説明

ピンチバルブ

【課題】 省電力が可能なピンチバルブを提供すること。
【解決手段】 モータ50により第一制御位置にて作動体48を開放位置とし、第二制御位置にて作動体48を挟圧位置とするカム51とを備え、カム51が第一制御位置とされるとき、弾性チューブ2は自らの弾性復元力を利用して作動体48を開放位置へ移動させるピンチバルブであって、作動体48は、一端側が固定体46に回動自在に支持され、弾性チューブ2を挟圧するための作動片55を備え、モータ50に通電することによりカム51を第一制御位置と第二制御位置との間で移動させ、位置検出機構60が第一制御位置および第二制御位置を検出するとモータ50停止する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、菌類判定装置などに用いられるピンチバルブに関する。
【背景技術】
【0002】
従来、菌類判定装置などにおいて、特許文献1に記載の如く、管路の洗浄性を良くしたり、弁の開閉部分に汚水などが詰まるのを防止したり、培養液の洩れを防止するために培養液などが流れる管路の開閉にピンチバルブが用いられる。
【0003】
特許文献1に記載のピンチバルブは、エアコンプレッサ駆動式のものであるが、特許文献2に記載の電磁弁式のピンチバルブが広く用いられている。
【0004】
【特許文献1】特開平6−288880号公報
【特許文献2】特開平11−56769号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
この出願の発明者等は、種菌類判定装置の開発過程において、管路の洗浄性や培養液や殺菌液の洩れ防止の観点から流路の開閉をピンチバルブを用いて行うことととした。ところが、流路の径が大きくなると、市販の特許文献2のような電磁弁式のピンチバルブでは、流路を潰すために強いバネが必要となり、それを引き戻すために大容量の電磁コイルが必要となるとともに、消費電力がかさむという課題を見出した。
【0006】
この発明が解決しようとする課題は、省電力が可能なピンチバルブを提供することである。
【課題を解決するための手段】
【0007】
この発明は、前記課題を解決するためになされたものであって、請求項1に記載の発明は、弾性チューブと、この弾性チューブを挟んで配置される固定体および作動体を含み、前記作動体の開放位置,挟圧位置でそれぞれ前記弾性チューブを開放状態,閉止状態とする開閉機構と、モータの回転運動を前記作動体の移動に変換し、前記第一制御位置にて前記作動体を開放位置とし、前記第二制御位置にて前記作動体を挟圧位置とするカムとを備え、前記カムが第一制御位置とされるとき、前記弾性チューブは自らの弾性復元力を利用して前記作動体を開放位置へ移動させるピンチバルブであって、前記作動体は、一端側が前記固定体に回動自在に支持され、前記回動位置から離れた位置に前記弾性チューブを挟圧するための作動片を備えるとともに、前記第一制御位置と前記第二制御位置とを検出する位置検出機構と、前記モータに通電することにより前記カムを前記第一制御位置と前記第二制御位置との間で移動させ、前記位置検出機構が前記第一制御位置および前記第二制御位置を検出すると前記モータの通電を停止する制御手段とを備えたことを特徴としている。
【発明の効果】
【0008】
この発明によれば、一端側が前記固定体に回動自在に支持された作動体の前記回動位置から離れた位置に設けた作動片により、前記弾性チューブを挟圧するので、前記弾性チューブをダイレクトにカムで押し潰すものと比較して、前記弾性チューブをほぼ垂直に押し潰すので前記弾性チューブとの摩擦による摩耗が抑えられ、前記弾性チューブの寿命(交換時期)が延びる。また、前記作動体の一端が前記固定体に回動自在に支持されているので、引っ掛かったりして身動きが取れなくなる状態に陥る虞がない。さらに、前記弾性チ
ューブの開放状態,閉止状態に対応する前記第一制御位置,前記第二制御位置を前記位置検出機構が検出すると前記モータの通電を停止するので、前記モータの消費電力を低減できる。
【発明を実施するための最良の形態】
【0009】
この発明の実施の形態は、大腸菌群や大腸菌などの菌類の存否を判定する菌類判定装置などに用いるピンチバルブに適用される。
【0010】
この実施の形態は、弾性チューブと、この弾性チューブを挟んで配置される固定体および作動体を含み、前記作動体の開放位置,挟圧位置でそれぞれ前記弾性チューブを開放状態,閉止状態とする開閉機構と、モータの回転運動を前記作動体の移動に変換し、前記第一制御位置にて前記作動体を開放位置とし、前記第二制御位置にて前記作動体を挟圧位置とするカムとを備え、前記カムが前記第一制御位置とされるとき、前記弾性チューブは自らの弾性復元力を利用して前記作動体を開放位置へ移動させるピンチバルブであって、前記作動体は、一端側が前記固定体に回動自在に支持され、前記回動位置から離れた位置に前記弾性チューブを挟圧するための作動片を備えるとともに、前記第一制御位置と前記第二制御位置とを検出する位置検出機構と、前記モータに通電することにより前記カムを前記第一制御位置と前記第二制御位置との間で移動させ、前記位置検出機構が前記第一制御位置および前記第二制御位置を検出すると前記モータの通電を停止する制御手段とを備えたことを特徴とするピンチバルブである。
【0011】
この実施の形態においては、前記弾性チューブの開放は、つぎのようにして行われる。前記作動体と前記固定体とで、前記弾性チューブを挟圧して、流路を押し潰した閉止状態において、前記モータを駆動し、前記位置検出機構が前記第一制御位置を検出するまで前記カムを回転させ、前記モータを停止する。すると、前記カムによる前記作動体への押圧力が解除され、前記作動体は、前記第一流路の自らの弾性力により開放位置へと回動し、流路が開放される。
【0012】
また、前記弾性チューブの閉止は、つぎのようにして行われる。前記モータへ駆動信号を送り、前記位置検出機構が前記第二制御位置を検出するまで前記カムを回転させ、前記モータを停止する。すると、前記カムにより前記作動体へ押圧力が加えられ、前記作動体は、回動してその作動片により前記弾性チューブを挟圧し、流路を押し潰して流路を閉止する。
【0013】
ここで、この発明の実施の形態の各構成要素について説明する。前記固定体は、前記作動体と協働して前記弾性チューブを挟む機能を有するように構成される。この固定体は、好ましくは、ピンチバルブの他の構成要素を支持する基板として機能させる。また、この固定体は、好ましくは、耐久性の点などから合成樹脂製の板状部材にて構成する。
【0014】
前記作動体は、好ましくは、L字状アームとして形成され、基部と、この基部の一端側において、前記弾性チューブを挟むように、前記固定体に設けた回動支持部にて回動自在に支持される一対の支持片、前記基部の他端側において、前記第一流路と対面する側の面に設けられ前記第一流路とほぼ垂直に当接して挟圧するための作動片とを備える。前記基部の回動支持部側には、好ましくは、前記作動体の開放位置と挟圧位置との間の移動を妨げないようにするための切欠部を形成する。また、この作動体は、軽量化および耐久性の観点から合成樹脂にて形成する。
【0015】
前記モータは、好ましくは、減速ギア機構を介して回転軸が連結され、この回転軸に前記カムが装着されている。そして、このモータは、好ましくは、直流モータとするが、直流モータ以外のモータとすることができる。
【0016】
この実施の形態においては、節電のために前記カムの第一制御位置と第二制御位置とを検出する位置検出機構を備える。この位置検出機構は、好ましくは、前記回転軸の先端に設けられ前記開放位置に対応する第一切欠および前記挟圧位置に対応する第二切欠を形成した位置検出板と、この位置検出板が回転して前記第一切欠および前記第二切欠が位置すると発光部からの光を受光部にて受光し、それ以外の位置で受光部にて受光しない光検出器とを含んで構成する。前記開放位置および前記挟圧位置においては、前記モータへの通電は停止され、省電力の構成としている。
【0017】
この実施の形態のピンチバルブは、好ましくは、菌類判定装置の径が大きい弾性チューブの開閉に用いる。この菌類判定装置は、被試験水中における菌類の存否を判定するための菌類判定装置であって、被試験水,殺菌液および洗浄水を選択的に貯留するための第一容器と、この第一容器の下方に配置され、弾性チューブからなる第一流路により前記第一容器の底部と接続され、弾性チューブからなる第二流路が底部に接続される前記被試験水中の菌類を培養するための第二容器と、この第二容器の上部に設けたオーバーフロー用の第三流路と、この第二容器へ培地を供給する培地供給手段とを備えたものとする。
【0018】
そして、前記第一流路,前記第二および前記第三流路にそれぞれピンチバルブよりなる第一弁,第二弁,第三弁を設け、前記培地供給手段,前記第一弁,前記第二弁および前記第三弁を制御する制御手段を備え、前記制御手段は、前記第一容器内の被試験水を前記第一流路を介して前記第二容器へ供給するとともに、前記第二容器へ培地を供給して菌類を培養させる培養工程と、培養後の被試験水を加熱殺菌して前記第二流路から排出する第一殺菌工程と、前記第一容器内の殺菌液を前記第一流路,前記第二容器および前記第二流路に流す第二殺菌工程と、前記第一容器内の洗浄水を前記第一流路,前記第二容器および前記第二流路に流す洗浄工程とを行うように構成する。
【0019】
こうした構成の菌類判定装置においては、殺菌液,洗浄液および被試験水の前記第一容器から前記第二容器への移動を円滑に行うために、前記第一流路の弾性チューブの口径を大きくする。このため前記第一弁のみを、この実施の形態のピンチバルブとする。その他の前記第二弁および前記第三弁は、前記第二流路および前記第三流路の弾性チューブの口径が小さいので、消費電力やコストの面からこの実施の形態のピンチバルブを用いるメリットが無いので、市販の電磁弁式(電磁式)のものとするが、この実施の形態のピンチバルブとすることができる。
【実施例1】
【0020】
この発明の実施例1に係るピンチバルブ(第一弁)6をこの第一弁6を用いた大腸菌群判定装置とともに、以下に図に基づき説明する。図1は、同実施例1の第一弁6を用いた大腸菌群判定装置の模式的概略構成図を示し、図2は、同大腸菌群判定装置の外箱の一部を外した状態の斜視による説明図であり、図3は、同大腸菌群判定装置の要部の断面の押圧ローラ機構を省略した状態の説明図であり、図4は、同大腸菌群判定装置の要部の断面の培地供給手段および第一流路および第二流路を外した状態の説明図であり、図5は、同実施例1の第一弁6の正面の説明図であり、図6は、同実施例1の一作動状態を示す斜視の説明図であり、図7は、同実施例1の他の作動状態を示す斜視の説明図であり、図8は、前記大腸菌群判定装置の制御手順を示すフローチャート図である。
【0021】
図1において、前記大腸菌群判定装置は、特定酵素基質培地法の一つであるX−Galを用いて被試験水中の大腸菌群の存否を自動的に判定するためのものであり、被試験水,殺菌液および洗浄水を選択的に貯留するための第一容器1と、この第一容器1の下方に配置され、第一流路2により前記第一容器1の底部と接続され、第二流路3が底部と接続される被試験水中の菌類を培養するための第二容器4と、この第二容器4へ培地を供給する
培地供給手段5と、前記第一流路2の流路を開閉する第一弁6と、前記第二流路3を開閉する第二弁7と、前記第一容器1へ殺菌剤を供給する殺菌剤供給手段8と、前記培地供給手段(試薬供給手段と称することができる。)5,前記殺菌剤供給手段8,前記第一弁6および前記第二弁7を制御する制御器9とを主要部として備えている。
【0022】
前記第一容器1は、大腸菌類の存否の判定対象となる被試験水と、前記第一容器1,前記第一流路2,前記第二容器4,前記第二流路3および後記第三流路20の各内面を殺菌する殺菌液と、殺菌後の要素を洗浄する洗浄水とを選択的に貯留する機能を有する。
【0023】
この第一容器1は、上面開口のほぼ円筒状で下部がドーム状に形成され、底部に前記第一流路2を着脱自在に連結する第一接続口10を形成している。この第一容器1は、殺菌剤に強い材料(たとえば、塩化ビニールなど)を用いている。
【0024】
前記第一容器1の被試験水は、給水弁11を備えた被試験水供給ライン12にて供給される。この被試験水供給ライン12は、前記第一容器1と縁切り状態で接続されている。
【0025】
また、前記第一容器1の殺菌液は、前記殺菌剤供給手段8からの殺菌剤と前記被試験水供給ライン12からの被試験水とにより、殺菌を有効に行うために前記殺菌剤を所定濃度含んで生成されて、殺菌工程時に前記第一容器1に貯留されるように構成されている。前記洗浄水は、この実施例1では、前記被試験水供給ライン12から供給される被試験水とし、洗浄工程時に前記第一容器1に貯留される。
【0026】
前記第一容器1には、前記第一容器1内の水位を制御するための水位検出器13を備えている。この水位検出器13は、洗浄用水位を定める第一電極13Hと、洗浄用水位より低い殺菌用水位を定める第二電極13Lと、アース用の第三電極13Eとを備えている。
【0027】
前記殺菌剤供給装置8は、殺菌剤を定量吐出可能なローラポンプ式の吐出装置であり、この実施例1では、特開平9−264269号公報に示されるものと同様な構成としている。この殺菌剤供給手段8は、第一押圧ローラ機構8Aを設けた第一本体部8Bと、弾性チューブの一端に吐出液体(殺菌剤)の貯留体を接続するとともに、他端に逆止弁(図示省略)を接続した液体カートリッジ(図示省略)を収納した第一液体カセット8Cとからなり、この第一液体カセット8Cを前記弾性チューブが前記第一押圧ローラ機構8Aによる押圧作動を受けるように着脱自在に装着し、前記第一押圧ローラ機構8Aの回転運動により、前記第一押圧ローラ機構8Aの前記弾性チューブに対する押圧作動が、作用時と非作用時とを繰り返して殺菌剤を定量吐出するように構成されている。前記殺菌剤は、この実施例1では、次亜塩素酸ナトリウムとしているが、これに限定されない。
【0028】
前記第二容器4は、内部を殺菌する機能と、被試験水に培地を混合して、被試験水中の菌類を培養する培養機能と、菌類の培養による変色を判定する判定機能と、培養後の被試験水を加熱殺菌する加熱殺菌機能とを有するように構成されている。こうした機能が行えるように、この第二容器4は、耐殺菌剤性,耐熱性および光透過性を有する材料(この実施例1では、石英ガラス)にて形成されている。
【0029】
この第二容器4は、図3および図4を参照して、本体部16と、この本体部16の上端に設けられ前記第一流路2の下端を着脱自在に接続する第二接続口17と、前記本体部16の下端に設けられ前記第二流路3の上端を着脱自在に接続する第三接続口18と、前記本体部16の上部に設けられ前記培地供給手段5が接続される第四接続口19と、前記第四接続口19の下方に設けられオーバーフロー用の第三流路20が着脱自在に接続される第五接続口21とを一体的に形成している。
【0030】
前記第一接続口10および第二接続口17の口径は、前記第三接続口18の口径よりも大きくしている。その理由は、エアかみによる障害を防ぎ、殺菌液,洗浄水を確実に落下させるとともに、前記第一容器1から第二容器4への殺菌液,洗浄水の落下スピードを早くするためである。
【0031】
前記本体部16の内面形状は、前記第二接続口17から前記第三接続口18へ向けて流れる殺菌液および洗浄水が、内面全体に沿って流れるように、上端部および下端部を半球面状とし、中間部を円筒状としている。こうした形状とすることにより、前記本体部16内周面全体を均一に殺菌、洗浄できるように構成している。
【0032】
また、前記第二容器4は、図4を参照して、前記培養機能,すなわち被試験水を培養に適した温度に加熱保温するための温度調節装置として、前記本体部16の外周面を加熱する面状のヒータ22を備える。このヒータ22は、前記加熱殺菌機能,すなわち培養工程後の被試験水を無害なものにするように加熱殺菌する機能をなす手段としても用いている。
【0033】
また、前記第二容器4は、前記判定機能をなすための変色検出装置の一部を構成する透過光強度測定部(透過光量測定部と称することができる。)23を備えている。この透過光強度測定部23は、第一測定部〜第三測定部を含む。前記第一測定部は、第一発光素子26と、前記本体部16を挟んで前記第一発光素子26と対向する、たとえばフォトトランジスタ等の第一受光素子27とを主に備えており、前記第一発光素子26から照射されかつ前記本体部16を通過する光の透過光強度を測定するためのものである。この実施例1では、前記第一発光素子26の発光色は、大腸菌群の存在により培地を含む被試験水が青〜青緑へ変色するのを判定するために赤色としている。
【0034】
一方、前記第二測定部は、第二発光素子28と、前記本体部16を挟んで前記第二発光素子28と対向する、たとえばフォトトランジスタ等の第二受光素子29とを主に備えており、前記第二発光素子29から照射されかつ前記本体部16を通過する光の透過光強度を測定するためのものである。この実施例1では、前記第二発光素子26の発光色は、同被試験水の濁りを判定するために赤色以外の色としている。この第二測定部は、大腸菌群による変色なのか、それ以外の菌による濁りなのかを区別するために設けているが、必要に応じてこれを設けない構成とすることができる。
【0035】
また、前記第三測定部は、培地を含んだ被試験水(培養液)が規定量注入されているかどうかを判定するためのものであり、第三透過率測定部30を備えている。この第三透過率測定部30は、緑色ダイオード等の緑色光を発光する第三発光素子31と、前記本体部16を挟んで前記第三発光素子31と対向する、たとえばフォトトランジスタ等の第三受光素子32とを主に備えており、前記第三発光素子31から照射されかつ前記本体部16を通過する緑色光の透過光強度を測定するためのものである。
【0036】
前記各発光素子26,28,31は、第一基板33に固定され、前記各受光素子27,29,32は、第二基板34に固定されている。前記第一基板33および前記第二基板34は、環状の第一支持部材35により弾性材料よりなるOリング74,74を介して前記本体部16の外周面に支持されている。
【0037】
前記培地供給手段5は、被試験水に対してX―Gal法を用いた特定酵素基質培地を供給するものであって、定量吐出可能なローラポンプ式のものとし、前記殺菌剤供給手段8と同様な構成としている。この培地供給手段5は、第二押圧ローラ機構5Aを設けた第二本体5Bと、弾性チューブの一端に吐出液体(培地)の貯留体を接続するとともに、他端に逆止弁(図示省略)を接続した液体カートリッジ(図示省略)を収納した第二液体カセ
ット5Cとからなり、この液体カセット5Cを前記弾性チューブが前記第二押圧ローラ機構5Aの押圧作動を受けるように着脱自在に装着し、前記第二押圧ローラ機構5Aの回転運動により、前記第二押圧ローラ機構5Aの前記弾性チューブに対する押圧作動が、作用時と非作用時とを繰り返して培地を定量吐出するように構成されている。
【0038】
この実施例1においては、図3に示すように前記培地供給手段5の培地の供給口先端39が前記第三接続口19から前記本体部16内へ突出するように構成されている。すなわち、前記供給口先端39は、前記第二容器4の内面に沿って流下する殺菌液および洗浄水により洗われるように構成されている。
【0039】
また、図4を参照して、前記第二容器4の下端部には、貯留された被試験水を撹拌するための撹拌装置40を備えている。この撹拌装置40は、ステータコイル41と、本体部16の内の底部には設けた磁石を内蔵した球体状の攪拌子42とから構成されている。前記撹拌子42は、前記本体部16の底部にフリーな状態で載置され、被試験水を前記第三接続口18へスムーズに流すための溝43を1乃至複数条形成している。前記ステータコイル41は、第二支持部材44により前記第三接続口18の上端に支持されている。この排出を容易にするために、前記溝43に代えて、またはこれに加えて、前記本体部16に適数の突起(図示省略)を設けることができる。
【0040】
前記第一流路2,前記第二流路3,前記第三流路20は、全体をシリコンゴムからなる半透明の弾性チューブにて構成されている。前記第一流路2は、その両端を弾性を利用して前記第一接続口10および前記第二接続口17にはめ込む(差し込む)ことで接続している。前記第二流路3は、その上端を弾性を利用して前記第三接続口18にはめ込むことで接続している。前記第三流路20は、その一端を弾性を利用して前記第五接続口21にはめ込むことで接続している。前記第一流路2,前記第二流路3および前記第三流路20を透明または半透明のチューブとすることで、内面の汚れを確認することができる。
【0041】
前記第三流路20にも第三弁45を設けている。この第三弁45は、前記第二容器4からのオーバーフローを制御するために設けている。
【0042】
前記第一弁6,前記第二弁7,前記第三弁45は、いずれも弾性チューブの挟圧(挟み付け)により流路を閉じ、挟圧力を解除することにより流路を開放するピンチバルブとしている。前記第二弁7および前記第三弁45は、弾性チューブの径が小さいので、市販の電磁式ピンチバルブ(たとえば、高砂電気工業社製のPK0802−NC)を用いている。
【0043】
前記第一弁6に使用するピンチバルブは、電力を節約できる構成のこの発明の実施例1のピンチバルブとしている。この第一弁6を図5〜図7に基づき説明する。前記第一弁6は、弾性チューブからなる前記第一流路2を挟んで配置される固定体46および作動体48を含み、前記作動体48の開放位置(図6),挟圧位置(図7)でそれぞれ前記第一流路2を開放状態,閉止状態とする開閉機構49と、モータ50の回転運動を前記作動体48の移動に変換し、第一制御位置にて前記作動体48を開放位置とし、第二制御位置にて前記作動体48を挟圧位置とし、前記カム51が第一制御位置とされるとき、前記第一流路2が自らの弾性復元力により前記作動体48を開放位置へ移動させるカム51とを主要部として備えている。
【0044】
前記固定体46は、合成樹脂製の板状部材からなり、前述のように前記第一流路2を挟む機能を有するが、前記第一弁6の構成要素を支持する基板として機能する。
【0045】
前記作動体48は、合成樹脂製のL字状アームとして形成され、基部52と、この基部
52の一端側において、前記第一流路2を挟むように、前記固定体46に設けた回動支持部53にて回動自在に支持される一対の支持片54,54と、前記基部52の他端側において、前記第一流路2と対面する側の面に設けられ前記第一流路2とほぼ垂直に当接して挟圧するための作動片55とを備えている。前記基部52の回動支持部側には、前記作動体48の開放位置と挟圧位置との間の移動を妨げないようにするための切欠部56を形成している。
【0046】
前記モータ50は、直流モータで、減速ギア機構57を介して回転軸58が連結され、この回転軸58に前記カム51が装着されている。前記モータ50は、前記減速ギア機構57を金属製の第一取付板59にネジにて固定し、この第一取付板59を前記固定体46にネジにて固定することで、前記固定体46に固定、支持されている。なお、前記モータ50は、直流モータ以外のモータとすることができる。
【0047】
前記第一弁6には、前記カム51の第一制御位置と第二制御位置とを検出する位置検出機構60を備えている。この位置検出機構60は、前記回転軸58の先端に設けられ前記開放位置に対応する第一切欠61および前記挟圧位置に対応する第二切欠62を形成した位置検出板63と、この位置検出板63が回転して前記第一切欠61および前記第二切欠62が位置すると発光部64Aからの光を受光部64Bにて受光し、それ以外の位置で受光部にて受光しない光検出器64とを含んで構成している。前記光検出器64は、第二取付板65に装着されて、金属製の前記第一取付板59にネジにて固定される。前記カム51と前記位置検出板63とは、樹脂成形により一体的に構成されている。前記開放位置および前記挟圧位置においては、前記モータ50への通電は停止され、省電力の構成とされている。
【0048】
図4において、符号66は、前記透過光強度測定部23および前記ヒータ22に覆われていない前記本体部16の上部を覆う保温用の断熱材であり、67は、前記第二容器4内の上部の被試験水温度を検出する第一温度センサであり、68は、前記第二容器4内の下部の被試験水温度を検出する第二温度センサである。以上の実施例1の各構成要素は、図2に示すように、集積板69に装着されて、側板70,背板71,底板72,開閉自在の扉としての前板(図示省略)などからなる装置全体を覆う箱体73内に収容される。
【0049】
前記制御器9は、前記水位検出器13,前記透過光強度測定部23,前記第一温度センサ67,前記第二温度センサ68などからの信号を入力して、前記殺菌剤供給手段8の殺菌剤の吐出,前記培地供給手段5の培地の吐出,前記第一弁6の開閉,前記第二弁7,前記給水弁11および前記第三弁45の開閉などを予め記憶した菌類判定プログラムに基づき制御する。
【0050】
前記菌類判定プログラムは、培養工程と、菌類の存否の判定工程と、培養後の被試験水を熱殺菌して排出する第一殺菌工程と、被試験水の流路を殺菌液にて殺菌する第二殺菌工程と、前記流路を洗浄水にて洗浄する洗浄工程とを主要工程として含み、これらの工程を繰り返して行うように構成されている。
【0051】
前記培養工程は、前記第一容器1内の被試験水を前記第一流路2を介して前記第二容器4へ供給するとともに、前記培地供給手段5から前記第二容器4へ培地を供給し、所定温度に保持することで菌類を培養させる工程である。
【0052】
前記判定工程は、前記第二容器4内の被試験水中の菌類の存否を判定する工程である。さらに説明すると、前記培地に前記第二容器4内の被試験水と反応して発色する基質を含ませ、前記ヒータ22により第二容器4内の被試験水を培養に適した温度に加熱保持し、前記第二容器4内の被試験水の変色を前記透過光強度測定部23による測定結果に基づき
検出し、菌類の存否を判定する工程である。
【0053】
菌類の存否の判定は、菌類の種類に適した判定方法を用いることができるが、この実施例1の判定装置は、大腸菌群の存否を判定するものであり、特開2004−229655号公報に記載のものと同様のものを採用している。
【0054】
この実施例1において用いられる特定酵素基質培地、すなわち、前記培地供給手段5の液体カセット5C内に貯蔵される特定酵素基質培地は、基本的には、X−Galを用いる特定酵素基質培地(X−Gal培地)である。より具体的には、たとえば、社団法人日本水道協会発行、「上水試験方法 解説編 2001年版」842〜843頁の表に挙げられたピルビン酸添加X−Gal−MUG培地であり、酵素基質、大腸菌群培養のための栄養成分、塩類、界面活性剤およびpH調製剤を含むように調整されたものである。
【0055】
そして、この高濃度の特定酵素基質培地は、所定の色素をさらに含むものである。ここで用いられる色素は、緑色光の透過率が低下するように被試験水を着色させることができるものであり、かつ赤色の波長領域である660nm付近の波長領域に吸収ピークを示さないものである。このような色素としては、たとえば、520nm付近に極大吸収ピークを示す色素を用いることができる。但し、ここで用いる色素は、大腸菌群の存否の判定結果の信頼性を損ね難いもの、すなわち、大腸菌群の培養を妨げ難いものが好ましい。大腸菌群の培養を妨げ難い赤色の色素の具体例としては、エオシンYを挙げることができる。
【0056】
特定酵素基質培地における上述の色素の含有量は、被試験水に特定酵素基質培地を添加したときに、被試験水が当該色素の色に変色可能なように設定されていれば特に限定されるものではない。
【0057】
前記第一殺菌工程は、前記培養工程後の前記第二容器4内の被試験水を前記ヒータ22にて加熱殺菌する工程である。
【0058】
前記第二殺菌工程は、前記第一容器1内にて殺菌液を生成し、この殺菌液を前記第一流路2,前記第二容器4および前記第二流路3の順に流すとともに、前記第三流路20にも流す工程である。
【0059】
前記殺菌剤として特に好ましいものは、次亜塩素酸ナトリウム等の塩素系殺菌剤である。塩素系殺菌剤は、各種の菌類に対して殺菌作用を示すだけではなく、漂白剤としても機能するため、洗浄工程において、前記第二容器4の透明性を高めることができる。
【0060】
前記洗浄工程は、前記第一容器1内の洗浄水を前記第一流路2,前記第二容器4および前記第二流路3の順に流すとともに、前記第三流路20に流す工程である。
【0061】
つぎに、この実施例1の第一弁6の動作を大腸菌群測定装置の動作とともに説明する。なお、ここでは、特定酵素基質培地として、赤色の色素を含むX−Gal培地を用いる場合について説明する。以下の説明において、各構成要素の作動の制御は、特に断らない限り、前記制御器9により行われる。
【0062】
図8を参照して、オペレータが実施例1の装置の電源をONにすると、ステップS1(以下、ステップSNは、単にSNと称する。)において、前記第一〜第三弁6,7,45および給水弁11を閉じる等の初期設定動作を実施する。
【0063】
つぎに、S2において、前処理工程を行う。この前処理工程とは、前記第一容器1,前記第一流路2,前記第二容器4,前記第二流路3および前記第三流路20の洗浄を行う工
程である。この洗浄は、後記の洗浄工程と同様に行うことができ、洗浄の前に前記第二殺菌工程と同様に殺菌工程を行うように構成することができる。
【0064】
ここで、以下の各工程を説明する前に、前記第一弁6の開放と、閉止動作について説明する。まず、前記第一弁6の開放は、つぎのようにして行われる。図6および図7を参照して、図7に示す閉止状態にある前記第一弁6は、前記作動体48が前記カム51により押圧され、前記作動体48と前記固定体46とで、前記第一流路2を挟圧して、流路が押し潰されることで閉止状態とされている。この閉止状態において、前記モータ50を駆動し、前記位置検出板63の第一切欠61が図6に示す光検出器64にて光が検出される前記第一制御位置となるまで前記カム51を回転させ、前記モータ50を停止する。すると、前記カム51による前記作動体48への押圧力が解除され、前記作動体48は、前記第一流路2の自らの弾性力により開放位置へと回動し、流路が開放される。
【0065】
つぎに、前記第一弁6の閉止動作を説明する。前記第一弁6の閉止は、つぎのようにして行われる。図6に示す開放状態にある前記第一弁6を図7に示す閉止状態とするには、前記モータ50へ駆動信号を送る。そして、前記位置検出板63の第二切欠62が図7に示す光検出器64にて光が検出される前記第二制御位置となるまで前記カム51を回転させ、前記モータ50を停止する。すると、前記カム51により前記作動体48へ押圧力が加えられ、前記作動体52は、回動して前記第一流路2を挟圧し、流路を押し潰して流路を閉止する。
【0066】
(待機工程)
以上の前処理工程を終了すると、S3にて待機工程を行う。この待機工程では、オペレータが判定開始スイッチ(図示省略)をONしたか否か、または測定開始時刻となったかどうかを判断する。ここで、オペレータが判定開始スイッチをONにしない場合、または、測定開始時刻となっていない場合、そのまま待機状態を維持する。一方、オペレータが前記判定開始スイッチをONにすると、S4〜S11の各工程を開始する。
【0067】
(検水導入工程)
S4において、被試験水の導入(採水)を実施する。すなわち、前記第一弁6を開き、前記第二弁7および前記第三弁45を閉じた状態で、前記給水弁11を開き、前記被試験水供給ライン12から被試験水を前記第一容器1,前記第一流路2を介して前記第二容器4内へ供給する。前記第二容器4内を被試験水が満たしたタイミングで、前記第三弁45を開いて、被試験水を前記第三流路20からオーバーフローさせることで、前記第二容器4内に所定量だけ貯留する。この工程が終了すると、前記第一弁6および前記第三弁45を閉止する。このオーバーフローにより、前記第二容器4の上層部には、空気層が形成され、この空気層により菌類の存否を判定する変色を可能としている。
【0068】
(光強度測定工程)
この被試験水の供給終了のタイミング(タイマ制御による)で、ブランク測定を行う。このブランク測定とは、被試験水を前記第二容器4に入れた状態での光強度(ブランク)の測定である。まず、前記透過光強度測定部23により透過光強度を測定し、各種判定の基準値を求める。
【0069】
(培地注入工程)
ついで、S6において、培地(培養液)の注入を行う。すなわち、前記培地供給手段5の第二押圧ローラ機構5Aを駆動して、所定量の培地を前記第二容器4に貯留の被試験水へ供給する。この培地の注入時には、同時に前記ステータコイル41を作動させ、前記第二容器4内の被試験水を攪拌子42により攪拌する。この結果、注入された特定酵素基質培地は、被試験水中において均等に分散することになる。こうして、所定濃度の培地を含
む被試験水が生成される。この培地注入時、注入された培地は比重差により被試験水中を沈み、その結果として被試験水が僅かに前記第三流路20からオーバーフローするが、培地が正常に注入されたかどうかの濃度の判定(チェック)工程を行うことことにより問題を生ずることはない。
【0070】
(培養工程)
培地の注入が終了すると、S7で培養工程を行う。この培養工程では、前記ヒータ22を制御して、前記第一温度センサ60による検出温度が設定値となるように制御するとともに、前記撹拌装置40を駆動して、被試験水の加温撹拌を行う。そして、被試験水の温度が大腸菌群の培養に適した温度、たとえば36±1℃に達したか否かを判断する。被試験水の温度が当該温度に達すると、内部タイマーを作動させ、大腸菌群の培養に必要な所要の経過時間(所定時間)、たとえばピルビン酸添加X−Gal培地を用いるこの実施例1の場合は所定時間が経過したか否かを判断する。所定時間の経過が判定されると、つぎのS8の判定工程へ移行する。
【0071】
(判定工程)
この判定工程は、つぎのようにして行われる。この判定工程においては、つぎに、前記第一測定部の第一発光素子26および前記第二測定部の第二発光素子28を点灯する。そして、前記第二容器4を通過する、前記第一発光素子26および前記第二発光素子28からの光を前記第一受光素子27および前記第二受光素子29で受光し、光透過強度を測定する。以下の説明では、前記第二測定部による光透過強度測定による作用を省略している。
【0072】
ここで、前記第一発光素子26から発せられ前記第二容器4を通過する赤色光の透過率について説明する。特定酵素基質培地(以下、試薬という場合がある)が供給されかつ培養された被試験水は、大腸菌群を含まない場合、上述のような5,5−ジブロモ−4,4−ジクロロインジゴが生成しないため変色せず、赤色光の透過率は低下しにくい。これに対し、試薬が供給されかつ培養された被試験水は、大腸菌群を含む場合、青〜青緑色を呈する5,5−ジブロモ−4,4−ジクロロインジゴが生成するために青〜青緑色に変色するので、赤色光の透過率が急激に低下する。したがって、一般には、赤色光の透過率の大小により、被試験水の青〜青緑色への変色を判定することができる。すなわち、一般に、赤色光の透過率が低下すれば、被試験水が青〜青緑色に変色している(すなわち、被試験水が大腸菌群を含み、5,5−ジブロモ−4,4−ジクロロインジゴが生成している)ものと判断することができる。
【0073】
そして、測定した赤色光の透過率が陽性か陰性かを判別するしきい値より小さいか否かを判断する。ここで、赤色光の透過率がしきい値よりも小さい場合、被試験水中に大腸菌群が存在していることを示す「大腸菌群陽性」の旨を表示装置(図示省略)に表示する。
【0074】
一方、赤色光の透過率がしきい値値以上の場合、被試験水中に大腸菌群が存在しないことを示す「大腸菌群陰性」の旨を前記表示装置に表示する。
【0075】
以上説明した判定工程は、前記培養工程中に前記判定工程の判定処理を一定間隔で行うように構成することができる。この場合、前記培養工程の前記所定時間が経過していなくても陽性と判定すると前記培養工程を中止するように構成することができる。
【0076】
(第一殺菌工程)
この判定工程の開始から一定時間が経過すると、S9の第一殺菌(熱殺菌)工程を実施する。ここでは、前記ヒータ22および前記ステータコイル41を作動させ、前記第二容器4内の被試験水を高温加熱して撹拌する。そして、被試験水の温度が大腸菌群の殺菌に
適した温度、たとえば80℃に達したか否かを判断する。被試験水の温度が80℃に達すると、前記内部タイマを作動させ、続いて大腸菌群の殺菌に必要な所定の経過時間、を判断する。
【0077】
所定時間が経過すると、被試験水の排出を行う。ここでは、前記第二弁7を開き被試験水を排出し、つぎの第二殺菌工程へ移行するする。
【0078】
(第二殺菌工程)
S10において、前記第二殺菌工程を行う。この第二殺菌工程は、つぎのようにして行われる。まず、前記第一押圧ローラ機構8Aを駆動して、前記第一液体カセット8C内の殺菌剤を前記第一容器1内へ定量だけ供給する。ついで、前記給水弁11を開き、前記被試験水供給ライン12から被試験水を前記第一容器1内へ供給する。前記第一容器1内の水位が前記第二電極13Lの先端位置まで達すると、前記給水弁11を閉じ、前記第一容器1内へ所定量の殺菌剤を含む被試験水を貯留する。こうして、所定濃度の殺菌剤を含む殺菌液が生成される。
【0079】
ついで、前記第二弁7および前記第三弁45を閉じて、前記第一弁6を開放すると、前記第一容器1内の殺菌液が前記第一流路2を通して前記第二容器4内へ供給される。この第二容器4内においては、殺菌液は、前記第二接続口10から前記本体部16の内面に沿って内面を殺菌しながら流れて、前記第二容器4内に貯留される。この流れにおいて、前記培地供給手段5の先端39を殺菌する。そして、前記第二容器2内を殺菌液で満たし、この貯留状態においても殺菌液と接触している前記第二容器4内を殺菌する。この第二容器4内全体への殺菌液の貯留後、タイマ制御により前記第三弁45を開き、前記第三流路20から殺菌液をオーバーフローさせる。これにより、前記第三流路20の内面の殺菌が行われる。ここで前記第一容器1に貯留される殺菌液の量は、前記第二容器2内容積よりも多くなるように構成されている。
【0080】
前記第三流路20の殺菌が終わると、タイマ制御により前記第二弁7を開いて、前記第二流路3を通して殺菌液を排出する。この排出により、前記第二流路3内面の殺菌が行われる。殺菌液の排出が終わるタイミングで、前記第一弁6および前記第二弁7を閉じる。前記第二弁7の開放のタイミングは、この実施例1では、前記殺菌液の供給が停止されてから所定時間後としているが、殺菌液の前記第二容器4への供給開始時、または開始前に開いておく構成(滅菌液を排出しながら内面の殺菌を行う構成)とすることができる。
【0081】
(洗浄工程)
以上の第二殺菌工程を適数N1回行うと、S11にて洗浄工程を行う。この洗浄工程は、つぎのようにして行われる。まず、前記給水弁11を開き、前記被試験水供給ライン12から洗浄水としての被試験水を前記第一容器1内へ供給する。前記第一容器1内の水位が前記第一電極13Hの先端位置まで達すると、前記給水弁11を閉じ、前記第一容器1内へ所定量の被試験水を貯留する。この貯留が終了すると、前記第一容器1内の被試験水を用いて前記第一流路2,前記第二容器4,前記第二流路3および前記第三流路20の内面を洗浄する。
【0082】
より具体的には、前記給水弁11を開き、前記被試験水供給ライン12から被試験水を前記第一容器1内へ供給する。前記第一容器1内の水位が前記第一電極13Hの先端位置まで達すると、前記給水弁11を閉じ、前記第一容器1内へ所定量(たとえば、500cc)の被試験水を貯留する。前記第一弁6を開き、前記第二弁7および前記第三弁45を閉じた状態で、前記第一容器1内の被試験水を前記第二容器4へ供給する。前記第二容器4内を被試験水が満たしたタイミングで、前記第二弁7および前記第三弁45を開いて、被試験水を前記第二流路3および第三流路20から排出することで、流路の内面の洗浄を行
う。この洗浄工程においても前記培地供給手段5の先端39の洗浄が行われる。S11の洗浄工程を終えると、S3で待機する。
【0083】
以上説明した実施例1の第一弁6によれば、前記作動体48の回動支持と反対側の端部に設けた前記作動片55がほぼ直角に前記第一流路2の弾性チューブに当接して、挟圧して閉止状態とするので、弾性チューブの摩擦による摩耗が抑えられ寿命(交換時期)が延びるという効果を奏する。
【0084】
また、前記第一流路2の弾性チューブを挟圧したり、開放したりするためのバネを必要としないので、ピンチバルブの構成を簡素化できる。
【0085】
さらに、前記位置検出機構60により、前記第一制御位置および前記第二制御位置を検出すると、前記モータ50への通電を停止するように構成しているので、ピンチバルブの開閉動作に関係なく、使用電力量を削減できる。
【0086】
また、前記大腸菌群判定装置によれば、培養工程,判定工程,第一殺菌工程,第二殺菌工程,洗浄工程が順次行われる。前記第二殺菌工程時には前記第一容器1内の殺菌液が、前記第一流路2,前記第二容器4および前記第二流路3,前記第三流路20の順にポンプを用いることなく、重力により、しかも洗浄水が滞留する屈曲部の無い流路を流れる。また、洗浄工程時には洗浄水が、さらに培養工程時には、被試験水が、殺菌工程時と同様に滞留無く流れる。その結果、被試験水および殺菌液の滞留による殺菌洩れや、正しい培養および判定ができないという不都合を防止できる。
【0087】
また、前記第一容器1にて定量吐出型の前記殺菌剤供給手段8と前記水位検出器13とを用いて、殺菌剤を被試験水にて希釈して殺菌液を簡単に生成することができる。その結果、多量の殺菌液を貯留するタンクおよびこのタンクから殺菌液を供給するポンプを必要としないので、装置構成を簡素化できる。また、培地の供給を定量吐出型の前記培地供給手段5により行い、前記被試験水の前記第二容器4への定量供給を前記第一容器1と前記水位検出器13とにより行うので、所定濃度を含む被試験水の生成を簡易に行うことができ、この点においても装置構成を簡素化できる。
【0088】
また、前記第一弁6,前記第二弁7および前記第三弁45をピンチバルブで構成しているので、殺菌液および洗浄水の滞留や洩れが防止でき、安全性が高く、弁の耐久性の高い菌類判定装置を提供できる。また、前記第一弁6は、モータ駆動式の省電力タイプに構成しているので、省エネルギーを実現できる。
【0089】
また、前記殺菌剤供給手段8および前記培地供給手段5をカートリッジ式のものとしているので、殺菌剤および培地の補給を容易に行うことができる。
【0090】
また、前記殺菌剤が、前記第二容器4へ直接供給されることなく、前記第一容器1へ供給されるので、かりに前記殺菌剤供給手段8から殺菌剤がタレ落ちたりしても、培養中の菌類を死滅させることがなく、適正な培養を行うことができる。
【0091】
さらに、前記被試験水供給ライン12を前記第一容器1により縁切りしているので、前記被試験水供給ライン12の汚染を防止することができる。
【0092】
この発明は、前記実施例1に限定されるものではない。また、前記実施例1は、前記大腸菌群判定装置以外の装置にも適用可能である。
【図面の簡単な説明】
【0093】
【図1】本発明の実施例1のピンチバルブを用いた大腸菌群判定装置の概略構成図を示す図。
【図2】同大腸菌群判定装置の外箱を外した状態の斜視による説明図。
【図3】同大腸菌群判定装置の要部の断面の説明図。
【図4】同大腸菌群判定装置の要部の断面の説明図。
【図5】本発明の実施例1のピンチバルブの正面の説明図。
【図6】同実施例1の一作動状態を示す斜視の説明図。
【図7】同実施例1の他の作動状態を示す斜視の説明図。
【図8】前記大腸菌群判定装置の要部制御手順を示すフローチャート図。
【符号の説明】
【0094】
46 固定体
48 作動体
50 モータ
51 カム
55 作動片
60 位置検出機構

【特許請求の範囲】
【請求項1】
弾性チューブと、
この弾性チューブを挟んで配置される固定体および作動体を含み、前記作動体の開放位置,挟圧位置でそれぞれ前記弾性チューブを開放状態,閉止状態とする開閉機構と、
モータの回転運動を前記作動体の移動に変換し、前記第一制御位置にて前記作動体を開放位置とし、前記第二制御位置にて前記作動体を挟圧位置とするカムとを備え、
前記カムが第一制御位置とされるとき、前記弾性チューブは自らの弾性復元力を利用して前記作動体を開放位置へ移動させるピンチバルブであって、
前記作動体は、一端側が前記固定体に回動自在に支持され、前記回動位置から離れた位置に前記弾性チューブを挟圧するための作動片を備えるとともに、
前記第一制御位置と前記第二制御位置とを検出する位置検出機構と、
前記モータに通電することにより前記カムを前記第一制御位置と前記第二制御位置との間で移動させ、前記位置検出機構が前記第一制御位置および前記第二制御位置を検出すると前記モータの通電を停止する制御手段とを備えたことを特徴とするピンチバルブ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−175283(P2008−175283A)
【公開日】平成20年7月31日(2008.7.31)
【国際特許分類】
【出願番号】特願2007−8683(P2007−8683)
【出願日】平成19年1月18日(2007.1.18)
【出願人】(000175272)三浦工業株式会社 (1,055)
【出願人】(504143522)株式会社三浦プロテック (488)
【Fターム(参考)】