説明

データ通信システムおよびデータ通信装置

【課題】2系統の電力線を1つの通信装置が同時使用することを前提とせず、各系統ごとに独立したデータ通信を行いながら、かつ不要輻射を軽減できるデータ通信システムおよびデータ通信装置を提供する。
【解決手段】交流電源電圧のゼロクロス点を基準タイミングに用いて搬送波を生成し、第1の電力線110に接続されたデータ通信装置210、211は正相の搬送波でデジタル変調し、近接する第2の電力線120に接続されたデータ通信装置220、221は逆相の搬送波でデジタル変調することにより、2系統の電力線110、120を独立したデータ通信に利用しながらも、漏洩電波による不要輻射を低減できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建物内などの電力線(電灯線と呼ばれることもある)を用いて高速データ通信を行うデータ通信システムおよびデータ通信装置に関する。
【背景技術】
【0002】
近年、家庭内、店舗内、事務所内、工場内などの建造物内で、その建物内に敷設された電力線(通常は交流100V、または200V)配線を用いて、高速の双方向データ通信を行うためのシステムが普及しつつある。我が国においても高速電力線通信(PLC:Power Line Communication)の規格が定められ、家庭用の電力線データ通信装置が製品化されるようになった。
【0003】
電力線の中では、電力信号が50Hzまたは60Hzの大電力で流れているのに対し、電力線通信の信号は2〜30MHzの極めて広い周波数帯域の中で小電力伝送される。これら2種類の信号は周波数が全く異なるために分離が容易である。この結果、電力線データ通信装置は部屋内の電源コンセントに接続するだけで最大100Mbps程度(物理速度)のデータ通信を双方向で行うことができる。また接続するデータ通信装置は3台以上でも可能であって、いずれか1台が親機になって、複数台の子機とのアクセス制御を時間軸上で行うことにより、電力線上で衝突のないマルチアクセスを実現している。
【0004】
電力線通信により、家庭内でネットワークを設置する際に、イーサネット(登録商標)用のLANケーブルを使用する必要がなくなるので、LANケーブルの新規敷設工事が不要となるうえ、室内をケーブルが張り巡らされるという外観上の見苦しさを生じない利点もある。配線不要という観点においては無線LANも同様の特徴を有するが、建物の構造や建材によっては電波がうまく到達できない場合も生じるので、電力線通信の方が安定に通信できる。
【0005】
しかしながら、電力線通信には不要輻射の課題がある。電力線は通常、電磁的遮蔽効果のない平行ビニル被覆線であるため、同軸線のような遮蔽効果がなく、そのため導線を流れる高周波信号が周囲に不要輻射となって漏洩する。電力線通信で使用する2〜30MHz帯域の中には、船舶、航空機通信、短波放送、アマチュア無線、そして電波天文観測など微小な電波を利用するものが多く、電力線からの漏洩電波のレベルが厳しく規制されている。電力線通信を利用する側から見ると、このような規制に合わせるためには通信信号の電力を低く設定する必要があり、このために伝送距離や伝送速度の性能に制約が生じている。
【0006】
そこで前述の漏洩電波を低減させるために特許文献1の手法が提案されている。特許文献1においては、電力線が通常、中性線(接地線)、単相電圧A線、単相電圧B線の3線で配線されていることを用い、電力線通信の高周波信号を単相電圧A線と単相電圧B線にそれぞれ互いに搬送波において逆位相になるように、すなわち差動関係で送出させるものである。このことにより情報としては同じ情報が2種類の信号で伝送され、受信側ではそれら2種類の信号を作動受信すればよい。一方、漏洩電波は3線近傍の空間上で単相電圧A線、単相電圧B線からの漏洩電波が互いに相殺して軽減できるという効果を持たせることができる。特許文献1では以下の方法でこの効果をさらに高めている。
【0007】
実際の電力線配線においては単相電圧A線、単相電圧B線の伝送特性が複雑に異なっているため、単純に搬送波の逆位相で送出することが必ずしも最適の相殺関係をもたらすとは限らない。そこで単相電圧A線、単相電圧B線に送出する際に、それぞれの振幅、位相を手動で微調整できるようにして、最大の相殺効果が得られるようにしている。
【特許文献1】特開昭61−109431号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
前述のように、3線式の電力線において、2種類の電圧線に同じ電力線通信の信号を搬送波において逆相となるように送出することにより、不要輻射となる漏洩電波を軽減することができる。
【0009】
しかし特許文献1は、電力線通信においてデータ通信装置が必ず電力線3線すべてを使用するという基本的な条件が含まれている。周知のように通常の電力線配線は、宅内において3線のうちの2線を各部屋、あるいは各電源コンセントに接続している。たとえばリビングルームには単相電圧A線と中性線、子供部屋には単相電圧B線と中性線、というふうに負荷分散させている。また同じ室内で異なる電源コンセントに異なる2線が接続されることも珍しくない。つまり特許文献1が提案するような3線同時使用の配線環境は極めてまれであるといえる。また、単相200Vを使用する空調機器や調理機器などのための配線は3本すべて接続されるが、現在のところではごく少数の例である。
【0010】
また多くの建造物や大型輸送機関(船舶、列車、航空機など)においては、前述したような単相3線式配線は通常用いられず、単に単相2本配線、あるいはその複数組の束ね合わせ配線が用いられるので、特許文献1が利用できる条件を満たさないことが一般的である。
【0011】
さらに配線の有効利用という観点でも好ましくない。物理的に独立した2系統の電力線に同じ情報を送るので、本来ならそれぞれに異なる2種類の情報を送れることを考えれば、データ通信を半分の効率でしか利用していない。今後、電力線通信が建物内でのLAN用伝送路として幅広く利用される可能性が高く、しかもその伝送路を流れる情報も高品質動画に代表される大容量のものが増加していくことを考慮すれば、2系統の電力線をそれぞれ独立に使用することができない伝送方法は、利用価値の低下が予想される。
【0012】
本発明はこのような課題を解決するためになされたものであり、2系統の電力線を1つの通信装置が同時使用することを前提とせず、各系統ごとに独立したデータ通信を行いながら、かつ不要輻射を軽減できるデータ通信システムおよびデータ通信装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
上述の目的を達成するために、本発明のデータ通信システムは、電力線配線を伝送路としてデータを伝送するデータ通信システムであって、外部から供給される交流電源電圧を送電する第1の電力線と、第1の電力線に近接して並行敷設され交流電源装置の電圧を同時に送電する第2の電力線と、第1の電力線に接続する1台以上の第1のデータ通信装置と、第2の電力線に接続する1台以上の第2のデータ通信装置と、を備え、第1のデータ通信装置と第2のデータ通信装置は交流電源電圧の波形から得られる基準タイミングを用いて、互いに逆位相になるような搬送波を生成し、搬送波をデータで変調してデジタル変調信号を生成することを特徴とする。
【0014】
これにより、2本の電力線を独立した伝送路として有効に使用しながら、漏洩電波を軽減することが可能となる。
【0015】
また本発明のデータ通信システムでは、基準タイミングを交流電源電圧の波形のゼロクロス点を基準に生成してもよい。
【0016】
これにより、専用の基準タイミングを別途用意することなく簡単に基準タイミングを生成することができ、第1のデータ通信装置と第2のデータ通信装置の両方に対し同時に基準タイミングを提供することができる。
【0017】
また本発明のデータ通信システムでは、第1の電力線と第2の電力線で伝送されるデジタル変調信号は1次変調に2値以上のデジタル振幅変調を用い、2次変調にOFDMを用いて作成されてもよい。
【0018】
これにより、基準タイミングの時間精度が比較的低くても、その基準タイミングから生成されるデジタル変調の同相・逆相の関係を精度良く維持することができ、不要輻射エネルギーの抑制が可能になる。
【0019】
また本発明のデータ通信システムでは、デジタル変調信号のシンボル位相が、第1の電力線と第2の電力線とで揃っていることが好ましい。
【0020】
これにより、電力線からの漏洩電波をより効果的に相殺することが可能となる。
【0021】
また本発明のデータ通信システムでは、交流電源装置は4本線で3相交流電圧を伝送する3相4線式の交流電源装置であり、第1の電力線および第2の電力線は4本線の任意の2本から構成されてもよい。
【0022】
これにより、単相交流電源装置のみでなく、3相交流電源装置を使用する場合でも電力線からの漏洩電波を相殺することが可能となる。
【0023】
本発明のデータ通信装置は、電力線配線を伝送路として使用するデータ通信装置であって、電力線に接続する電力線接続部と、電力線接続部から取り出された交流電源電圧のゼロクロス点を検出し、このタイミングを基に基準タイミング信号を生成する基準タイミング生成部と、送信データによりデジタル搬送波変調を行ってデジタル変調信号を生成するデジタル変調部と、基準タイミング信号を用いてデジタル変調部で用いる搬送波を発生する搬送波発生部と、搬送波発生部の出力の同相または逆相のいずれかを選択してデジタル変調部に供給する位相選択部を備え、位相選択部における位相選択は電力線接続部が第1の電力線または第2の電力線のいずれに接続されているかによって選択するとともに、デジタル変調部から出力されたデジタル変調信号を電力線接続部を介して電力線に送出することを特徴とする。
【0024】
また本発明のデータ通信装置では、デジタル変調部は、1次変調に2値以上のデジタル振幅変調を用い、2次変調にOFDMを用いてもよい。
【発明の効果】
【0025】
本発明によれば、2系統の電力線の各系統ごとに独立したデータ通信を行いながら、かつ不要輻射を軽減できるデータ通信が可能なデータ通信システムおよびデータ通信装置を提供できる。
【発明を実施するための最良の形態】
【0026】
以下、本発明の実施の形態におけるデータ通信システムおよびデータ通信装置について、図面を参照しながら説明する。
【0027】
(第1の実施の形態)
まず、本発明の第1の実施の形態におけるデータ通信システムについて説明する。図1は本発明を適用する電力線配線を使用するデータ通信システム100の基本構成例を示すブロック図である。データ通信システム100は、外部に設置される交流電源装置101の電圧を送電する電力線110、および電力線110に近接して並行敷設され交流電源装置101の電圧を同時に送電する電力線120、電力線110に接続するデータ通信装置210、211、電力線120に接続するデータ通信装置220、221を含んでいる。図1では説明の便宜上、各電力線110、120に接続するデータ通信装置210、211、220、221は2台ずつ記載したが、1台以上の任意の台数が接続可能である。また交流電源装置101は、通常は電力会社が運用している大型発電機であって、送電設備を経由して本実施の形態のデータ通信システム100に電圧を供給するが、建物や輸送機関内に中規模のものあるいは小規模のものを専用に設置する場合であってもよい。
【0028】
それぞれのデータ通信装置210、211、220、221に接続して使用する情報通信端末310、311、320、321は代表的にはインターネットなどと接続可能なパーソナルコンピュータであるが、ネットワーク接続機能のある他の情報通信端末が利用可能である。たとえばインターネット接続機能を有する映像音声機器、家庭電化機器、ゲーム機、データ蓄積サーバ、携帯情報端末、ハードディスク記録装置やプリンタなどのコンピュータ周辺機器、ルータや広帯域網接続モデムなどのネットワーク機器があげられる。またデータ通信装置210、211、220、221と情報通信端末310、311、320、321との最も一般的な接続は、LAN接続として用いられるイーサネット(登録商標)のインターフェースである。
【0029】
このような構成により、情報通信端末310、311、320、321はお互いに任意の相手との双方向通信を行うことができる。またそれらの情報通信端末310、311、320、321のいずれかが外部のインターネットに接続されている場合は、いずれの情報通信端末310、311、320、321もその情報通信端末310、311、320、321を経由してインターネット接続することが可能となる。
【0030】
図2は本実施の形態におけるデータ通信システム100の具体的な配線図であり、電力線110および電力線120の配線をやや詳細に説明した図である。交流電源装置101から2本の電線で取り出される単相の交流電圧は、外部で2系統に分岐され、電力線110および電力線120として送電される。データ通信装置210、211は電力線110と、データ通信装置220、221は電力線120と、それぞれ2本の電線で接続される。代表的には、家庭などで使用される電源コンセントと電源プラグで結合されることになる。また交流電源装置101の出力電圧は、代表的には100V、115V、200Vなどであり、周波数は50Hz、60Hzであるが、各国の規格や使用環境によって様々な仕様が存在する。たとえば旅客航空機内では電源周波数として400Hzが用いられることもある。
【0031】
2組の電力線110と電力線120は近接して並行敷設され、電力線の負荷を分散させることができる。そしてそれぞれの電力線110、120におけるデータ通信装置210、211、220、221の出力信号が搬送波レベルで逆相の関係であれば、電力線110、120の近傍の空間上で漏洩電波が相殺され、その結果、不要輻射を低減することが可能になる。既設の建物内では、このような配線は一般的に行われていないが、新規な建物や、配線を変更しやすい輸送機関内(たとえば船舶、列車、航空機)で比較的簡単に採用することが可能である。
【0032】
図3は本実施の形態におけるデータ通信システム100に含まれるデータ通信装置210の内部構成を示すブロック図である。電力線接続部401は電力線110と接続され、交流電源装置101からの電圧を入力する。入力された電圧は、電力供給部402によって各種の直流電圧に変換され、データ通信装置210内の各部に電力供給される。また同時に基準タイミング生成部403において交流電圧波形(通常は正弦波)のゼロクロス点を検出し、基準タイミング信号を出力する。搬送波発生部404では、基準タイミング信号を用いて搬送波の周波数および位相を定めて、同相および逆相の搬送波を出力する。位相選択部405では外部からの設定指示に基づいて、同相または逆相いずれの搬送波を用いるかを選択する。一方、情報通信端末310から送出されたデータは、フレーム形成部406で通信に適したデータ構造にするためにフレーム形成される。フレーム形成における具体的な処理の例としては、データ同期をとるための同期情報の付加、誤り制御を行うための誤り訂正・検出符号の付加、連続ビット誤りを分散させるためのインターリーブ、送信データにおける「0」「1」の偏りを防ぐための拡散スクランブル、通信内容の秘話化を行うための暗号化などがあげられる。デジタル変調部407では、位相選択部405から出力された搬送波を、フレーム形成部406から出力された送信データによってデジタル変調を施し、電力線接続部401を介して電力線110に送出する。
【0033】
基準タイミング生成部403は、交流の正弦波入力に対して、0Vを比較電圧とする電圧比較器によって簡単に実現され、周知のとおり図4に示すような基準タイミング信号が得られる。
【0034】
また搬送波発生部404において、基準タイミング信号から搬送波を得るのは、PLL(Phase Locked Loop)による位相・周波数シンセサイザを用いることが一般的であり、基準タイミング信号の周波数の整数倍の信号であって、かつ基準タイミング信号の位相に基づいた搬送波が得られることは周知のとおりである。たとえば基準タイミング信号が50Hzであれば、その2000倍の100KHzの信号を得ることができ、かつその100KHzの信号の位相を、図5に示すように、50Hz基準タイミング信号の立ち上がりタイミングに合わせることも容易に行える。さらにその搬送波信号を反転器に通せば、図5に示すように、逆相の搬送波も同時に得られる。
【0035】
このような構成のデータ通信装置を用いて、データ通信装置210とデータ通信装置211では正相の搬送波を選択し、データ通信装置220とデータ通信装置221では逆相の搬送波を選択すれば、電力線110と電力線120との間で漏洩電波の相殺が可能になる。なお電力線110、120の識別とデータ通信装置210、211の位相選択については、たとえば電力線110に接続された電源コンセントには「A」のマークを入れ、電力線120に接続された電源コンセントには「B」のマークを入れ、データ通信装置210、211の位相選択スイッチには「A/B」の表示をすれば間違いのない選択設定を行うことができる。
【0036】
なお同相、逆相の選択は、図3ではデジタル変調部407に与える搬送波のところで行ったが、デジタル変調部407の出力信号をそのまま出力するか、位相反転して出力するかを切り替えて送出することも可能である。ただしこの場合は、その位相反転手段が高帯域である必要が生じる。
【0037】
また図3では、各機能ブロックを個別のハードウェアの概念で記載したが、昨今の高速デジタル信号処理(DSP)半導体チップで一括処理することも当然可能である。
【0038】
(第2の実施の形態)
次に、本発明の第2の実施の形態におけるデータ通信システムおよびデータ通信装置について説明する。本実施の形態の特徴は、デジタル変調方式として1次変調にASK(Amplitude Shift Keying)、2次変調にOFDM(Orthogonal Frequency Division Multiplex)を使用した点である。
【0039】
わが国で規格化されている高速電力線通信では、2〜30MHzの周波数帯域が利用可能である。OFDMはマルチキャリアのデジタル変調方式である。これは使用帯域を1つのデジタル変調で送信(シングルキャリア方式)するのではなく、数100〜数1000のサブキャリアに分けてそのサブキャリア1波ずつをデジタル変調して送信(マルチキャリア方式)するものである。また隣接するサブキャリアを直交関係に生成するので、通常の周波数分割多重のようにサブキャリア間にガードバンドを設置する必要がなく、周波数スペクトルが重なり合っていても互いに干渉せずに送れるという利点がある。
【0040】
すなわち伝送上の周波数利用効率が極めて高くなるという利点がある。またサブキャリア1波あたりの帯域が狭く伝送速度が低いので、雑音や伝送路での多重反射に強いという特長も有している。図6にOFDM信号の例を示す。電力線通信で認められている2〜30MHzの帯域内に500個のサブキャリアを多重した場合の図である。
【0041】
図6に示すように、帯域幅28MHz内に、たとえば500波のサブキャリア(図面中のSC1〜SC500)を多重するので、サブキャリア1波あたりの周波数は56KHzとなり、逆数の周期で表すと約18マイクロ秒となる。すなわち、OFDMではこの18マイクロ秒周期のデジタル信号(以下シンボルともいう)をデジタル変調して伝送する。
【0042】
ところで、50Hzないし60Hzの交流電源電圧波形のゼロクロス点検出精度は、電力線110、120に接続されたデータ通信装置210、211、220、221ごとに行うので、部品精度、経時変化、周囲温度、などの要因の影響を受け十分な精度を確保できない場合がある。最高周波数30MHzの単一周波数のシングルキャリアで変調する場合は、この30MHzの周波数の信号に対して所定の位相管理をする必要があり環境によっては困難となる。一方、前述したようにOFDMではマルチキャリア方式を採用しており、最も低いサブキャリア周波数は1桁小さい2MHzとなっている。したがって、高周波キャリアでは難しい位相管理も低周波キャリアでは可能となるので、ゼロクロス点検出精度が十分でない場合でも、漏洩電波の相殺効果を維持することが可能となる。
【0043】
ここで、電力線110、120の近傍の空間上での漏洩電波の相殺について、変調方式に条件があることを述べる。漏洩電波が相殺されるためには、デジタル変調に用いる搬送波が逆相であること自体よりも、実際に変調された後の送信信号が逆相の関係であることが必要である。そのためデジタル変調において、PSKや4PSKなどの位相変調、あるいは16QAMや64QAMなどの位相振幅変調を用いると、送信信号の位相が送信データの内容に依存してしまい、空間上で相殺されるとは限らず、むしろ加算して電波強度を増す場合も生じる。したがってデジタル変調には、変調によって送信信号の位相が変化しない振幅変調系の方式、すなわちASKあるいは4ASKなどの多値ASKを用いることが必要となる。
【0044】
なお、たとえばASKの場合、漏洩電波が相殺されるのは、2種類の変調信号がそれぞれ「1」を送る場合(搬送波がそのまま出力される場合)であり、一方が「1」、他方が「0」(搬送波が出力されない場合)は相殺効果がないことになるが、長時間でみると両者とも「1」の場合が一定確率で存在するので、平均的に相殺効果が生じる。多値ASKの場合も同様に、平均的に相殺効果が得られる。なお、ここで変調されて送られる上記「1」または「0」のデジタルデータ値をシンボルともいう。
【0045】
さらに、本実施の形態においては、電力線110および電力線120のそれぞれで伝送する上記シンボルの位相を揃えている。図7は本実施の形態におけるデータ通信システムの基準タイミング信号と電力線110で伝送されるデータAおよび電力線120で伝送されるデータBのシンボル位相の関係を示す図である。このように両者のシンボル位相を揃えることで効果的に漏洩電波を相殺することが可能となる。この理由について図8を用いて説明する。
【0046】
図8は本実施の形態におけるデータ通信システムのデジタル変調の1次変調としてASKを用いる場合の漏洩電波の相殺効果を説明するための図である。ここで、説明をわかりやすくするためにデータA及びデータBの値がともに「1」、「0」であるとする。図8(a)はデータAおよびデータBのシンボル位相が揃った場合を示す図である。この場合は、変調信号A及び変調信号Bのサブキャリアが存在する期間(データが「1」の期間)が完全に重なるので変調信号Aと変調信号Bによる漏洩電波は効果的に相殺する。なお、ここで変調されて送られる上記「1」または「0」のデジタルデータ値をシンボルともいう。
【0047】
図8(b)はデータAおよびデータBのシンボル位相がほぼ半周期ずれた場合を示す図である。この場合は、変調信号A及び変調信号Bのサブキャリアが存在する期間(データが「1」の期間)が半分しか重ならないので変調信号Aと変調信号Bによる漏洩電波の相殺効果は図8(a)の場合と比較して半減することになる。
【0048】
このようにPLCの伝送方式としてASKおよびOFDMを使用する場合、2つの隣接する電力線110、120で伝送するデータのシンボル位相を揃えることにより、電力線110および電力線120からの漏洩電波を効果的に相殺することが可能となる。
【0049】
(第3の実施の形態)
次に、本発明の第3の実施の形態におけるデータ通信システム200について図9および図10を用いて説明する。第1の実施の形態および第2の実施の形態では、データ通信用の電力線として単相2線式の電力線を使用したが、本実施の形態ではデータ通信用の電力線として3相4線式の電力線を使用するものである。
【0050】
図9は本実施の形態におけるデータ通信システム200の具体的な配線を示す図である。図9において、3相交流電源装置102のR相線R1およびS相線S1の2本で電力線111を構成し、この電力線111にデータ通信装置210、211が接続されている。また、T相線T1および接地線G1の2本で電力線121を構成し、この電力線121にデータ通信装置220、221が接続されている。
【0051】
2組の電力線111および電力線121は隣接しており、極性の反転した搬送波を使ってデジタル変調することにより、お互いの電力線からの漏洩電波を相殺することができる。
【0052】
図10は、3相交流電源装置102の3相線R1、S1、T1で伝送される交流電圧の位相(R、S、Tの各相)関係を示している。図10に示すようにR相を基準にして、S相は120度遅れ、T相は240度遅れている。そこで、電力線111で伝送するデータAの搬送波をR相の電圧のゼロクロス点を基準に発生させた場合、電力線121で伝送するデータBの搬送波はT相の電圧のゼロクロス点よりも240度前の時点を基準に逆相の搬送波を発生させる必要がある。このようなタイミングで搬送波を発生させれば、2組の電力線間で搬送波を正確に逆相にできるので、お互いの電力線からの漏洩電波を正確に相殺することが可能となる。
【0053】
なお、上記実施の形態では、電力線111をR相線R1およびS相線S1の2本で構成し、電力線121をT相線T1および接地線G1の2本で構成したが、この組み合わせは任意であり、他の組み合わせにしてもよい。この場合には、その組み合わせに応じて搬送波を発生する基準タイミング信号を生成すればよい。
【0054】
以上説明したように、本実施の形態によれば、2系統の電力線の各系統ごとに独立したデータ通信を行いながら、かつ不要輻射を軽減できるデータ通信を行うことができるデータ通信システムおよびデータ通信装置を提供することができる。
【産業上の利用可能性】
【0055】
本発明は、家庭内、店舗内、事務所内、工場内などの建造物内、さらに船舶、列車、航空機内で、その内部に敷設された電力線配線を用いて、高速の双方向データ通信を行うシステムに利用できる。近接並行設置された2組の電力線を使用することだけを条件にしているので、新規敷設や配線変更が容易な輸送機関(列車や航空機)において特に導入が容易である。
【図面の簡単な説明】
【0056】
【図1】本発明の第1の実施の形態におけるデータ通信システムの基本構成例を示すブロック図
【図2】同データ通信システムの具体的な配線図
【図3】同データ通信システムに含まれるデータ通信装置の内部構成を示すブロック図
【図4】同データ通信システムの電源電圧と基準タイミング信号の時間軸上の関係を示す波形図
【図5】同データ通信システムの基準タイミング信号と搬送波の時間軸上の関係を示す波形図
【図6】本発明の第2の実施の形態におけるデータ通信システムのOFDM信号のスペクトラム図
【図7】同データ通信システムの基準タイミング信号と電力線で伝送されるデータAおよびデータBのシンボル位相の関係を示す図
【図8】同データ通信システムのデジタル変調の1次変調としてASKを用いる場合の漏洩電波の相殺効果を説明するための図
【図9】本発明の第3の実施の形態におけるデータ通信システムのデータ通信システムの具体的な配線を示す図
【図10】同データ通信システムの3相交流電源装置の3相線R1、S1、T1で伝送される交流電圧の位相関係を示す図
【符号の説明】
【0057】
100,200 データ通信システム
101 交流電源装置
102 3相交流電源装置
110,111 (第1の)電力線
120,121 (第2の)電力線
210,211,220,221 データ通信装置
310,311,320,321 情報通信端末
401 電力線接続部
402 電力供給部
403 基準タイミング生成部
404 搬送波発生部
405 位相選択部
406 フレーム形成部
407 デジタル変調部

【特許請求の範囲】
【請求項1】
電力線配線を伝送路としてデータを伝送するデータ通信システムであって、
外部から供給される交流電源電圧を送電する第1の電力線と、
前記第1の電力線に近接して並行敷設され交流電源装置の電圧を同時に送電する第2の電力線と、
前記第1の電力線に接続する1台以上の第1のデータ通信装置と、
前記第2の電力線に接続する1台以上の第2のデータ通信装置と、を備え、
前記第1のデータ通信装置と前記第2のデータ通信装置は前記交流電源電圧の波形から得られる基準タイミングを用いて、互いに逆位相になるような搬送波を生成し、
前記搬送波を前記データで変調してデジタル変調信号を生成することを特徴とするデータ通信システム。
【請求項2】
前記基準タイミングを前記交流電源電圧の波形のゼロクロス点を基準に生成することを特徴とする請求項1に記載のデータ通信システム。
【請求項3】
前記第1の電力線と前記第2の電力線で伝送される前記デジタル変調信号は1次変調に2値以上のデジタル振幅変調を用い、2次変調にOFDMを用いて作成されることを特徴とする請求項1または請求項2に記載のデータ通信システム。
【請求項4】
前記デジタル変調信号のシンボル位相が、前記第1の電力線と前記第2の電力線とで揃っていることを特徴とする請求項3に記載のデータ通信システム。
【請求項5】
前記交流電源装置は4本線で3相交流電圧を伝送する3相4線式の交流電源装置であり、前記第1の電力線および前記第2の電力線は前記4本線の任意の2本から構成されることを特徴とする請求項1〜4のいずれか1項に記載のデータ通信システム。
【請求項6】
電力線配線を伝送路として使用するデータ通信装置であって、
電力線に接続する電力線接続部と、
前記電力線接続部から取り出された交流電源電圧のゼロクロス点を検出し基準タイミング信号を生成する基準タイミング生成部と、
送信データによりデジタル搬送波変調を行ってデジタル変調信号を生成するデジタル変調部と、
前記基準タイミング信号を用いて前記デジタル変調部で用いる搬送波を発生する搬送波発生部と、
前記搬送波発生部の出力の同相または逆相のいずれかを選択して前記デジタル変調部に供給する位相選択部を備え、
前記位相選択部における位相選択は前記電力線接続部が第1の電力線または第2の電力線のいずれに接続されているかによって選択するとともに、前記デジタル変調部から出力されたデジタル変調信号を前記電力線接続部を介して前記電力線に送出することを特徴とするデータ通信装置。
【請求項7】
前記デジタル変調部は、1次変調に2値以上のデジタル振幅変調を用い、2次変調にOFDMを用いることを特徴とする請求項6に記載のデータ通信装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−80150(P2012−80150A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2009−6477(P2009−6477)
【出願日】平成21年1月15日(2009.1.15)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】