説明

ドップラー計測器および潮流計

【課題】耐ノイズ性能に優れ、かつドップラーシフト量を高精度で計測できるドップラー計測器を提供する。
【解決手段】重心計算区間Wt[1:n]はパワースペクトルPt[fi]のピークを含む区間であり、この区間Wt[1:n]ごとに重心周波数fwt[1:n]が算出される。仮ドップラーシフト量は、パワースペクトルPt[fi]、Pr[fi]の相互相関処理の出力が最大となるときの周波数シフト量である。重心計算区間Wt[1:n]に対応付けられた重心計算区間Wr[1:n]は仮ドップラーシフト量に基づいて決められ、この区間Wr[1:n]ごとにパワースペクトルPr[fi]の重心周波数fwr[1:n]が算出される。重心周波数fwr[1:n]、fwt[1:n]の差に対してドップラーシフトの周波数依存性の補償などが行われてドップラーシフト量fdが求められる。ドップラーシフト量fdによって重心計算区間Wr[1:n]の周波数範囲が補正され、ドップラーシフト量fdは収束するまで繰返し求められる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水中に送信された超音波のドップラーシフト量を計測するドップラー計測器、およびドップラー計測器を備えた潮流計に関する。
【背景技術】
【0002】
従来から、漁撈援助や海洋調査を目的として潮流計で潮流が計測されている。潮流計は、船舶の船底に取り付けられており、例えば水平方向が互いに120°離れた方向に対して一定の俯角θで超音波を送受信する送受波器を備えている。そして、設定深度に位置する海中の無数の散乱体(プランクトンなど)から帰来する反射波(対水エコー)に生じたドップラーシフト量からその深度の潮流に対する船の速度(対水船速)を求める。また、海底からの反射波(対地エコー)に生じたドップラーシフト量から海底に対する船の速度(対地船速)を求める。さらに、対地船速と対水船速との差から潮流の速度を求める。対水船速(または対地船速)をV、水中音速をc、超音波の周波数をf0、ドップラーシフト量をfdとすると、cはVよりも十分に大きいので、対水船速(または対地船速)Vは下記の式(1)で近似される。
V=fd・c/(2f0・cosθ) (1)
従って、対水船速(または対地船速)Vを正確に測定するためには、ドップラーシフト量fdを高精度で計測することが条件となる。
【0003】
下記の特許文献1では、第1パルスおよび第1パルスよりも所定時間だけ遅延した第2パルスを超音波信号として水中に送信し、第1パルスによるエコー信号の第1直交位相サンプルと第2パルスによるエコー信号の第2直交位相サンプルとの自己相関を生成し、自己相関で得られた位相シフトに基づいてドップラーシフト量を求めることが提案されている。また、上記の第1、第2パルスとして広帯域符号化パルスを用いることも提案されている。下記の特許文献2では、受信したエコー信号から生成されたゼロクロス信号(2値信号)と装置内部で発生する基準信号との位相差を示すデータ列に対してフーリエ変換を施し、フーリエ変換で得られたフーリエスペクトルに基づいてドップラーシフト量を求めることが提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第2695989号公報(請求項7、第6頁左欄第25行〜第11頁右欄第32行)
【特許文献2】特許第3028376号公報(請求項1、第5頁右欄第32行〜第6頁右欄第11行)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1のような方式では、受信信号帯域の情報を全て用いるため、受信信号に含まれるノイズが少ない場合はドップラーシフト量を高精度に計測することができるが、ノイズが多い場合は計測精度が低下するという問題がある。ノイズとしては、波浪やスクリューによるノイズのほか、他の船舶から送信された超音波によるノイズがある。また、特許文献1のような方式の欠点として、自己相関演算はドップラーシフト量の周波数依存性が考慮され得ないため、広帯域信号に対しては、特に、ドップラーシフト量の周波数依存性が補償されないという問題がある。一方、特許文献2のような方式では、1つのスペクトルピークを有する受信信号を解析対象とし、ドップラーシフト量をその単一スペクトルピークから計測するので、計測精度を高くとれないという問題がある。また、計測精度を高めるために超音波を繰返し送信し、それぞれのエコー信号から求められたドップラーシフト量に対して平均化などの統計処理を施して最終的なドップラーシフト量を出力するようにしたのでは、ドップラーシフト量の計測に時間がかかり、スループットが低下する。
【0006】
本発明は、上記問題点を解決するものであって、その課題とするところは、耐ノイズ性能に優れ、かつドップラーシフト量を高精度で計測できるドップラー計測器を提供することにある。
【課題を解決するための手段】
【0007】
第1の発明では、水中に送信された超音波のドップラーシフト量を計測するドップラー計測器において、超音波の送信波形のスペクトルと、超音波の受信信号のスペクトルとの相互相関処理を行い、相互相関処理の出力が極大となるときの周波数に基づいてドップラーシフト量を求める。ここで、上記周波数は実施形態に示す仮ドップラーシフト量に相当するものである。
【0008】
このようにすることで、送信波形のスペクトルおよび受信信号のスペクトルを利用して非周期的なノイズを含む受信信号のスペクトルから受信信号(エコー信号)のピーク位置情報(周波数領域におけるピーク位置情報)が抽出される。つまり、複数ピークを有する場合に、各ピークのドップラーシフト量が一箇所に集約され、それを抽出することになる。これにより、上記周波数は、耐ノイズ性能が高く、従ってばらつきが少なく、しかも真のドップラーシフト量(もしくは真のドップラーシフト量に定数を加算した値)に略等しい値となるので、高い耐ノイズ性能と高い計測精度とを両立させたドップラー計測器を実現することができる。
【0009】
第2の発明では、水中に送信した超音波に起因するエコー信号のドップラーシフト量を計測することによって対地船速と対水船速とを求め、対地船速と対水船速とから潮流の速度を求める潮流計において、超音波の送信波形とエコー信号とに基づいてエコー信号のドップラーシフト量を計測する、請求項1に記載のドップラー計測器を備え、ドップラー計測器で計測されたドップラーシフト量に基づいて対地船速と対水船速とを求める。
【0010】
このようにすることで、耐ノイズ性能に優れ、しかも精度の高い潮流速度を求めることができる潮流計が得られる。
【発明の効果】
【0011】
本発明によれば、耐ノイズ性能に優れ、しかもドップラーシフト量を高精度に計測できるドップラー計測器および潮流計を実現することができる。
【図面の簡単な説明】
【0012】
【図1】ドップラー計測器を組み込んだ潮流計の構成を示す図である。
【図2】本発明に係るドップラー計測器の構成を示す図である。
【図3】送信信号の波形を示す図である。
【図4】送信波形のパワースペクトルを示す図である。
【図5】受信信号のパワースペクトルを示す図である。
【図6】2つのパワースペクトルの相互相関処理の結果を示す図である。
【図7】重心計算区間を狭くしていく態様を示す図である。
【図8】他の広帯域送信信号を示す図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して本発明の実施形態を説明する。図1はドップラー計測器を組み込んだ潮流計の構成を示し、図2は本発明に係るドップラー計測器の構成を示し、図3は送信信号の波形を示す。この潮流計1では、3つの送受波器11から水平方向が互いに120°異なった方向に対して一定の俯角で超音波が海中に送信され、海底や海中の無数の散乱体で反射したエコー信号が各送受波器11で受信される。送受波器11は、送受信切換回路12を介して、送信波形生成部14で生成されて送信アンプ13で増幅された送信信号によって駆動される。送信波形生成部14は、送信信号の波形(送信波形)をドップラー計測器3にも供給する。この送信波形は、送信信号がA/D変換されたものと同等の波形データ列からなる。
【0014】
図3に示す送信信号(送信パルスともいう)は、M系列BPSK(マキシマム系列バイナリ・フェイズ・シフト・キーイング)で符号化された広帯域信号を複数連ねた送信信号であり、潮流を計測するたびに送受波器11から送信される。送信信号は4つの同じエレメントからなり、各エレメントは上記符号化がされた7つのサブパルスからなる。図において、Taは送信信号の時間幅、Tbはエレメントの時間幅、Tcはサブパルスの時間幅である。上記の時間幅Taは、例えば0.7ms程度であり、サブパルスの周波数(キャリア周波数)は、例えば250kHz程度である。尚、M系列内の他の符号パターン(例えば、+1+1+1−1+1−1−1)を使用すると図4に示す送信波形のパワースペクトルの包絡線形状が変化する。
【0015】
各送受波器11で受信されたエコー信号を含む受信信号は、受信アンプ15で増幅され、さらにA/D変換器16でA/D変換される。このA/D変換されたサンプルデータ系列がバッファメモリ17に格納される。ドップラー計測器3は、上記の受信信号中の1または複数の設定深度におけるエコー信号および海底からのエコー信号のサンプルデータをバッファメモリ17から読み出し、サンプルデータに基づいてそれぞれのドップラーシフト量fdを求めて出力する。潮流算出部18は、3つの受信信号から得られたドップラーシフト量を前記の式(1)に代入して対地船速と対水船速とを算出し、さらに対地船速と対水船速とに基づいて潮流の速度および向きを求める。表示部19には、例えば航路を基点とする矢印が所定間隔で表示され、矢印の向きで潮流の向きが示され、矢印の長さで潮流の速度が示される。
【0016】
制御部20は、CPU20aや、DSP(デジタルシグナルプロセッサ)20b、メモリ(プログラムメモリおよびデータメモリ)20cなどから構成され、各種の演算や潮流計1の各部の制御などを行う。また、図示しない操作部のキーが押されると、制御部20は押されたキーの種類に応じて各部を制御する。例えば、上記の設定深度の値がキーから入力されると、入力された値がメモリ20cに保存され、その設定深度における潮流が計測される。
【0017】
次に、図2を参照してエコー信号に生じたドップラーシフト量を計測するドップラー計測器3について説明する。DFT(Discrete Fourier Transform)部31は、送信波形に対して高速フーリエ変換アルゴリズムを用いて離散フーリエ変換を施して時間領域の送信波形を周波数領域の振幅スペクトルに変換する。さらに、振幅スペクトルを2乗して図4に示すパワースペクトルを生成する。このパワースペクトルPt[fi](fiはパワースペクトルPt[i]の周波数)は10Hzの分解能で生成されたものであり、ピーク51を中心にして左右対称な5つのピーク52,53等と1つの小さなピーク54とがある。スペクトルが振幅スペクトルではなくパワースペクトルであるので、ピークの形状がシャープになっている。また、離散フーリエ変換および送信波形の性質上、パワースペクトルPt[fi]は2/Tc(図3)の範囲に分布し、中心周波数fc、すなわちピーク51の周波数fcはサブパルスの周波数に等しくなり、隣り合うピークの周波数差が1/Tbとなり、各ピークの幅(各ピークのゼロクロス幅)が2/Taとなる。
【0018】
重心周波数算出部32は、まず、各ピーク51等が各重心計算区間Wt[k](k=1〜n)(図4参照、Wt[1:n]とも表す)の中央に位置するように重心計算区間Wt[k]を決める。この重心計算区間Wt[k]は周波数の下限値と上限値とで(または下限値と周波数幅とで)定義され、その周波数幅は隣り合うピークの周波数差(1/Tb)に等しい。次に、パワースペクトルPt[fi]を重みとして、重心計算区間Wt[k]ごとに重心周波数fwt[k](k=1〜n)を下式で算出する。
fwt[k]=Σ(Pt[fj]・fj)/ΣPt[fj]
ここで、Pt[fj]は重心計算区間Wt[k]に属するパワースペクトルである。
【0019】
尚、重心計算区間Wt[k]の幅がドップラーシフト量の想定される最大値の少なくとも2倍以上になるように、送信信号のエレメントの時間幅Tbが決められている。これは、送信波形の重心計算区間Wt[k]と後述する受信信号の重心計算区間Wr[k]との対応付けができるようにするためである。また、超音波が送信されるたびにパワースペクトルPt[fi]、重心計算区間Wt[k]および重心周波数fwt[k]が変化するわけではないので、パワースペクトルPt[fi]等を予め求めてメモリ20cに保存しておき、ドップラーシフト量を求めるときにメモリ20cに保存された値が使用される。
【0020】
次に、受信系について説明する。DFT部33は、バッファメモリ17に格納された、設定深度からのエコー信号などに相当する時間幅Ta分のサンプルデータ系列に対して高速フーリエ変換アルゴリズムを用いて離散フーリエ変換を施し、時間領域の受信信号(エコー信号)を周波数領域の振幅スペクトルに変換する。さらに、振幅スペクトルを2乗して図5に示すパワースペクトルを生成する。このパワースペクトルPr[fi](fiはパワースペクトルPr[i]の周波数)も10Hzの分解能で生成されたものであり、中央のピーク61の左右にそれぞれ送信波形のパワースペクトルPt[fi]のピーク52,53等に対応する5つのピーク62,63等がある。但し、ピーク54に対応するものはノイズに埋もれて判別できない。
【0021】
また、図5からパワースペクトルPr[fi]の中心周波数、すなわちピーク61の周波数が送信波形のパワースペクトルPt[fi]の中心周波数fcからΔfaだけずれていることが分かる。このΔfaがおおよそのドップラーシフト量である。尚、隣り合うピークの周波数差は、図4のピーク間の周波数差(1/Tb)に略等しいが、ドップラーシフトの周波数依存性により1/Tbよりも僅かに大きくまたは小さくなる。また、ここで求めたパワースペクトルPr[fi]は、後述する重心周波数算出部42および重み係数算出部46で使用できるようにメモリ20cに保存される。
【0022】
仮ドップラーシフト量検出部34は、相互相関処理部35とピーク検出部36とから構成され、送信波形のパワースペクトルPt[fi]と受信信号のパワースペクトルPr[fi]とから仮ドップラーシフト量を求めて出力する。相互相関処理部35は、パワースペクトルPt[fi]とPr[fi]との相互相関処理を行う。すなわち、パワースペクトルPr[fi]に対してパワースペクトルPt[fi]を前記の分解能(10Hz)ずつシフトさせながら、各シフト状態で両パワースペクトルの積和演算を行なって演算結果を出力する。図6は演算結果である相互相関出力を示す。中央に位置する最大のピーク71は、パワースペクトルPt[fi]のピーク51がパワースペクトルPr[fi]のピーク61に一致したときのものであり、送信波形の中心周波数fcからΔfbだけずれている。また、ピーク72はピーク51がピーク62に一致したときのものであり、ピーク73はピーク51がピーク63に一致したときのものである。なお、相互相関処理として、相関を行うパワースペクトル同士をゼロ埋め等で同一離散点数としてから離散フーリエ変換を行い、片方は複素共役をとって積演算を行い、演算結果を逆離散フーリエ変換してもよい。
【0023】
ピーク検出部36は、相互相関処理部35から出力される相互相関出力のうち最大値をとるピーク71を検出し、このピーク71の周波数から送信波形の中心周波数fcを減算した周波数差Δfbを仮ドップラーシフト量として出力する。ここでは相互相関出力の中心周波数をfcとしたが、相互相関出力の中心周波数が0Hzになるような相互相関処理を行えば、ピーク71の周波数そのものが仮ドップラーシフト量となる。また、上記の方法に代えて他の方法で仮ドップラーシフト量を求めるようにしてもよい。例えば、相互相関出力の重心周波数を算出し、重心周波数から仮ドップラーシフト量を求める。この場合、相互相関出力をL[fi]とすると、仮ドップラーシフト量は下式で与えられる。
仮ドップラーシフト量=(Σ(L[fi]・fi)/ΣL[fi])−fc
なお、本発明では、仮ドップラーシフト量を算出するにあたって、相互相関処理の出力が極大となる任意のピークの周波数を用いることができ、必ずしも図6の中央に位置するピーク71の周波数を用いる必要はない。したがって、ピーク72やピーク73の周波数に基づいて仮ドップラーシフト量を算出してもよい。
【0024】
上記の相互相関処理では、パワースペクトルPt[fi]、Pr[fi]におけるピークの周期性を利用して、非周期的なノイズを含むパワースペクトルPr[fi]から周期的なエコー信号のピーク位置情報(周波数領域におけるピーク位置情報)が抽出される。つまり、複数ピークを有する場合に、各ピークのドップラーシフト量が一箇所に集約され、それを抽出することになる。この結果、相互相関処理によって耐ノイズ性能が高くなり、上記のようにして求められた仮ドップラーシフト量は、ばらつきが少なく、しかも真のドップラーシフト量に略等しい値となる。したがって、仮ドップラーシフト量を最終的なドップラーシフト量としても使用することができる。尚、ここではドップラーシフトの周波数依存性が考慮されていないが、上記の仮ドップラーシフト量は実用に耐えうるドップラーシフト量である。
【0025】
上述のように、仮ドップラーシフト量を最終的なドップラーシフト量とすることもできるが、本実施形態では、仮ドップラーシフト量を初期値として後述する重心周波数処理部40に与えることにより、より計測精度の高いドップラーシフト量fdを求めるようにしている。この初期値としては真のドップラーシフト量に近い値(例えば、仮ドップラーシフト量)が望ましいが、重心周波数処理によってドップラーシフト量fdが高精度化されるので、ラフな値、例えば従来のようにエコー信号の自己相関処理によって求められたドップラーシフト量や0Hzを初期値とすることも可能である。また、上述した相互相関処理出力の極大値によらずに、単にスペクトルが極大値となる周波数位置でのシフト量を用いてもよい。但し、ラフな値を初期値とした場合、初期値と真のドップラーシフト量との乖離量が大きいため、仮ドップラーシフト量を初期値とする場合に比べて、上記のドップラーシフト量fdが収束するまでの重心周波数処理の繰返し回数が多くなる。また、受信信号のS/Nが悪く自己相関処理などによって求めたドップラーシフト量がノイズによって真のドップラーシフト量から大きくずれている場合には、ドップラーシフト量fdが収束しないこともありうる。
【0026】
次に、重心周波数処理部40について説明する。重心周波数処理部40は、重心計算区間決定部41などから構成され、前述の相互相関処理が1回行われた後に、上記の仮ドップラーシフト量を初期値として、重み平均処理部44から出力されるドップラーシフト量fdが収束するまで繰返し重心周波数処理を行う。収束とは、ドップラーシフト量fdの前回値と今回値との差が所定値以下(ゼロを含む)となった状態を指す。重心周波数処理とは重心計算区間決定部41などで行なわれる処理のことである。以下では、繰返し行なわれる重心周波数処理を「繰返し処理」とよぶ。相互相関処理の利点はノイズに強いことであり、重心周波数処理の利点は計測精度が高いことである。したがって、まず相互相関処理を行ってノイズの影響を排除した後に、周波数領域でS/Nの良い、スペクトルのピーク近傍の範囲に対して重心周波数処理を行ってドップラーシフト量を算出することにより、耐ノイズ性能を向上させると同時に計測精度も高めることができる。
【0027】
重心計算区間決定部41は、ピーク検出部36から出力される仮ドップラーシフト量を用いて受信信号のパワースペクトルPr[fi]の重心周波数の計算範囲である重心計算区間Wr[k](k=1〜n)(図5)を中央の重心計算区間の中心がピーク61に略一致するようにして決定する。正確に表現すれば、重心計算区間Wr[k]は、上述の重心計算区間Wt[k]よりも右側(高周波側)に仮ドップラーシフト量(Δfa(図5)ではなくΔfb(図6))だけずれている。ここでは各重心計算区間Wr[k]の幅を重心計算区間Wt[k]の幅と等しくしているが、重心計算区間Wt[k]の幅よりも幾分狭くまたは広くしてもよい。また、後述する収束判定部45からドップラーシフト量fdが出力されると、このドップラーシフト量fdを用いて重心計算区間Wr[k]が同様にして決定される。つまり、重心計算区間Wr[k]がドップラーシフト量fdによって補正される。
【0028】
重心周波数算出部42は、パワースペクトルPr[fi]を重みとして、重心計算区間Wr[k]ごとに重心周波数fwr[k](k=1〜n)を下式で算出する。
fwr[k]=Σ(Pr[fj]・fj)/ΣPr[fj]
ここで、Pr[fj]は重心計算区間Wr[k]に属するパワースペクトルである。このとき、パワースペクトルPr[fi]のピーク62等が重心計算区間Wr[k]の略中央に位置すれば、ピーク62等の前後に現われるノイズ、サイドローブなどが相殺され、算出された重心周波数fwr[k]はドップラー効果を受けた後の真の周波数に略等しくなる。一方、ピーク62等が重心計算区間Wr[k]の中心から左(右)にずれていると、算出された重心周波数fwr[k]はドップラー効果を受けた後の真の周波数よりも高く(低く)なる。収束判定部45から出力されるドップラーシフト量fdによって重心計算区間Wr[k]が補正されることにより、重心計算区間Wr[k]の中心がパワースペクトルPr[fi]のピーク62等に近づいていき、重心周波数fwr[k]も求めるべきドップラー効果を受けた後の真の周波数に近づいていく。
【0029】
ドップラーシフト補正部43は、重心周波数算出部42で算出された重心周波数fwr[k]と重心周波数算出部32で算出された重心周波数fwt[k]との差(ドップラーシフト量)を、送信波形の中心周波数(キャリア周波数)fcでのドップラーシフトに相当するドップラーシフト量fd[k](k=1〜n)に換算する。この換算は下式で表される。
fd[k]=(fwr[k]−fwt[k])・fc/fwt[k]
このドップラーシフト量fd[k]は、ドップラーシフトの周波数依存性が考慮されていないドップラーシフト量(fwr[k]−fwt[k])を補正したもの、すなわち周波数依存性が補償されたものである。このようにしてドップラーシフトの周波数依存性が補償されるので、後述するドップラーシフト量fdの計測精度を高めることができる。
【0030】
重み係数算出部46は、重心計算区間Wr[k]ごとのパワースペクトルPr[fi]の合計値s[k](k=1〜n)、すなわち実質的には積分値を計算し、この合計値s[k]から各重心計算区間Wr[k]の重み係数w[k](k=1〜n)を算出する。各重心計算区間Wr[k]でのパワースペクトルをPr[fj]とすると、合計値s[k]はΣPr[fj]で表され、重み係数w[k]はs[k]/Σs[k]で表される。ここではパワースペクトルPr[fi]から重み係数w[k]を算出するようにしたが、ノイズを含まない送信波形のパワースペクトルPt[fi]から重み係数w[k]を算出することも可能である。但し、このようにするとドップラーシフト量fdの計測精度が幾分低下することが実験で確認された。
【0031】
重み平均処理部44は、重み係数算出部46で算出された重み係数w[k]を重みとして、ドップラーシフト量fd[k]の重み付け平均処理を行ってドップラーシフト量fdを求める。重み付け平均処理は下式で表される。
fd=Σ(fd[k]・w[k])/Σw[k]
この重み付け平均処理により、受信信号のパワースペクトルの大きさおよび分布にしたがって、すなわち受信信号(エコー信号)を特徴付ける情報の確からしさにしたがって、ノイズの影響が低減された高い精度のドップラーシフト量fdが求められる。尚、上述の重み係数w[k]に代えて、送信波形のパワースペクトルPt[fi]の重心計算区間Wt[k]ごとの積分値を重み係数とすることも可能である。また、上記の例では、重心計算区間ごとのスペクトルの積分値を重みとする重み付け平均処理を行っているが、重心計算区間ごとのスペクトルの最大値を重みとする重み付け平均処理を行ってもよい。さらに、重み付けをせずに、重心計算区間ごとのスペクトルを単純平均してもよい。
【0032】
収束判定部45は、重み平均処理部44から出力されるドップラーシフト量fdが収束したか否かを判定する。収束したと判定した場合は、ドップラーシフト量fdを潮流算出部18(図1)に渡す。それに対し、収束していないと判定した場合は、ドップラーシフト量fdを重心計算区間決定部41に渡す。このドップラーシフト量fdによる重心計算区間Wr[k]の補正や、補正された重心計算区間Wr[k]の重心周波数fwr[k]の算出などが行なわれ、ドップラーシフト量fdが収束するまで2回目、3回目、・・・のドップラーシフト量fdが算出される。つまり、ドップラーシフト量fdが収束するまで繰返し処理が行われる。
【0033】
収束判定部45は、具体的には、ドップラーシフト量fdの収束に向けて繰返し処理を所定回数(例えば2回)だけ行った後に、前回と今回のドップラーシフト量fdの差が所定値(例えば1Hz)以下であれば、算出されたドップラーシフト量fdが収束したものと判定して今回のドップラーシフト量fdを最終的なものとして出力する。一方、所定回数(例えば30回)の繰返し処理を行ってもドップラーシフト量fdが収束しない場合は、エラー処理が行われる。また、上述のように、仮ドップラーシフト量は真のドップラーシフト量に近い値であるので、重心周波数処理部40を通さずに仮ドップラーシフト量を最終的なドップラーシフト量fdとして出力するようにしてもよい。
【0034】
次に、繰返し処理を行う理由について説明する。第1の理由は、仮ドップラーシフト量にはドップラーシフトの周波数依存性が考慮されておらず、ピーク61以外のピーク62等を含む重心計算区間Wr[k]の中心周波数がパワースペクトルPr[fi]のピーク周波数から僅かにずれているので、重心周波数fwr[k]がノイズ成分の影響を受け、算出されるドップラーシフト量fdに僅かな誤差が生じるからである。この誤差は、上述のように、算出されたドップラーシフト量fdによって重心計算区間Wr[k]を補正し、補正された重心計算区間Wr[k]の重心周波数fwr[k]に基づいてドップラーシフト量fdを算出することで徐々に小さくなっていく。つまり、繰返し処理によってドップラーシフト量fdの計測精度が向上する。
【0035】
第2の理由は、仮ドップラーシフト量に受信信号をサンプリングする際の離散データ数に起因する周波数誤差が発生して、算出されるドップラーシフト量に誤差が生じるからである。この誤差も上記の繰返し処理を行うことで十分に小さくなる。また、ピーク検出によるのではなく、上述のように相互相関出力の重心周波数を仮ドップラーシフト量とすれば、仮ドップラーシフト量を求めるために演算処理時間が増加するが、サンプリング時の離散データ数に起因する誤差は生じなくなる。
【0036】
以上述べたように、重心計算区間Wt[k]に含まれるパワースペクトルPt[fi]のピーク52等に対応する受信信号(エコー信号)のパワースペクトルPr[fi]のピーク62等が重心計算区間Wt[k]に対応付けられた重心計算区間Wr[k]に含まれている。しかも、両ピーク52,62等は略同じ波形を有する送信信号および受信信号の特徴を示す情報である。したがって、重心計算区間Wt[k]ごとの重心周波数fwt[k]と重心計算区間Wr[k]ごとの重心周波数fwr[k]との差に基づいて実用可能な精度のドップラーシフト量fdを求めることができる。
【0037】
また、パワースペクトルPr[fi]、Pt[fi]が複数のピークを有するので、ドップラーシフト量fdを求めるための情報量が多くなり、ドップラーシフト量fdの計測精度が高まる。さらに、上述の繰返し処理、ドップラーシフト補正部43で行なわれるドップラーシフトの周波数依存性の補償、および重み平均処理部44で行われる重み付け平均処理によって、ドップラーシフト量fdの計測精度をさらに高めることができる。尚、上記実施形態では機能ブロックによってドップラー計測器3の構成を説明したが、ドップラー計測器3は、実際にはCPU20aおよびDSP20bによってソフトウエア的に実現されている。
【0038】
以上述べた実施形態においては、繰返し処理の回数が増加しても重心計算区間Wr[k]の幅(周波数幅)を一定としたが、回数が増加するのにしたがって幅を徐々に狭くしていく(例えば、今回の幅を前回の幅の90%にし、幅がピークの幅(2/Ta)以下にならない範囲で狭くしていく)ようにしてもよい。図7は、重心計算区間を3つとしたときの上記の動作を説明する図である。(b)に示す受信信号のパワースペクトルの初回の重心計算区間は、(a)に示す送信波形のパワースペクトルの重心計算区間と同じ幅であり、それよりも仮ドップラーシフト量DAだけ右方向に移動している。上向きの矢印は初回の重心周波数を示す。そして、(c)に示す2回目の重心計算区間の幅を初回よりも狭くするとともに、送信波形のパワースペクトルの重心計算区間(a)ではなく、初回の重心計算区間(b)に基づいて求められたドップラーシフト量DBだけ重心計算区間の中心を右方向に移動させている。
【0039】
このようにすれば、重心周波数を算出するときの対象範囲がスペクトルのピーク近傍に絞られ、パワースペクトルPr[fi]のピークから離れた周波数成分のノイズの影響をより低減することができるので、耐ノイズ性能を維持しつつドップラーシフト量の計測精度をさらに高めることができる。ここで、ドップラーシフトは本来0Hzを不動点としたスペクトル波形の周波数軸方向の伸縮であることから、重心計算区間の幅を各区間の中心周波数に応じて変化させ、高周波側では重心計算区間が広く、低周波側では重心計算区間が狭くなるようにするのが好ましい。尚、上記のように2回目の重心計算区間を一括してドップラーシフト量DBだけ移動させる代わりに、初回に算出された重心周波数が2回目の重心計算区間の中央に位置するように2回目の重心計算区間の中心値を重心計算区間ごとに個々に決めることも可能であるが、ノイズが特定の重心計算区間だけに現われるような場合にはノイズの影響を受けやすくなる恐れがある。
【0040】
また、上記実施形態では、送信信号として、パワースペクトルPt[fi]に複数のピークを生じさせる、広帯域信号の1つであるM系列BPSK信号を複数連ねた送信信号を用いたが、M系列以外の系列のBPSK信号を複数連ねた信号や、他の広帯域信号、例えば、一定時間T内で時間の経過にしたがって周波数がfmaxからfminに(またはfminからfmaxに)連続的に変化するリニアFM信号を連ねた信号(図8(a))や、周波数(f1〜f3)が互いに異なる正弦波信号を一定時間(T1〜T3)ずつ連ねた信号(図8(b))、互いに周波数の異なる2つ以上の正弦波信号を重畳した信号などを送信信号として用いても本発明を実施することができる。つまり、離散フーリエ変換によって得られる送信波形のパワースペクトルに離散した複数のピークを生じさせる広帯域信号を送信信号として使用することができる。
【0041】
さらに、上記実施形態では、送信信号として、パワースペクトルPt[fi]に複数のピークを生じさせるM系列BPSK信号を複数連ねた送信信号を用いたが、パワースペクトルにピークを1つだけ生じさせる狭帯域信号、例えば正弦波信号を送信信号として用いても本発明を実施することができる。この場合、送信波形および受信信号の重心計算区間Wt[k]、Wr[k]が1つになるが、広帯域信号の場合と同様な処理を行うことでドップラーシフト量fdを求めることができる。但し、パワースペクトルPt[fi]、Pr[fi]のピークが1つであり、周波数検出に利用できる送信波形および受信信号(エコー信号)の周波数に関する情報量が少なくなるため、ドップラーシフト量fdの計測値(算出値)の精度が広帯域信号を用いる場合よりも幾分劣る。
【0042】
さらに、上記実施形態では、パワースペクトルPt[fi]、Pr[fi]を用いてドップラーシフト量fdを求めたが、振幅スペクトルや3以上の冪乗スペクトルなどのスペクトルを用いることもできる。振幅スペクトルを用いるとピークの幅(メインローブの最大値から例えば3dB低下したレベルにおける幅)が広くなるので、算出されるドップラーシフト量の精度が幾分低下することがある。一方、3以上の冪乗スペクトルでは、エコー信号によるピークの幅が狭くなるとともにノイズ成分によるピークのレベルが高くなるので、算出される重心周波数fwr[k]がノイズの影響を受けやすくなり、耐ノイズ性能が幾分低下することがある。
【0043】
また、上記実施形態では、離散フーリエ変換を用いてスペクトルを算出する例につき説明したが、本発明では、スペクトルの算出手段として、離散フーリエ変換以外にも種々の方式を用いることができる。例えば、ノンパラメトリック法としてWelch法、パラメトリック法としてYule−WakerAR法、部分空間法としてMUSIC法などがある。これらの方式を採用しても、離散フーリエ変換の場合とほぼ同等の測定精度を得ることができる。
【0044】
さらに、上記実施形態では、ドップラー計測器3が潮流計1に組み込まれる場合について説明したが、本発明のドップラー計測器3は、送信器と受信器とからなる水中通信システムなどでも用いることができる。この水中通信システムでは、送信器は、例えば送信波形が既知の参照信号と送信情報によって周波数が変化する情報信号とを送信する。受信器にはドップラー計測器3が組み込まれており、ドップラー計測器3は、記憶部に保存されている参照信号の送信波形のパワースペクトル、重心計算区間および重心周波数と、受信した参照信号とを用いて上述のようにしてドップラーシフト量を求める。そして、このドップラーシフト量によって受信した情報信号の周波数を補正し、補正後の周波数から送信情報を得る。上記の水中通信システムの例として、魚網に取り付けられた送信器と船舶の底部に取り付けられた受信器とを備えた魚網深度計があり、例えば計測した水圧に応じて周波数が変化する正弦波信号が情報信号として送信される。
【符号の説明】
【0045】
1 潮流計
3 ドップラー計測器
31 DFT部(送信波形用)
32 重心周波数算出部(送信波形用)
33 DFT部(受信信号用)
34 仮ドップラーシフト量検出部
35 相互相関処理部
36 ピーク検出部
40 重心周波数処理部
41 重心計算区間決定部
42 重心周波数算出部(受信信号用)
43 ドップラーシフト補正部
44 重み平均処理部
45 収束判定部
46 重み係数算出部
Pt、Pr パワースペクトル
Wt[1:n] 重心計算区間(第1の重心計算区間)
Wr[1:n] 重心計算区間(第2の重心計算区間)
fwt[1:n]、fwr[1:n] 重心周波数
w[1:n] 重み係数
fd ドップラーシフト量

【特許請求の範囲】
【請求項1】
水中に送信された超音波のドップラーシフト量を計測するドップラー計測器において、
前記超音波の送信波形のスペクトルと、前記超音波の受信信号のスペクトルとの相互相関処理を行い、
相互相関処理の出力が極大となるときの周波数に基づいてドップラーシフト量を求めることを特徴とするドップラー計測器。
【請求項2】
水中に送信した超音波に起因するエコー信号のドップラーシフト量を計測することによって対地船速と対水船速とを求め、対地船速と対水船速とから潮流の速度を求める潮流計において、
前記超音波の送信波形とエコー信号とに基づいてエコー信号のドップラーシフト量を計測する、請求項1に記載のドップラー計測器を備え、
前記ドップラー計測器で計測されたドップラーシフト量に基づいて前記対地船速と対水船速とを求めることを特徴とする潮流計。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−203276(P2011−203276A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2011−156219(P2011−156219)
【出願日】平成23年7月15日(2011.7.15)
【分割の表示】特願2006−122573(P2006−122573)の分割
【原出願日】平成18年4月26日(2006.4.26)
【出願人】(000166247)古野電気株式会社 (441)
【Fターム(参考)】