲン濃縮された状態となり、ハロゲン濃縮チタンアルミナイド金属液滴が形成された後、熱間静水圧プレス加工によって前記ハロゲン濃縮チタンアルミナイド金属液滴からチタンアルミナイド合金が造型される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チタンアルミナイド合金の製造方法,チタンアルミナイド合金製構造材の製造方法,及びチタンアルミナイド合金製構造材に関する。
【背景技術】
【0002】
従来、冶金鋳造技術や粉末冶金法によってその組成がチタン(Ti)とアルミニウム(Al)からなるチタンアルミナイド合金が製造され、その合金中の構成元素であるチタン,アルミニウムとは異なる構成元素として、ニオブ(Nb),ホウ素(B),クロム(Cr),モリブデン(Mo),マンガン(Mn),バナジウム(V)等が挙げられ,さらには、炭素(C)をも含有するチタンアルミナイド合金製構造材が知られている。
【0003】
チタンアルミナイド合金は、その優れた特性によって軽量構造材として使用され、特に高温での用途に使用される。チタンアルミナイド合金は高温での強度やクリープ特性に優れているため、チタンアルミナイド合金からなる軽量構造が、高温技術における機械的ストレスが加わる構造材、例えばタービン翼、航空機の構造部材、ジェットエンジンの羽根車、エンジンバルブ等の製造を可能としたのである。さらに、チタンアルミナイド合金は低密度であり(密度がおよそ3.8ないし4.3[g/cm])、ニッケル合金の約8.5[g/cm]よりも低密度であることから、ニッケル合金の代替として使用することを推奨できるものである。
【0004】
従来、チタンアルミナイド合金は、耐酸化性の限界温度が約750℃までに達しておらず、それが限界使用温度とされている。さらに限界温度を改善する方策として、チタンアルミナイド合金表面の微量のハロゲンによって耐酸化性が明らかに改善されることが知られており、このハロゲン効果とも呼ばれている作用によってチタンアルミナイド合金の限界使用温度が、約1000℃を上回る温度まで拡大できるとされている。
【0005】
例えば、下記特許文献1には、チタンアルミナイド合金からなる構造材の耐酸化性を改善するための表面処理方法が開示されている。より詳しくは、下記特許文献2には、チタンアルミナイド合金の材料表面中にイオン注入する工程によって前記ハロゲンが移動することで、チタンアルミナイド合金の耐腐食性を向上させる方法が開示されている。
【0006】
さらに下記特許文献3には、高い耐酸化性と耐摩耗性を備えたTi−Alシステムにおける金属間化合物からなる製造物と、その製造物の製造方法が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】ドイツ特許出願公開第10351946号明細書
【特許文献2】ドイツ特許第19627605号明細書
【特許文献3】PCT経由ドイツ移行番号第69309167号明細書
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述した従来技術に鑑みて、本発明の目的は、チタンアルミナイド合金が採用されたか使用されたときのダメージによってその合金表面の耐酸化性が損なわれないように、高い耐酸化性を備えたチタンアルミナイド合金を提供するものであり、また、当該チタンアルミナイド合金の製造方法によって製造された合金からなる構造材を提供するものである。
【課題を解決するための手段】
【0009】
本発明のチタンアルミナイド合金の製造方法は、チタンアルミナイド金属溶融物から得た金属液滴が、(特にガス噴霧法を用いながら)ハロゲン含有ガスに晒されることで、前記金属液滴がハロゲン濃縮された状態となり、ハロゲン濃縮チタンアルミナイド金属液滴が形成された後、プレス加工(特に熱間静水圧プレス加工)によって前記ハロゲン濃縮チタンアルミナイド金属液滴からチタンアルミナイド合金が造型されることを特徴とする。
【0010】
本発明によれば、前記ハロゲン含有ガスを用いてハロゲンで濃縮された前記金属液滴とすることによって、前記チタンアルミナイド合金材料の表面のみならず当該合金又は合金材料のそれぞれの部分体積の全体に微細で均質にハロゲンが行き渡り、前記チタンアルミナイド合金の材料全体にてハロゲンが合金となる。
【0011】
本発明によれば、従前のチタンアルミナイド合金の酸化層よりも低い位置であって、より大きい範囲,より深い位置のいずれかの複数の層中にもハロゲンが在ることとなり、例えばその位置の深さが100,200,300,400,500[μm]のいずれかよりも深い位置であって前記合金表面よりも深い位置、又は前記合金全域の内部に、均質に又はランダムかつ一様にハロゲンが在り、このように前記合金全体の非常に深い位置までハロゲンによって耐酸化性が保たれているのであるから、前記チタンアルミナイド合金から製造された後にダメージが加わった構造材の表面においても、なお耐酸化性を有しそれが保持されている。
【0012】
本発明によれば、前記チタンアルミナイド金属液滴と前記ハロゲンとの集中的な接触によって前記金属粉体又は前記金属液滴が不動態化される。
【0013】
本発明では、特に、チタンアルミナイドから製造されたバルク材の中にハロゲンとして、塩素(Cl),フッ素(F),塩素,フッ素(F)のいずれか1種以上が導入される。本発明においては、上記に加えて、ヨウ素(I),臭素(Br)のいずれか1種以上が適用可能である。
【0014】
本発明では、熱間静水圧プレス(HIP)によって、きわめて等方性があり均一な材料結合を有する合金となる。標準的な熱間静水圧プレスでは、対象箇所の圧力が100[Mpa]程度の高圧となり、対象箇所の温度が例えば1000℃ないし2000℃の高温となる。
【0015】
本発明は、前記チタンアルミナイド金属溶融物,前記ハロゲン濃縮チタンアルミナイド金属液滴のいずれか1種以上が、キャリアガス(特に不活性キャリアガス)と共に処理されるものであって、前記キャリアガスが、前記ハロゲン含有ガスと混合されることになるキャリアガス又は前記ハロゲン含有ガスが混合されたキャリアガスのいずれかであることを特徴とする。
【0016】
本発明によれば、アルゴン(Ar)又はヘリウム(He)若しくはその他の不活性ガスが含まれる気体がキャリアガスとなり得て、ハロゲン含有ガスと混合されることで、前記チタンアルミナイド金属溶融物,前記ハロゲン濃縮チタンアルミナイド金属液滴のいずれか1種以上が、選択的に処理されて、ハロゲンで濃縮された状態となる。
【0017】
本発明は、前記ハロゲン濃縮チタンアルミナイド金属液滴から前記チタンアルミナイド合金が造型されてからチタンアルミナイド金属粉体が形成されることを特徴とする。本発明では通常、熱間静水圧プレスによって前記合金が造型される。この造型された前記合金から製造された構造材は、加工によってダメージが加わった構造材の表面においても、なお高い耐酸化性を有している。前記構造材は、例えば、自動車産業、宇宙産業、航空産業、工業用機械工具産業に使用される構造材となり得る。
【0018】
本発明のチタンアルミナイド合金の第二の製造方法は、チタン含有粉体とアルミニウム含有粉体,又はチタンアルミナイド粉体(特にチタンアルミナイド金属粉体)のいずれかが、粉砕機(特にボールミル粉砕機)により粉砕されるものであって、前記粉砕機での粉砕期間(特にボールミル粉砕機での粉砕期間)になるとハロゲン濃縮気体が供給されるか又は供給されているかして、前記粉砕期間内のチタンアルミナイド粉体とその後のチタンアルミナイド粉体からハロゲン濃縮チタンアルミナイド金属粉体が形成され、ハロゲン濃縮された状態で、プレス加工(特に熱間静水圧プレス加工)によってチタンアルミナイド合金が造型されることを特徴とする。
【0019】
実際にやってみると、前記ボールミル粉砕機で粉砕された前記チタンアルミナイド金属粉体が、ガスの導入によって、ガスと集中的な接触がなされて、ハロゲン濃縮気体が供給されるか又は供給されているかして、前記粉砕期間内のチタンアルミナイド粉体とその後のチタンアルミナイド粉体からハロゲン濃縮チタンアルミナイド金属粉体が形成され、ハロゲン濃縮された状態でハロゲンが行き渡り、その結果、均質なハロゲン濃縮チタンアルミナイド金属粉体となる。前記合金中への前記ハロゲンの供給は、最終形態の合金における設定された体積か部分的な体積か小さい部分的な体積において、ハロゲンの(体積に対する)割合が、ほぼ一定に維持されるか又はほぼ一定となるか若しくは一定である。
【0020】
本発明では、予め合金化された金属粉体の代わりとして、粉体状のチタンアルミナイド又は予め合金化された金属粉体に粉体状のチタンアルミナイドを加えたものが使用可能であり、チタン粉体とアルミニウム粉体を使用する。つまり、チタン粉体とアルミニウム粉体とが前記ボールミル粉砕機で粉砕され、前記ハロゲン含有ガスが前記ボールミル粉砕機の中で高圧となり、前記ハロゲンガスが濃縮された状態,前記ハロゲンガスが濃縮される状態のいずれかとなることによって、前記ボールミル粉砕機の中でハロゲン濃縮チタンアルミナイド金属粉体が形成される。
【0021】
上述したように前記溶融金属をハロゲンガスで処理することで、前記ハロゲンが前記合金表面のみならず前記合金の表面よりも深い位置にまで行き渡るので、前記第二の製造方法の手順によって、前記最初の製造方法と同じ様に均一なハロゲン濃縮チタンアルミナイド金属粉体が実現する。
【0022】
さらに本発明は、前記ハロゲン濃縮された状態が、ガス雰囲気,液状雰囲気又はガス雰囲気と液状雰囲気のいずれか1種以上の雰囲気にて供されることを特徴とする。このことは、ハロゲンを含有したガス雰囲気中や液状雰囲気中にて前記粉体の集中的な交換又は集中的な濃縮が実施されるということを意味しており、例えば、液体の四塩化炭素(CCl)中にてハロゲン濃縮された状態となるということを意味している。
【0023】
本発明は、前記ハロゲン濃縮された状態が、1種以上の不活性ガス雰囲気にて供されることを特徴とする。前記不活性ガスとしては、アルゴン(Ar),ヘリウム(He)のいずれか1種以上の不活性ガスが適用できる。さらに本発明は、上述の製造方法によって製造されたチタンアルミナイド合金から構造材を製造するチタンアルミナイド合金製構造材の製造方法であり、前記合金におけるそれぞれの体積中か部分的な体積中か空間体積中におけるハロゲンの特性が一定な前記チタンアルミナイド合金から構造部材が製造される製造方法である。
【0024】
さらに、本発明のチタンアルミナイド合金の第三の製造方法は、チタンアルミナイド粉体(特にチタンアルミナイド金属粉体)が、設定時間だけ加熱されている状態又は加熱される状態で容器内(特に密閉容器内)に在り、前記容器内でハロゲン濃縮される状態又はハロゲン濃縮されている状態で供されて、前記設定時間内のチタンアルミナイド金属粉体とその後のチタンアルミナイド金属粉体からハロゲン濃縮チタンアルミナイド金属粉体が形成され、ハロゲン濃縮された状態で、プレス加工(特に熱間静水圧プレス加工)によってチタンアルミナイド合金が造型されることを特徴とする。
【0025】
この本発明の第三の方法によれば、先に説明した方法よりも有利に前記チタンアルミナイド合金が製造されることとなる。本発明の第三の方法によれば、前記材料全体について前記ハロゲンが合金化されるように、前記材料全体の体積又は前記構造材又は前記合金の(小さい)部分的な体積において、ハロゲンの(体積に対し関係する)割合が一定以上の割合となるチタンアルミナイド合金が製造される。本発明の第三の方法によれば、前記ハロゲンの割合を±15%の範囲内で変えることができ、特に前記ハロゲンの割合を±10%の範囲内で変えることができ、さらに前記ハロゲンの割合を±5%の範囲内で変えることができる。つまり、前記合金中のハロゲンの割合を0.005原子%から1.5原子%の範囲内にでき、特に前記合金中のハロゲンの割合を0.01原子%から0.9原子%の範囲内にできる。合金中にはハロゲンとして、フッ素(F),塩素(Cl)のいずれか1種以上が分配されているが、上記に加えて、臭素(Br),ヨウ素(I)のいずれか1種以上が分配されていてもよい。
【0026】
上述した全部で3通りの製造方法によって、前記チタンアルミナイド合金から製造された製造物や構造材の表面が酸化され、要求通りの耐酸化性となる。
【0027】
本発明の技術的範囲の前記ハロゲンとしては、シリコンハロゲン含有化合物又はシリコンハロゲン混合物といったハロゲン化合物が想定内であり、これらハロゲン化合物を前記3通りの製造方法に用いることで、前記チタンアルミナイド合金の耐酸化性に有利な効果がある。
【0028】
前記ハロゲン化合物としてのハロゲン含有ガスとは、ハロゲン元素又は多くのハロゲン元素の混合物を含有する不活性ガスのことである。
【0029】
本発明は、前記容器が加熱される前に、前記チタンアルミナイド粉体(特にチタンアルミナイド金属粉体)が前記容器内で真空に晒されることを特徴とする。さらに、本発明は、前記ハロゲン濃縮された状態が、1種以上の不活性ガス雰囲気にて供され、特に前記容器内で真空に晒された後に1種以上の不活性ガス雰囲気にて供されることを特徴とする。
【0030】
本発明は、前記容器,前記チタンアルミナイド粉体,又は前記容器と前記チタンアルミナイド粉体のいずれか1種以上が、加熱時間が15分間以上かつ25時間以内で加熱され、特に加熱時間が30分間以上かつ10時間以内で加熱されることを特徴とする。これは、前記容器内で前記チタンアルミナイド金属粉体のよい均質な濃縮を達成するためであり、本発明により、チタンアルミナイドの濃縮が所望の濃度のハロゲンで濃縮された非常に均一な濃縮となって、前記造型されたチタンアルミナイド合金となる。
【0031】
さらに本発明は、前記容器,前記チタンアルミナイド粉体,又は前記容器と前記チタンアルミナイド粉体のいずれか1種以上が、加熱温度が300℃以上かつ1300℃以下で加熱され、特に加熱温度が500℃以上かつ1000℃以下で加熱されることを特徴とする。本発明により、前記チタンアルミナイド金属粉体が、ハロゲンやハロゲン化合物で良好に濃縮される。
【0032】
本発明における、前記排気、ガス処理、加熱の手順は、より濃度の高いハロゲン濃縮を達成するまで複数回連続して実施可能である。
【0033】
さらに本発明では、前記容器が加熱された後に、前記チタンアルミナイド粉体(特にチタンアルミナイド金属粉体)が、減圧下になるか真空に晒されることを特徴とする。
【0034】
本発明では、最終的には、熱間静水圧プレスによって造型された前記チタンアルミナイド合金から構造材が製造される。
そして、前記本発明の製造方法のうちのいずれかひとつによって製造された前記チタンアルミナイド合金からなる構造材又は製造される構造材が実現する。
【発明の効果】
【0035】
本発明によれば、本発明によれば、前記ハロゲン含有ガスを用いてハロゲンで濃縮された前記金属液滴とすることによって、前記チタンアルミナイド合金材料の表面のみならず当該合金又は合金材料のそれぞれの部分体積の全体に微細で均質にハロゲンが行き渡り、前記チタンアルミナイド合金の材料全体にてハロゲンが合金となり、このように前記合金全体の非常に深い位置までハロゲンによって耐酸化性が保たれているので、前記チタンアルミナイド合金から製造された後にダメージが加わった構造材の表面においても、なお耐酸化性を有しそれが保持されている。
【発明を実施するための形態】
【0036】
チタンアルミナイド合金は、冶金鋳造技術や粉末冶金法によって製造される。前記本発明の製造方法を遂行するためには、ハロゲンを伴った金属粉体を濃縮することから、前記チタンアルミナイド合金は、通常、粉体状である。前記チタンアルミナイドの構造材は、通常、既知の適切な造型方法及び噴霧方法から製造される。
【0037】
前記本発明の製造方法によれば、例えば、チタンアルミ(TiAl)を基礎とした金属間化合物が、一般組成のチタン(Ti)及びアルミニウム(Al)を伴った合金となり、所望の要求特性の前記合金となる。
【0038】
上述の本発明の製造方法により製造されたチタンアルミナイド合金は、例えば、アルミニウム(Al)の含有率が30原子%以上かつ70原子%以下であり、所望の要求特性を満たす前記合金又は前記材料とすべく、さらに下記に示す材料又は元素が、添加されることが一般的である。
【0039】
チタンアルミ(TiAl)が用いられる合金の技術的に重要な分野として、例えば、軽量構造材としては、前記合金は、アルミニウム(Al)の含有率が44原子%以上かつ49原子%以下となる。さらに、構成元素として、クロム(Cr),ニオブ(Nb),マンガン(Mn),バナジウム(V),タンタル(Ta),モリブデン(Mo),ジルコニウム(Zr),タングステン(W),シリコン(Si)のいずれかが加わり、さらに、炭素(C),ホウ素(B)いずれか1種以上が添加され含有されており、前記チタンアルミナイド合金は、これら添加材料の含有率がそれぞれ0.1原子%以上かつ10原子%以下となる。
【0040】
工業利用のためには、正方晶構造の金属間化合物層γ(TiAl)を基礎とした合金が特に有益である。これらのγチタンアルミナイド合金は、低密度(密度が3.85から4.3[g/cm])であり、高弾性率かつ高強度であって、加熱温度が700℃まで温度で耐クリープ性を有する点に特徴がある。
【0041】
特に優れたチタンアルミナイド合金としては、次の組成式、Ti−yAl−zXからなり、Alの含有率yが45原子%以上かつ49原子%以下であり、構成元素Xの含有率zが5原子%以上かつ10原子%以下であり、構成元素Xが、Cr,Nb,Mn,V,Ta,Mo,Zr,W,Siのいずれかが加わり、さらに、C,Bのいずれか1種以上が添加され含有されている。
【0042】
高強度のチタンアルミナイド合金としては、特に次の組成、チタン,アルミナイド及びニオブからなり、さらに、炭素(C),ホウ素(B)のいずれか1種以上が含有率iで添加され含有されており、それぞれの含有率iが0.5原子%以下である。標準的には、前記チタンアルミナイド合金が、次の組成式、Ti−yAl−zNbからなり、アルミニウム(Al)の含有率yが45原子%であり、ニオブ(Nb)の含有率zが5原子%以上かつ10原子%以下であり、さらに、C,Bのいずれか1種以上が含有率iで添加され含有されており、それぞれの含有率iが0.5原子%まである。
【0043】
前記本発明に係る製造方法によって製造される微細で均質な形態を伴うチタンアルミナイド合金は、さらに次の組成式、Ti−yAl−zNb−kMoからなり、アルミニウム(Al)の含有率yが44.5原子%以上かつ47原子%以下であって特にAlの含有率yが44.5原子%以上かつ45.5原子%以下であり、ニオブ(Nb)の含有率zが5原子%以上かつ10原子%以下であり、モリブデン(Mo)の含有率kが0.1原子%以上かつ3.0原子%以下であり、残部がチタン(Ti)である。
【0044】
前記本発明に係る製造方法によって製造される微細で均質な形態を伴うチタンアルミナイド合金が、特に次の組成式、Ti−yAl−zNb−kMoからなり、アルミニウム(Al)の含有率yが44.5原子%以上かつ45.5原子%以下であり、ニオブ(Nb)の含有率zが5原子%以上かつ10原子%以下であり、モリブデン(Mo)の含有率kが1.0原子%以上かつ3.0原子%以下であり、残部がチタン(Ti)であるときには、高温での構造均質性を伴う優れた微細構造となる。
【0045】
前記本発明に係る製造方法によって製造される合金は、ホウ素(B)を含有し、その合金に対するホウ素(B)の含有率が0.05原子%以上かつ0.8原子%の割合であることが有益である。ホウ素(B)の添加が、安定析出物の形成を有利に導き、前記合金の機械的硬化及び機械的安定性に寄与する。
【0046】
前記本発明に係る製造方法によって製造される合金は、さらに炭素(C)を含有し、その合金に対する炭素(C)の含有率が0.05原子%以上かつ0.8原子%の割合であることが有益である。炭素(C)の添加が前記ホウ素(B)の添加と相俟って、前記と同様に、安定析出物の形成を有利に導き、前記合金の機械的硬化及び機械的安定性に寄与する。
【0047】
加熱温度が700℃を超える温度でβ層を形成し微細で均質な形態を伴うチタンアルミナイド合金は、同様に、冶金鋳造技術や粉末冶金法によって製造される。このチタンアルミナイド合金は、次の組成式、Ti−yAl−zNb−mB−kMoからなり、アルミニウム(Al)の含有率yが44.5原子%以上かつ47原子%以下であって特にAlの含有率yが44.5原子%以上かつ45.5原子%以下であり、ニオブ(Nb)の含有率zが5原子%以上かつ10原子%以下であり、ホウ素(B)の含有率mが0.05原子%以上かつ0.8原子%以下であり、モリブデン(Mo)の含有率kが0.1原子%以上かつ3.0原子%以下であり、残部がチタン(Ti)である。
【0048】
さらに、チタンアルミナイド合金は、次の組成式、Ti−yAl−zNb−nC−kMoからなり、アルミニウム(Al)の含有率yが44.5原子%以上かつ47原子%以下であって特にAlの含有率yが44.5原子%以上かつ45.5原子%以下であり、ニオブ(Nb)の含有率zが5原子%以上かつ10原子%以下であり、炭素(C)の含有率nが0.05原子%以上かつ0.8原子%以下であり、モリブデン(Mo)の含有率kが0.5原子%以上かつ3.0原子%以下であり、残部がチタン(Ti)である。このチタンアルミナイド合金は、加熱温度が1320℃までの温度で安定してβ層が形成される微細で均質な形態を伴うチタンアルミナイド合金である。
【0049】
加熱温度が1320℃までの温度で安定してβ層が形成されるチタンアルミナイド合金は、同様に、次の組成式、Ti−yAl−zNb−mB−nC−kMoからなり、アルミニウム(Al)の含有率yが44.5原子%以上かつ47原子%以下であって特にAlの含有率yが44.5原子%以上かつ45.5原子%以下であり、ニオブ(Nb)の含有率zが5原子%以上かつ10原子%以下であり、ホウ素(B)の含有率mが0.05原子%以上かつ0.8原子%以下であり、炭素(C)の含有率nが0.05原子%以上かつ0.8原子%以下であり、モリブデン(Mo)の含有率kが0.1原子%以上かつ3.0原子%以下であり、残部がチタン(Ti)である。
【0050】
上述した本発明の適用範囲で提供されるチタンアルミナイド合金は、要求特性通りとするための前記本発明の製造方法の1つを実行するため、金属粉体又は粉体にて提供され、本発明に係るハロゲン化の結果物又はチタンアルミナイド金属粉体のハロゲン濃縮の結果物若しくはチタンアルミナイド合金のハロゲン濃縮の結果物から得られ、前記合金表面のそれぞれの部分体積がほぼ一定のハロゲン特性となり、前記合金表面から離れた深部についてもほぼ一定のハロゲン特性となり、その結果、構造材又は合金全体の耐酸化性が改善される。
【0051】
前記方法を実行するために用いられる好適な実施形態の1つとしては、シリコン含有ハロゲン、又はシリコンとハロゲンとの組み合わせがあり、実際にやってみると、これら構成元素又は構成化合物が完全に均質に又はランダムで一様に、前記合金表面のみならず前記合金内部に供給され含有されるという事実によって、これら構成元素又は構成化合物が耐酸化性を向上させるものであり、本発明によって製造されたチタンアルミナイド合金は、その耐酸化性が改善されているチタンアルミナイド合金であるといえる。
【0052】
なお、上述したハロゲン以外のハロゲン材料又はハロゲン混合物についても、上述した本発明の適用範囲内であり、チタンアルミナイド合金の耐酸化性を向上させるものであることを申し添える。


【特許請求の範囲】
【請求項1】
チタンアルミナイド金属溶融物から得た金属液滴が、(特にガス噴霧法を用いながら)ハロゲン含有ガスに晒されることで、前記金属液滴がハロゲン濃縮された状態となり、ハロゲン濃縮チタンアルミナイド金属液滴が形成された後、プレス加工(特に熱間静水圧プレス加工)によって前記ハロゲン濃縮チタンアルミナイド金属液滴からチタンアルミナイド合金が造型されることを特徴とするチタンアルミナイド合金の製造方法。
【請求項2】
前記チタンアルミナイド金属溶融物,前記ハロゲン濃縮チタンアルミナイド金属液滴のいずれか1種以上が、キャリアガス(特に不活性キャリアガス)と共に処理されるものであって、前記キャリアガスが、前記ハロゲン含有ガスと混合されることになるキャリアガス又は前記ハロゲン含有ガスが混合されたキャリアガスのいずれかであることを特徴とする請求項1記載のチタンアルミナイド合金の製造方法。
【請求項3】
前記ハロゲン濃縮チタンアルミナイド金属液滴から前記チタンアルミナイド合金が造型されてからチタンアルミナイド金属粉体が形成されることを特徴とする請求項1又は2に記載のチタンアルミナイド合金の製造方法。
【請求項4】
前記請求項1ないし3のうちいずれか一項に記載の製造方法によって製造されたチタンアルミナイド合金から構造材を製造するチタンアルミナイド合金製構造材の製造方法。
【請求項5】
チタン含有粉体とアルミニウム含有粉体,又はチタンアルミナイド粉体(特にチタンアルミナイド金属粉体)のいずれかが、粉砕機(特にボールミル粉砕機)により粉砕されるものであって、前記粉砕機での粉砕期間(特にボールミル粉砕機での粉砕期間)になるとハロゲン濃縮気体が供給されるか又は供給されているかして、前記粉砕期間内のチタンアルミナイド粉体とその後のチタンアルミナイド粉体からハロゲン濃縮チタンアルミナイド金属粉体が形成され、ハロゲン濃縮された状態で、プレス加工(特に熱間静水圧プレス加工)によってチタンアルミナイド合金が造型されることを特徴とするチタンアルミナイド合金の製造方法。
【請求項6】
前記ハロゲン濃縮された状態が、ガス雰囲気,液状雰囲気又はガス雰囲気と液状雰囲気のいずれか1種以上の雰囲気にて供されることを特徴とする請求項5記載のチタンアルミナイド合金の製造方法。
【請求項7】
前記ハロゲン濃縮された状態が、1種以上の不活性ガス雰囲気にて供されることを特徴とする請求項5又は6に記載のチタンアルミナイド合金の製造方法。
【請求項8】
前記請求項5ないし7のうちいずれか一項に記載の製造方法によって製造されたチタンアルミナイド合金から構造材を製造するチタンアルミナイド合金製構造材の製造方法。
【請求項9】
チタンアルミナイド粉体(特にチタンアルミナイド金属粉体)が、設定時間だけ加熱されている状態又は加熱される状態で容器内(特に密閉容器内)に在り、前記容器内でハロゲン濃縮される状態又はハロゲン濃縮されている状態で供されて、前記設定時間内のチタンアルミナイド金属粉体とその後のチタンアルミナイド金属粉体からハロゲン濃縮チタンアルミナイド金属粉体が形成され、ハロゲン濃縮された状態で、プレス加工(特に熱間静水圧プレス加工)によってチタンアルミナイド合金が造型されることを特徴とするチタンアルミナイド合金の製造方法。
【請求項10】
前記容器が加熱される前に、前記チタンアルミナイド粉体(特にチタンアルミナイド金属粉体)が前記容器内で真空に晒されることを特徴とする請求項9記載のチタンアルミナイド合金の製造方法。
【請求項11】
前記ハロゲン濃縮された状態が、1種以上の不活性ガス雰囲気にて供され、特に前記容器内で真空に晒された後に1種以上の不活性ガス雰囲気にて供されることを特徴とする請求項9又は10に記載のチタンアルミナイド合金の製造方法。
【請求項12】
前記容器,前記チタンアルミナイド粉体,又は前記容器と前記チタンアルミナイド粉体のいずれか1種以上が、加熱時間が15分間以上かつ24時間以内で加熱され、特に加熱時間が30分間以上かつ10時間以内で加熱されることを特徴とする請求項9ないし11のうちいずれか一項に記載のチタンアルミナイド合金の製造方法。
【請求項13】
前記容器,前記チタンアルミナイド粉体,又は前記容器と前記チタンアルミナイド粉体のいずれか1種以上が、加熱温度が300℃以上かつ1300℃以下で加熱され、特に加熱温度が500℃以上かつ1000℃以下で加熱されることを特徴とする請求項9ないし12のうちいずれか一項に記載のチタンアルミナイド合金の製造方法。
【請求項14】
前記容器が加熱された後に、前記チタンアルミナイド粉体(特にチタンアルミナイド金属粉体)が、真空に晒されることを特徴とする請求項9ないし13のうちいずれか一項に記載のチタンアルミナイド合金の製造方法。
【請求項15】
前記請求項9ないし14のうちいずれか一項に記載の製造方法によって製造されたチタンアルミナイド合金から構造材を製造するチタンアルミナイド合金製構造材の製造方法。
【請求項16】
前記請求項1ないし15のうちいずれか一項に記載の製造方法によって製造されたチタンアルミナイド合金からなるチタンアルミナイド合金製構造材。







【公表番号】特表2010−532822(P2010−532822A)
【公表日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2010−515354(P2010−515354)
【出願日】平成20年4月21日(2008.4.21)
【国際出願番号】PCT/EP2008/003173
【国際公開番号】WO2009/006954
【国際公開日】平成21年1月15日(2009.1.15)
【出願人】(508368530)ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー (7)
【Fターム(参考)】