説明

ブレーキ制御装置

【課題】ホイールシリンダ間での作動液の回り込みの影響を軽減する。
【解決手段】ブレーキ制御装置は、複数のホイールシリンダに液圧を保持するためにそれぞれに対応して設けられている複数の保持弁と、複数のホイールシリンダに作動液を供給するために複数の保持弁の上流に設けられている共通の制御弁と、を含むホイールシリンダ圧制御系統と、複数のホイールシリンダの液圧を制御弁により共通に制御しているときに保持弁のうち少なくとも1つを閉弁して対応するホイールシリンダの液圧を共通の制御液圧とは異なる液圧に保持することにより車輪間の制動力配分を制御する制御部と、を備える。制御部は、閉弁されている保持弁を開弁したときの対応するホイールシリンダと他のホイールシリンダとの間での作動液の回り込みを緩和するようにホイールシリンダ圧制御系統を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両に設けられた車輪に付与される制動力を制御するブレーキ制御装置に関する。
【背景技術】
【0002】
例えば特許文献1には、いわゆるブレーキバイワイヤによるブレーキ制御装置が開示されている。ブレーキバイワイヤでは運転者のブレーキ操作を検出して電子制御により運転者の要求制動力を発生させる。このブレーキ制御装置においては、一対のリニア制御弁により各ホイールシリンダ圧を共通に制御することが可能であり、ホイールシリンダごとにリニア制御弁を設けるのと比べてコスト低減という観点から見て好ましい。
【特許文献1】特開2006−123889号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
上述のブレーキ制御装置においては基本的には各ホイールシリンダは共通の液圧に制御される。ところが状況によっては、特定のホイールシリンダを他のホイールシリンダとは異なる液圧に制御する場合もある。それは例えば各輪の制動力配分を制御する場合などである。この場合、例えば前輪と後輪のホイールシリンダ圧を異ならせたり、左右の前輪のホイールシリンダ圧を異ならせたりする。ホイールシリンダ間で液圧が異なる場合には、高圧のホイールシリンダから低圧のホイールシリンダへの作動液の回り込みが生じ得る。この回り込みにより、例えば高圧のほうのホイールシリンダ圧が低下して目標液圧から乖離するなど、液圧の制御性に影響が生じるおそれがある。
【0004】
そこで、本発明は、作動液の回り込みの影響を軽減してホイールシリンダ圧の制御性を向上させることができるブレーキ制御技術を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明のある態様のブレーキ制御装置は、作動液の供給により複数の車輪の各々に制動力を付与する複数のホイールシリンダと、複数のホイールシリンダに液圧を保持するためにそれぞれに対応して設けられている複数の保持弁と、複数のホイールシリンダに作動液を供給するために複数の保持弁の上流に設けられている共通の制御弁と、を含むホイールシリンダ圧制御系統と、複数のホイールシリンダの液圧を制御弁により共通に制御しているときに保持弁のうち少なくとも1つを閉弁して対応するホイールシリンダの液圧を共通の制御液圧とは異なる液圧に保持することにより車輪間の制動力配分を制御する制御部と、を備える。制御部は、閉弁されている保持弁を開弁したときの対応するホイールシリンダと他のホイールシリンダとの間での作動液の回り込みを緩和するようにホイールシリンダ圧制御系統を制御する。
【0006】
この態様によれば、複数のホイールシリンダ間で液圧を異ならせることにより車輪の制動力配分を制御することができる。そのために、ホイールシリンダに対応して設けられている保持弁の少なくとも1つを閉弁し、そのホイールシリンダ圧を他のホイールシリンダ圧とは異なる液圧に保持している。保持弁による保持圧を増圧するためにパルス的に保持弁を開弁する場合がある。このときに生じ得るホイールシリンダ間での作動液の回り込みを、ホイールシリンダ圧制御系統を適宜制御することにより緩和することができる。その結果、目標液圧に対するホイールシリンダ圧の乖離を小さく抑え、ホイールシリンダ圧の制御性を向上させることができる。
【0007】
制御部は、閉弁されている保持弁を開弁したときに差圧に応じて制御弁が機械的に開閉されるよう制御弁の開弁圧を制御してもよい。
【0008】
この態様によれば、差圧に応じて制御弁が機械的に開弁されたときに、ホイールシリンダの保持圧の増圧に制御弁からの作動液を利用することができる。よって、保持圧を増圧するとともに制御液圧の減圧を抑えて、作動液の回り込みを緩和することができる。また、制御弁は作用する差圧に応じて機械的に開弁されるので、保持弁開弁に伴う液圧変動に応じて制御弁が速やかに開弁される。よって、迅速に作動液の回り込みを緩和することができる。
【0009】
制御部は、保持されているホイールシリンダ圧の増圧目標値以上に設定される所定の設定圧よりも低い液圧が制御弁の下流側に作用するときに制御弁が機械的に開弁されるよう制御弁の開弁圧を制御してもよい。
【0010】
この態様によれば、制御弁は、制御弁下流圧が設定圧を下回っているときに差圧により機械的に開弁される。この設定圧は、閉弁されている保持弁に対応するホイールシリンダ圧の増圧目標値以上に設定されている。よって、保持されていたホイールシリンダ圧を増圧目標値に向けて増圧することができる。このように制御弁から供給される作動液を利用して、作動液の回り込みの影響を緩和することができる。
【0011】
制御部は、共通の制御液圧が目標制御液圧を下回っている間、制御弁が機械的に開弁されるように開弁圧を制御してもよい。
【0012】
この態様によれば、共通の制御液圧が低下して目標制御液圧から乖離したとしても制御弁が機械的に開弁されて作動液が供給される。このように制御液圧の変動に応じて制御弁が機械的に開弁されることにより制御液圧の低下が補償され、制御液圧の目標液圧からの乖離を速やかに抑えることができる。よって、作動液の回り込みの制御液圧への影響を軽減してホイールシリンダ圧の制御性を向上させることができる。
【0013】
制御弁は、当該弁上下流間の差圧が、通電される制御電流に応じた所定圧を超える場合に機械的に開弁される電磁制御弁であって、制御部は、制御弁下流側の液圧が前記対応するホイールシリンダにおける保持圧の増圧目標値に一致するときの制御弁上下流間の差圧を前記所定圧とする制御電流以上の制御電流を制御弁に供給するようにしてもよい。
【0014】
この態様によれば、制御弁下流側の液圧が少なくとも保持圧の増圧目標値に達するまでは制御弁が機械的に開弁されて作動液が供給されることになる。その結果、作動液の回り込みの影響を軽減することができる。
【0015】
制御弁は、当該弁上下流間の差圧が、通電される制御電流に応じた所定圧を超える場合に機械的に開弁される電磁制御弁であって、制御部は、制御弁下流側の液圧が共通の制御液圧の目標値に一致するときの制御弁上下流間の差圧を前記所定圧とする制御電流以下の制御電流を前記制御弁に供給するようにしてもよい。
【0016】
この態様によれば、制御弁下流側の液圧が、供給される制御電流に対応する制御液圧の目標値以下の液圧に達するまで制御弁が機械的に開弁されて作動液が供給されることになる。その結果、制御弁からの作動液を利用して制御液圧の目標液圧からの乖離を少なくすることが可能となる。
【0017】
ホイールシリンダ圧制御系統は、少なくとも1つのホイールシリンダを制御弁から遮断する分離弁をさらに含み、制御部は、閉弁されている保持弁を開弁するとともに分離弁を閉弁してもよい。
【0018】
この態様によれば、閉弁されている保持弁を開弁するときに分離弁が閉弁されるため、分離弁を通じてのホイールシリンダ間での作動液の回り込みを防止することができる。
【0019】
制御部は、閉弁されている保持弁を開弁するとともに他の保持弁を閉弁してもよい。
【0020】
この態様によれば、閉弁されている保持弁が開弁されるときに他の保持弁が閉弁されるので、開弁された保持弁に対応するホイールシリンダへの作動液の回り込みを防止することができる。
【0021】
この場合制御部は、対応するホイールシリンダの液圧を増圧目標値に向けて増圧するために、閉弁されている保持弁を開弁するとともに制御弁を開弁してもよい。
【0022】
この態様によれば、閉弁されている保持弁が開弁されるとともに制御弁が開弁されるので、対応するホイールシリンダ圧を速やかに増圧することができる。このように制御弁が積極的に開弁制御されることにより増圧対象であるホイールシリンダ圧の増圧を短時間で完了させることができるので、他の保持弁を閉弁するとしても短時間に留めることができる。
【発明の効果】
【0023】
本発明によれば、作動液の回り込みの影響を軽減してホイールシリンダ圧の制御性を向上させることができる。
【発明を実施するための最良の形態】
【0024】
以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。
【0025】
図1は、本発明の一実施形態に係るブレーキ制御装置20を示す系統図である。同図に示されるブレーキ制御装置20は、車両用の電子制御式ブレーキシステム(ECB)を構成しており、車両に設けられた4つの車輪に付与される制動力を制御する。本実施形態に係るブレーキ制御装置20は、例えば、走行駆動源として電動モータと内燃機関とを備えるハイブリッド車両に搭載される。このようなハイブリッド車両においては、車両の運動エネルギを電気エネルギに回生することによって車両を制動する回生制動と、ブレーキ制御装置20による液圧制動とのそれぞれを車両の制動に用いることができる。本実施形態における車両は、これらの回生制動と液圧制動とを併用して所望の制動力を発生させるブレーキ回生協調制御を実行することができる。
【0026】
ブレーキ制御装置20は、図1に示されるように、各車輪に対応して設けられたディスクブレーキユニット21FR,21FL、21RRおよび21RLと、マスタシリンダユニット27と、動力液圧源30と、液圧アクチュエータ40とを含む。
【0027】
ディスクブレーキユニット21FR,21FL、21RRおよび21RLは、車両の右前輪、左前輪、右後輪、および左後輪のそれぞれに制動力を付与する。本実施形態におけるマニュアル液圧源としてのマスタシリンダユニット27は、ブレーキ操作部材としてのブレーキペダル24の運転者による操作量に応じて加圧されたブレーキフルードをディスクブレーキユニット21FR〜21RLに対して送出する。動力液圧源30は、動力の供給により加圧された作動流体としてのブレーキフルードを、運転者によるブレーキペダル24の操作から独立してディスクブレーキユニット21FR〜21RLに対して送出することが可能である。液圧アクチュエータ40は、動力液圧源30またはマスタシリンダユニット27から供給されたブレーキフルードの液圧を適宜調整してディスクブレーキユニット21FR〜21RLに送出する。これにより、液圧制動による各車輪に対する制動力が調整される。
【0028】
ディスクブレーキユニット21FR〜21RL、マスタシリンダユニット27、動力液圧源30、および液圧アクチュエータ40のそれぞれについて以下で更に詳しく説明する。各ディスクブレーキユニット21FR〜21RLは、それぞれブレーキディスク22とブレーキキャリパに内蔵されたホイールシリンダ23FR〜23RLを含む。そして、各ホイールシリンダ23FR〜23RLは、それぞれ異なる流体通路を介して液圧アクチュエータ40に接続されている。なお以下では適宜、ホイールシリンダ23FR〜23RLを総称して「ホイールシリンダ23」という。
【0029】
ディスクブレーキユニット21FR〜21RLにおいては、ホイールシリンダ23に液圧アクチュエータ40からブレーキフルードが供給されると、車輪と共に回転するブレーキディスク22に摩擦部材としてのブレーキパッドが押し付けられる。これにより、各車輪に制動力が付与される。なお、本実施形態においてはディスクブレーキユニット21FR〜21RLを用いているが、例えばドラムブレーキ等のホイールシリンダ23を含む他の制動力付与機構を用いてもよい。
【0030】
マスタシリンダユニット27は、本実施形態では液圧ブースタ付きマスタシリンダであり、液圧ブースタ31、マスタシリンダ32、レギュレータ33、およびリザーバ34を含む。液圧ブースタ31は、ブレーキペダル24に連結されており、ブレーキペダル24に加えられたペダル踏力を増幅してマスタシリンダ32に伝達する。動力液圧源30からレギュレータ33を介して液圧ブースタ31にブレーキフルードが供給されることにより、ペダル踏力は増幅される。そして、マスタシリンダ32は、ペダル踏力に対して所定の倍力比を有するマスタシリンダ圧を発生する。
【0031】
マスタシリンダ32とレギュレータ33との上部には、ブレーキフルードを貯留するリザーバ34が配置されている。マスタシリンダ32は、ブレーキペダル24の踏み込みが解除されているときにリザーバ34と連通する。一方、レギュレータ33は、リザーバ34と動力液圧源30のアキュムレータ35との双方と連通しており、リザーバ34を低圧源とすると共に、アキュムレータ35を高圧源とし、マスタシリンダ圧とほぼ等しい液圧を発生する。レギュレータ33における液圧を以下では適宜、「レギュレータ圧」という。なお、マスタシリンダ圧とレギュレータ圧とは厳密に同一圧にされる必要はなく、例えばレギュレータ圧のほうが若干高圧となるようにマスタシリンダユニット27を設計することも可能である。
【0032】
動力液圧源30は、アキュムレータ35およびポンプ36を含む。アキュムレータ35は、ポンプ36により昇圧されたブレーキフルードの圧力エネルギを窒素等の封入ガスの圧力エネルギ、例えば14〜22MPa程度に変換して蓄えるものである。ポンプ36は、駆動源としてモータ36aを有し、その吸込口がリザーバ34に接続される一方、その吐出口がアキュムレータ35に接続される。また、アキュムレータ35は、マスタシリンダユニット27に設けられたリリーフバルブ35aにも接続されている。アキュムレータ35におけるブレーキフルードの圧力が異常に高まって例えば25MPa程度になると、リリーフバルブ35aが開弁し、高圧のブレーキフルードはリザーバ34へと戻される。
【0033】
上述のように、ブレーキ制御装置20は、ホイールシリンダ23に対するブレーキフルードの供給源として、マスタシリンダ32、レギュレータ33およびアキュムレータ35を有している。そして、マスタシリンダ32にはマスタ配管37が、レギュレータ33にはレギュレータ配管38が、アキュムレータ35にはアキュムレータ配管39が接続されている。これらのマスタ配管37、レギュレータ配管38およびアキュムレータ配管39は、それぞれ液圧アクチュエータ40に接続される。
【0034】
液圧アクチュエータ40は、複数の流路が形成されるアクチュエータブロックと、複数の電磁制御弁を含む。アクチュエータブロックに形成された流路には、個別流路41、42,43および44と、主流路45とが含まれる。個別流路41〜44は、それぞれ主流路45から分岐されて、対応するディスクブレーキユニット21FR、21FL,21RR,21RLのホイールシリンダ23FR、23FL,23RR,23RLに接続されている。これにより、各ホイールシリンダ23は主流路45と連通可能となる。
【0035】
また、個別流路41,42,43および44の中途には、ABS保持弁51,52,53および54が設けられている。各ABS保持弁51〜54は、ON/OFF制御されるソレノイドおよびスプリングをそれぞれ有しており、何れもソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。開状態とされた各ABS保持弁51〜54は、ブレーキフルードを双方向に流通させることができる。つまり、主流路45からホイールシリンダ23へとブレーキフルードを流すことができるとともに、逆にホイールシリンダ23から主流路45へもブレーキフルードを流すことができる。ソレノイドに通電されて各ABS保持弁51〜54が閉弁されると、個別流路41〜44におけるブレーキフルードの流通は遮断される。
【0036】
また、各ABS保持弁51、52、53及び54には並列にリターンチェック弁81、82、83及び84が設けられている。各リターンチェック弁81〜84は、主流路45から各ホイールシリンダ23に向かうブレーキフルードの流れを遮断する。一方、ホイールシリンダ圧が主流路45における液圧よりも高圧である場合に機械的に開弁されてホイールシリンダ23から主流路45へのブレーキフルードの流れが許容され、ホイールシリンダ圧と主流路45における液圧とが等しくなると機械的に閉弁される。
【0037】
このリターンチェック弁81〜84により、ABS保持弁51〜54が閉弁されてホイールシリンダ圧が保持されているときに主流路45における制御液圧が当該保持圧を下回った場合に、ABS保持弁51〜54の閉弁状態を維持したまま自動的に保持圧を主流路45の液圧まで減圧することができる。ABS保持弁51〜54を開弁することなく機械的に自動的に保持圧を減圧することができるので、ABS保持弁51〜54の開閉制御をシンプルにすることができるという点で好ましい。
【0038】
更に、ホイールシリンダ23は、個別流路41〜44にそれぞれ接続された減圧用流路46,47,48および49を介してリザーバ流路55に接続されている。減圧用流路46,47,48および49の中途には、ABS減圧弁56,57,58および59が設けられている。各ABS減圧弁56〜59は、ON/OFF制御されるソレノイドおよびスプリングをそれぞれ有しており、何れもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。各ABS減圧弁56〜59が閉状態であるときには、減圧用流路46〜49におけるブレーキフルードの流通は遮断される。ソレノイドに通電されて各ABS減圧弁56〜59が開弁されると、減圧用流路46〜49におけるブレーキフルードの流通が許容され、ブレーキフルードがホイールシリンダ23から減圧用流路46〜49およびリザーバ流路55を介してリザーバ34へと還流する。なお、リザーバ流路55は、リザーバ配管77を介してマスタシリンダユニット27のリザーバ34に接続されている。
【0039】
主流路45は、中途に分離弁60を有する。この分離弁60により、主流路45は、個別流路41および42と接続される第1流路45aと、個別流路43および44と接続される第2流路45bとに区分けされている。第1流路45aは、個別流路41および42を介して前輪用のホイールシリンダ23FRおよび23FLに接続され、第2流路45bは、個別流路43および44を介して後輪用のホイールシリンダ23RRおよび23RLに接続される。
【0040】
分離弁60は、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。分離弁60が閉状態であるときには、主流路45におけるブレーキフルードの流通は遮断される。ソレノイドに通電されて分離弁60が開弁されると、第1流路45aと第2流路45bとの間でブレーキフルードを双方向に流通させることができる。
【0041】
また、液圧アクチュエータ40においては、主流路45に連通するマスタ流路61およびレギュレータ流路62が形成されている。より詳細には、マスタ流路61は、主流路45の第1流路45aに接続されており、レギュレータ流路62は、主流路45の第2流路45bに接続されている。また、マスタ流路61は、マスタシリンダ32と連通するマスタ配管37に接続される。レギュレータ流路62は、レギュレータ33と連通するレギュレータ配管38に接続される。
【0042】
マスタ流路61は、中途にマスタカット弁64を有する。マスタカット弁64は、マスタシリンダ32から各ホイールシリンダ23へのブレーキフルードの供給経路上に設けられている。マスタカット弁64は、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により閉弁状態が保証され、ソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。開状態とされたマスタカット弁64は、マスタシリンダ32と主流路45の第1流路45aとの間でブレーキフルードを双方向に流通させることができる。ソレノイドに規定の制御電流が通電されてマスタカット弁64が閉弁されると、マスタ流路61におけるブレーキフルードの流通は遮断される。
【0043】
また、マスタ流路61には、マスタカット弁64よりも上流側において、シミュレータカット弁68を介してストロークシミュレータ69が接続されている。すなわち、シミュレータカット弁68は、マスタシリンダ32とストロークシミュレータ69とを接続する流路に設けられている。シミュレータカット弁68は、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により開弁状態が保証され、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。シミュレータカット弁68が閉状態であるときには、マスタ流路61とストロークシミュレータ69との間のブレーキフルードの流通は遮断される。ソレノイドに通電されてシミュレータカット弁68が開弁されると、マスタシリンダ32とストロークシミュレータ69との間でブレーキフルードを双方向に流通させることができる。
【0044】
ストロークシミュレータ69は、複数のピストンやスプリングを含むものであり、シミュレータカット弁68の開放時に運転者によるブレーキペダル24の踏力に応じた反力を創出する。ストロークシミュレータ69としては、運転者によるブレーキ操作のフィーリングを向上させるために、多段のバネ特性を有するものが採用されると好ましい。
【0045】
レギュレータ流路62は、中途にレギュレータカット弁65を有する。レギュレータカット弁65は、レギュレータ33から各ホイールシリンダ23へのブレーキフルードの供給経路上に設けられている。レギュレータカット弁65も、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により閉弁状態が保証され、ソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。開状態とされたレギュレータカット弁65は、レギュレータ33と主流路45の第2流路45bとの間でブレーキフルードを双方向に流通させることができる。ソレノイドに通電されてレギュレータカット弁65が閉弁されると、レギュレータ流路62におけるブレーキフルードの流通は遮断される。
【0046】
液圧アクチュエータ40には、マスタ流路61およびレギュレータ流路62に加えて、アキュムレータ流路63も形成されている。アキュムレータ流路63の一端は、主流路45の第2流路45bに接続され、他端は、アキュムレータ35と連通するアキュムレータ配管39に接続される。
【0047】
アキュムレータ流路63は、中途に増圧リニア制御弁66を有する。また、アキュムレータ流路63および主流路45の第2流路45bは、減圧リニア制御弁67を介してリザーバ流路55に接続されている。増圧リニア制御弁66と減圧リニア制御弁67とは、それぞれリニアソレノイドおよびスプリングを有しており、何れもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。増圧リニア制御弁66および減圧リニア制御弁67は、それぞれのソレノイドに供給される電流に比例して弁の開度が調整される。
【0048】
増圧リニア制御弁66は、各車輪に対応して複数設けられた各ホイールシリンダ23に対して共通の増圧用制御弁として設けられている。また、減圧リニア制御弁67も同様に、各ホイールシリンダ23に対して共通の減圧用制御弁として設けられている。つまり、本実施形態においては、増圧リニア制御弁66および減圧リニア制御弁67は、動力液圧源30から送出される作動流体を各ホイールシリンダ23へ給排制御する1対の共通の制御弁として設けられている。このように増圧リニア制御弁66等を各ホイールシリンダ23に対して共通化すれば、ホイールシリンダ23ごとにリニア制御弁を設けるのと比べて、コストの観点からは好ましい。
【0049】
なお、ここで、増圧リニア制御弁66の出入口間の差圧は、アキュムレータ35におけるブレーキフルードの圧力と主流路45におけるブレーキフルードの圧力との差圧に対応し、減圧リニア制御弁67の出入口間の差圧は、主流路45におけるブレーキフルードの圧力とリザーバ34におけるブレーキフルードの圧力との差圧に対応する。また、増圧リニア制御弁66および減圧リニア制御弁67のリニアソレノイドへの供給電力に応じた電磁駆動力をF1とし、スプリングの付勢力をF2とし、増圧リニア制御弁66および減圧リニア制御弁67の出入口間の差圧に応じた差圧作用力をF3とすると、F1+F3=F2という関係が成立する。従って、増圧リニア制御弁66および減圧リニア制御弁67のリニアソレノイドへの供給電力を連続的に制御することにより、増圧リニア制御弁66および減圧リニア制御弁67の出入口間の差圧を制御することができる。
【0050】
ブレーキ制御装置20において、動力液圧源30および液圧アクチュエータ40は、本実施形態における制御部としてのブレーキECU70により制御される。ブレーキECU70は、CPUを含むマイクロプロセッサとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。そして、ブレーキECU70は、上位のハイブリッドECU(図示せず)などと通信可能であり、ハイブリッドECUからの制御信号や、各種センサからの信号に基づいて動力液圧源30のポンプ36や、液圧アクチュエータ40を構成する電磁制御弁51〜54,56〜59,60,64〜68を制御する。
【0051】
また、ブレーキECU70には、レギュレータ圧センサ71、アキュムレータ圧センサ72、および制御圧センサ73が接続される。レギュレータ圧センサ71は、レギュレータカット弁65の上流側でレギュレータ流路62内のブレーキフルードの圧力、すなわちレギュレータ圧を検知し、検知した値を示す信号をブレーキECU70に与える。アキュムレータ圧センサ72は、増圧リニア制御弁66の上流側でアキュムレータ流路63内のブレーキフルードの圧力、すなわちアキュムレータ圧を検知し、検知した値を示す信号をブレーキECU70に与える。制御圧センサ73は、主流路45の第1流路45a内のブレーキフルードの圧力を検知し、検知した値を示す信号をブレーキECU70に与える。各圧力センサ71〜73の検出値は、所定時間おきにブレーキECU70に順次与えられ、ブレーキECU70の所定の記憶領域に所定量ずつ格納保持される。
【0052】
分離弁60が開状態とされて主流路45の第1流路45aと第2流路45bとが互いに連通している場合、制御圧センサ73の出力値は、増圧リニア制御弁66の低圧側の液圧を示すと共に減圧リニア制御弁67の高圧側の液圧を示すので、この出力値を増圧リニア制御弁66および減圧リニア制御弁67の制御に利用することができる。また、増圧リニア制御弁66および減圧リニア制御弁67が閉鎖されていると共に、マスタカット弁64が開状態とされている場合、制御圧センサ73の出力値は、マスタシリンダ圧を示す。更に、分離弁60が開放されて主流路45の第1流路45aと第2流路45bとが互いに連通しており、各ABS保持弁51〜54が開放される一方、各ABS減圧弁56〜59が閉鎖されている場合、制御圧センサの73の出力値は、各ホイールシリンダ23に作用する作動流体圧、すなわちホイールシリンダ圧を示す。
【0053】
さらに、ブレーキECU70に接続されるセンサには、ブレーキペダル24に設けられたストロークセンサ25も含まれる。ストロークセンサ25は、ブレーキペダル24の操作量としてのペダルストロークを検知し、検知した値を示す信号をブレーキECU70に与える。ストロークセンサ25の出力値も、所定時間おきにブレーキECU70に順次与えられ、ブレーキECU70の所定の記憶領域に所定量ずつ格納保持される。なお、ストロークセンサ25以外のブレーキ操作状態検出手段をストロークセンサ25に加えて、あるいは、ストロークセンサ25に代えて設け、ブレーキECU70に接続してもよい。ブレーキ操作状態検出手段としては、例えば、ブレーキペダル24の操作力を検出するペダル踏力センサや、ブレーキペダル24が踏み込まれたことを検出するブレーキスイッチなどがある。
【0054】
上述のように構成されたブレーキ制御装置20は、ブレーキ回生協調制御を実行することができる。ブレーキ制御装置20は制動要求を受けて制動を開始する。制動要求は、例えば運転者がブレーキペダル24を操作した場合など、車両に制動力を付与すべきときに生起される。制動要求を受けてブレーキECU70は要求制動力を演算し、要求制動力から回生による制動力を減じることによりブレーキ制御装置20により発生させるべき制動力である要求液圧制動力を算出する。ここで、回生による制動力は、ハイブリッドECUからブレーキ制御装置20に供給される。そして、ブレーキECU70は、算出した要求液圧制動力に基づいて各ホイールシリンダ23FR〜23RLの目標液圧を算出する。ブレーキECU70は、ホイールシリンダ圧が目標液圧となるように、フィードバック制御則により増圧リニア制御弁66や減圧リニア制御弁67に供給する制御電流の値を決定する。
【0055】
その結果、ブレーキ制御装置20においては、ブレーキフルードが動力液圧源30から増圧リニア制御弁66を介して各ホイールシリンダ23に供給され、車輪に制動力が付与される。また、各ホイールシリンダ23からブレーキフルードが減圧リニア制御弁67を介して必要に応じて排出され、車輪に付与される制動力が調整される。本実施形態においては、動力液圧源30、増圧リニア制御弁66及び減圧リニア制御弁67、制御圧センサ73、及びブレーキECU70等を含んでホイールシリンダ圧制御系統が構成されている。このホイールシリンダ圧制御系統によりいわゆるブレーキバイワイヤによる制動力制御が行われる。このホイールシリンダ圧制御系統は、マスタシリンダユニット27からホイールシリンダ23へのブレーキフルードの供給経路に並列に設けられている。
【0056】
このとき、ブレーキECU70は、レギュレータカット弁65を閉状態とし、レギュレータ33から送出されるブレーキフルードがホイールシリンダ23へ供給されないようにする。更にブレーキECU70は、マスタカット弁64を閉状態とするとともにシミュレータカット弁68を開状態とする。これは、運転者によるブレーキペダル24の操作に伴ってマスタシリンダ32から送出されるブレーキフルードがホイールシリンダ23ではなくストロークシミュレータ69へと供給されるようにするためである。ブレーキ回生協調制御中は、レギュレータカット弁65及びマスタカット弁64の上下流間には、回生制動力の大きさに対応する差圧が作用する。
【0057】
なお、本実施形態に係るブレーキ制御装置20は、回生制動力を利用せずに液圧制動力だけで要求制動力をまかなう場合にも、当然ホイールシリンダ圧制御系統により制動力を制御することができる。ブレーキ回生協調制御を実行しているか否かにかかわらず、ホイールシリンダ圧制御系統により制動力を制御する制御モードを以下では適宜「リニア制御モード」と称する。あるいは、ブレーキバイワイヤによる制御と呼ぶ場合もある。
【0058】
リニア制御モードにおいては、通常はABS保持弁51〜54は開弁されており各ホイールシリンダ圧は共通の液圧に制御されている。ところが、各保持弁51〜54を開弁状態として各ホイールシリンダ圧を共通に制御しているときにABS保持弁51〜54を適宜開閉させることにより少なくとも1つのホイールシリンダ圧を他のホイールシリンダ圧とは異ならせる場合がある。また、ホイールシリンダごとに液圧を異ならせる場合もあり得る。このような場合として、例えばいわゆるEBD(Electronic Brake−force Distribution、制動力配分)制御またはABD(Automatic Brake Differential、オートマチック・ブレーキ・ディファレンシャル)制御が実行される場合が挙げられる。
【0059】
EBD制御及びABD制御はともに、車両の挙動を安定化させることを目的とする制御である。EBD制御またはABD制御においては複数のABS保持弁のうち少なくとも1つが閉弁される。典型的にはEBD制御では左右後輪の双方に対応するABS保持弁が閉弁され、ABD制御では左右前輪の一方に対応するABS保持弁が閉弁される。EBD制御は、例えば後輪側のABS保持弁53及び54を閉弁して後輪側のホイールシリンダ圧を保持することにより、前輪と後輪との間で制動力配分を変化させる制御である。ABD制御は、主として車両の旋回中に左右の車輪でABS保持弁51〜54の開閉状態を異ならせて左右の制動力配分を変化させる制御である。本実施形態ではブレーキECU70はリニア制御モードにおいてEBD制御またはABD制御のいずれかを実行することも可能であるし、両者を併用して同時に実行することも可能である。なお、以下では便宜上EBD制御及びABD制御を総称して単にEBD制御という。
【0060】
EBD制御においてはブレーキECU70は、EBD制御を開始すべきタイミングを演算し当該タイミングでEBD制御を開始する。ブレーキECU70は、EBD制御の開始とともにEBD制御対象輪のABS保持弁例えば後輪側のABS保持弁53及び54を閉弁する。このときABS減圧弁56〜59は閉弁されているから、後輪側のホイールシリンダ23RL及び23RRにはブレーキフルードが密閉されて液圧が保持される。これに対して、リニア制御対象輪となる前輪側のABS保持弁51及び52は開弁されたままとなっているから、増圧リニア制御弁66及び減圧リニア制御弁67によって前輪側のホイールシリンダ圧は主流路45における液圧に等しく制御される。
【0061】
以下では便宜上、ABS保持弁51〜54の閉弁によりホイールシリンダ23に保持される液圧を「保持圧」と呼び、特にABS保持弁51〜54の閉弁時における保持圧を「保持開始圧」と呼ぶことがある。また、増圧リニア制御弁66及び減圧リニア制御弁67により主流路45の液圧に等しく制御されるホイールシリンダ圧を「制御液圧」または「リニア制御液圧」と呼び、主流路45における液圧を特に「保持弁上流圧」または「リニア制御弁下流圧」と呼ぶことがある。
【0062】
図2は、EBD制御中のホイールシリンダ圧の時間変化の一例を示す図である。図2は、後輪側のABS保持弁53、54を閉弁して後輪側のホイールシリンダ23RR、23RLに液圧を保持する場合のEBD制御を示す。前輪側のABS保持弁51、52は継続して開弁されており、前輪側のホイールシリンダ圧は増圧リニア制御弁66及び減圧リニア制御弁67を通じてサーボ制御される。よって、図2に示されるように、EBD制御開始とともに後輪側のホイールシリンダ圧は保持開始圧に保持される一方、前輪側のホイールシリンダ圧すなわち制御液圧は要求制動力に応じて制御され変動する。このようにして前輪側のホイールシリンダ圧と後輪側のホイールシリンダ圧とを異ならせて前輪と後輪の制動力配分を変化させることができる。このように本実施形態では、複数のホイールシリンダの液圧を制御弁により共通に制御しているときに、保持弁のうち少なくとも1つを閉弁して対応するホイールシリンダの液圧を共通の制御液圧よりも低圧に保持することにより車輪間の制動力配分が制御される。
【0063】
なお以下では適宜、EBD制御中に保持弁の開閉により共通の制御液圧とは異なる液圧に制御されるホイールシリンダ及び車輪をそれぞれ「EBD制御ホイールシリンダ」及び「EBD制御輪」と称する。また、EBD制御対象外のホイールシリンダ及び車輪をそれぞれ「リニア制御ホイールシリンダ」及び「リニア制御輪」と称する。リニア制御ホイールシリンダ及びリニア制御輪は、EBD制御中であっても増圧リニア制御弁66及び減圧リニア制御弁67を通じて継続して液圧が制御される。
【0064】
通常は、図2に示されるようにリニア制御輪のホイールシリンダ圧はEBD制御輪のホイールシリンダ圧よりも高圧とされる。EBD制御輪のホイールシリンダ圧は基本的にはEBD制御中は一定の保持圧に保持される。
【0065】
なお、運転者の要求制動力の減少によりリニア制御液圧がEBD制御輪の保持圧よりも一時的に低圧になることがあり得る。このような場合保持圧は、リターンチェック弁81〜84により主流路45へと開放されてリニア制御液圧に追従するよう減圧される。よって本実施形態ではEBD制御輪での保持圧がリニア制御液圧を大きく超えることはない。
【0066】
一方、例えば最適な制動力配分を実現するために、あるいは必要な制動力を発生させるために、EBD制御輪での保持圧を増圧させることが望ましい場合もある。この場合、本実施形態では対応するABS保持弁をパルス的につまりごく短時間だけ開弁して保持弁上流圧をホイールシリンダに導入することにより保持圧を増圧する。この増圧を以下では適宜「パルス増」と称する。パルス増を実行すべきか否かは、現時点での発生制動力や要求制動力、実現すべき制動力配分などに基づいてブレーキECU70により周期的に演算されている。パルス増を実行する場合、ブレーキECU70は、保持圧の増圧目標値まで増圧するのに必要となる保持弁の開弁時間を、例えば保持弁開弁直前の保持圧、リニア制御液圧、及び保持弁特性等に基づいて演算する。ブレーキECU70は保持弁開弁時間をパルス増の都度設定してもよいし、経験的または実験的に得られる妥当な所定の値に予め設定しておいてもよい。1回のパルス増では必要な増圧を得られない場合にはパルス増を複数回連続的に行ってもよい。
【0067】
図2には、EBD制御中に後輪にパルス増が実行されたときのホイールシリンダ圧の時間変化の一例も示されている。この例では、パルス増が実行されるときにリニア制御液圧はほぼ一定に保持されている。後輪でパルス増が実行されると、後輪側のホイールシリンダ圧は、後輪側のABS保持弁53、54が開弁されている間だけ増圧される。その後ABS保持弁53、54は閉弁され、図示されるように後輪側のホイールシリンダ圧は増圧された新たな保持圧に保持される。
【0068】
一方、前輪側のホイールシリンダ圧つまりリニア制御液圧は若干低下して目標液圧から乖離してしまう。これは、前輪側のホイールシリンダ23FR、23FLから後輪側のホイールシリンダ23RR、23RLへと作動液の回り込みが生じるためである。パルス増の間、後輪側のABS保持弁53、54が開弁されることにより主流路45を通じて前輪側及び後輪側のホイールシリンダ23が連通される。これにより、前輪側ホイールシリンダ23FR、23FLの高圧の作動液が低圧の後輪側ホイールシリンダ23RR、23RLへと流出してしまう。
【0069】
本実施形態に係るリニア制御モードにおいては、リニア制御液圧は「増圧モード」、「減圧モード」、及び「保持モード」のいずれかのモードで制御される。増圧モードでは、ブレーキECU70は減圧リニア制御弁67を閉弁する一方、増圧リニア制御弁66を制御することにより制御液圧が増圧される。減圧モードでは逆に、増圧リニア制御弁66が閉弁される一方減圧リニア制御弁67が制御されることにより制御液圧が減圧される。保持モードでは増圧リニア制御弁66及び減圧リニア制御弁67がともに閉弁されて制御液圧が一定に保持される。
【0070】
増圧モードでは動力液圧源30から増圧リニア制御弁66を通じて作動液が供給されることになる。よって前輪側及び後輪側のホイールシリンダ23それぞれが動力液圧源30から必要量の作動液の供給を受けられるので、作動液の回り込みの影響はさほど問題とはならない。ところが保持モードまたは減圧モードにおいては増圧リニア制御弁66が閉弁されているから、上述のように相対的に作動液の回り込みの影響が大きくなるおそれがある。
【0071】
そこで、本実施形態においては、ブレーキECU70は、EBD制御輪へのパルス増に伴うホイールシリンダ間での作動液の回り込みを緩和するようホイールシリンダ圧制御系統を制御する。特に第1の実施形態においては、ブレーキECU70は増圧リニア制御弁66の開弁圧を制御する。ブレーキECU70は、EBD制御輪のABS保持弁を開弁しているときに増圧リニア制御弁66が機械的に開弁され得るように開弁圧を制御する。これにより、EBD制御輪のパルス増の増圧目標値に向けて増圧すべく、増圧リニア制御弁66から供給される作動液を利用することが可能となる。
【0072】
なおここで、開弁圧とは、常閉型の制御弁において弁機構を閉弁させる力(例えば弾性力など)に抗して当該弁機構を開弁させることとなる最小の差圧をいう。以下では開弁圧を開弁差圧という場合もある。制御弁を開弁させる制御入力に満たない大きさの制御入力を当該制御弁に与えることにより閉弁中の制御弁の開弁圧を制御することが可能である。本実施形態においては増圧リニア制御弁66は常閉型の電磁制御弁であり、通電させる制御電流を制御することにより開弁圧を制御することができる。
【0073】
図3は、第1の実施形態におけるホイールシリンダ圧の時間変化の一例を示す図である。第1の実施形態においては、ブレーキECU70は、保持モードまたは減圧モードにおけるパルス増の実行中に増圧リニア制御弁66が機械的に開弁され得るように増圧リニア制御弁66の開弁圧を制御する。そのためにブレーキECU70は、パルス増の増圧目標値以上である所定の設定圧に比較して保持弁上流圧が低圧である場合に増圧リニア制御弁66が機械的に開弁されるように開弁差圧を制御する。
【0074】
これにより、作動液の回り込みにより保持弁上流圧が設定圧よりも低下したときに、増圧リニア制御弁66に作用する差圧が開弁圧を超えて増圧リニア制御弁66が機械的に開弁される。増圧リニア制御弁66の開弁により保持弁上流圧はこの増圧目標値に向けて増圧されることになる。保持弁上流圧がパルス増の増圧目標値に達したときにABS保持弁を閉弁してEBD制御輪のパルス増を完了させることができる。ブレーキECU70は、増圧目標値に達したか否かを例えば経験的または実験的に定められる開弁時間が経過したか否かによって判定することができる。その後保持弁上流圧が設定圧に達したときに増圧リニア制御弁66は機械的に閉弁される。このようにして、作動液の回り込みによる保持弁上流圧の低下を補償するように増圧リニア制御弁66が機械的に開閉されるので、作動液の回り込みの影響を軽減することができる。
【0075】
なお、ブレーキECU70は、この設定圧をパルス増の増圧目標値よりも小さい値に設定してもよい。この場合、少なくともパルス増を開始するときの保持圧よりも大きい値に設定圧を設定する。このようにしても、保持弁上流圧が当該設定圧に達するまでは増圧リニア制御弁66が開弁されることになるから、作動液の回り込みの影響を多少は軽減することができる。
【0076】
また、ブレーキECU70は、保持モードまたは減圧モードにおけるパルス増の実行中にリニア制御液圧が目標値を下回っているときに増圧リニア制御弁66が機械的に開弁されるように開弁圧を制御してもよい。具体的にはブレーキECU70は、制御液圧の目標値以下である所定の設定圧に比較して保持弁上流圧が低圧である場合に増圧リニア制御弁66が機械的に開弁されるように開弁差圧を制御する。このようにすれば、パルス増によるリニア制御液圧の目標値からの乖離を小さくするように増圧リニア制御弁66を機械的に開閉させることができる。
【0077】
このように設定圧を適宜設定することにより、パルス増による作動液の回り込みを緩和することができる。上述のように設定圧は、パルス増の増圧目標値以上かつリニア制御液圧の目標値以下に設定されることが好ましい。図3に示されるのは本実施形態において特に好ましい場合であり、ブレーキECU70は、設定圧を制御液圧目標値に等しく設定している。このようにすれば、パルス増に際してのリニア制御液圧の低下を直ちに補償するように増圧リニア制御弁66を機械的に開閉させることができる。よって、図示されるようにパルス増によるリニア制御液圧の目標値からの乖離をほとんど生じさせないようにすることができる。
【0078】
なお、設定圧が制御液圧の目標値を超える値に設定された場合には制御液圧が目標値を超えても増圧リニア制御弁66が開弁されていることになるが、状況によってはこのような設定が許容されてもよい。
【0079】
本実施形態においては、増圧リニア制御弁66は制御電流の供給により開閉される電磁制御弁である。よって増圧リニア制御弁66への制御電流を調整することにより開弁圧を制御することが可能である。以下では、所定の開弁圧を実現する制御電流を開弁電流と称する。
【0080】
図4は、増圧リニア制御弁66に作用する差圧ΔPと開弁電流Iとの関係の一例を示す図である。図4の縦軸は開弁電流Iを示し、横軸は差圧ΔPを示す。差圧ΔPは、増圧リニア制御弁66に作用する差圧であり、アキュムレータ圧Paccと制御液圧Pwcとの差Pacc−Pwcに等しい。典型的には図4に示されるように、開弁電流Iと差圧ΔPとはリニアな関係を有しており、差圧ΔPが大きいほど開弁電流Iは小さくなる。例えば増圧リニア制御弁66に開弁電流I1が供給されている場合には、開弁電流I1に対応する差圧ΔP1よりも大きな差圧が増圧リニア制御弁66に作用するときに増圧リニア制御弁66は開弁される。逆に、差圧ΔP1よりも小さな差圧が作用するときには増圧リニア制御弁66は閉弁状態が維持される。
【0081】
よって、上述の作動液の回り込みを緩和するためには、アキュムレータ圧Paccと上述の設定圧Psとの差圧ΔP=Pacc−Psの値に対応する開弁電流Iを増圧リニア制御弁66に供給すればよい。アキュムレータ圧Paccはアキュムレータ圧センサ72により測定されてブレーキECU70に送信される。ブレーキECU70は、測定されたアキュムレータ圧Pacc及び設定圧Psに基づいて差圧ΔP=Pacc−Psに対応する開弁電流Iの値を演算して増圧リニア制御弁66に供給する。
【0082】
例えば設定圧Psが一定値に設定されかつアキュムレータ圧Paccが一定値に制御されている場合には差圧ΔPは変動しないので、ブレーキECU70は差圧ΔPに対応する一定の開弁電流Iを増圧リニア制御弁66に供給すればよい。アキュムレータ圧Paccが変動した場合には、ブレーキECU70は、所定の設定値Psを基準として増圧リニア制御弁66が開閉されるようアキュムレータ圧Paccの変動に応じて開弁電流Iを制御する。設定圧Psが変更された場合にも、ブレーキECU70はその変更に応じて開弁電流Iを制御する。差圧ΔPと開弁電流Iとの関係は、例えば予め取得されてブレーキECU70に記憶されている。
【0083】
このようにしてブレーキECU70は、パルス増に伴って所定の設定圧Ps以下に保持弁上流圧が低下したときに増圧リニア制御弁66が機械的に開弁されるように増圧リニア制御弁66の開弁圧を制御する。上述のようにこの設定圧は、好ましくはリニア制御液圧の目標液圧とEBD制御のパルス増の増圧目標値との間に設定される。そのためにはブレーキECU70は、リニア制御液圧の目標液圧に対応する開弁電流以下であり、かつパルス増の増圧目標値に対応する開弁電流以上の制御電流を開弁電流として増圧リニア制御弁66に通電すればよい。
【0084】
図5は、本発明の第1の実施形態に係る処理を説明するためのフローチャートである。図5に示される処理は、リニア制御モードの実行中にブレーキECU70により例えば数msec程度の演算周期で周期的に実行される。なお、図5においては便宜上、増圧リニア制御弁66をSLA66と表記し、減圧リニア制御弁67をSLR67と表記している。
【0085】
図5に示されるように、まずブレーキECU70は、EBD制御の実行中であるか否かを判定する(S10)。EBD制御の実行中ではないと判定された場合には(S10のNo)、ブレーキECU70は、通常のリニア制御モードでリニア制御液圧を制御する(S26)。この場合、まずブレーキECU70は、増圧モード、減圧モード、または保持モードのいずれであるかを判定する。増圧モードである場合にはブレーキECU70は、目標液圧と制御液圧との偏差に基づいて演算される制御電流を増圧リニア制御弁66に通電して弁の開度を制御するとともに、減圧リニア制御弁67へは制御電流を停止して閉弁状態とする。減圧モードである場合にはブレーキECU70は、目標液圧と制御液圧との偏差に基づいて演算される制御電流を減圧リニア制御弁67に通電して弁の開度を制御するとともに、増圧リニア制御弁66へは制御電流を停止して閉弁状態とする。保持モードである場合にはブレーキECU70は、増圧リニア制御弁66及び減圧リニア制御弁67にともに制御電流を通電せずに閉弁状態とする。
【0086】
EBD制御の実行中であると判定された場合には(S10のYes)、ブレーキECU70は、増圧モードであるか否かを判定する(S12)。増圧モードであると判定された場合には(S12のYes)、ブレーキECU70は、通常のリニア制御モードにおける増圧モードと同様に増圧リニア制御弁66及び減圧リニア制御弁67への制御電流を制御する。増圧モードにおいては共通の増圧リニア制御弁66を通じて作動液が供給されるので、パルス増が実行されたとしても作動液の回り込みの影響は小さいからである。具体的にはブレーキECU70は、減圧リニア制御弁67への制御電流を停止して閉弁状態とするとともに(S22)、増圧リニア制御弁66に制御電流を通電して開度を制御する(S24)。このとき増圧リニア制御弁66に通電される制御電流は通常のリニア制御モードの増圧モードにおける制御電流に等しい。
【0087】
増圧モードではないと判定された場合には(S12のNo)、ブレーキECU70は、減圧モードであるか否かを判定する(S14)。減圧モードであると判定された場合には(S14のYes)、ブレーキECU70は、減圧リニア制御弁67に制御電流を通電して開度を制御する(S16)。このとき減圧リニア制御弁67に通電される制御電流は通常のリニア制御モードの減圧モードにおける制御電流に等しい。それとともに本実施形態においてはブレーキECU70は、増圧リニア制御弁66に上述の開弁電流を通電する(S20)。この開弁電流は設定圧Psに対応して定められる開弁電流である。また、減圧モードではないと判定された場合には(S14のNo)、この場合はつまり保持モードであるから、ブレーキECU70は、減圧リニア制御弁67への制御電流の供給を停止する(S18)。それとともに本実施形態においてはブレーキECU70は、増圧リニア制御弁66に開弁電流を通電する(S20)。このようにして図5に示される処理は終了する。
【0088】
以上のように第1の実施形態によれば、リニア制御モードにおいてEBD制御の実行中に増圧リニア制御弁66の開弁圧が制御されることにより、パルス増に伴う作動液の回り込みの影響を軽減することができる。具体的には、減圧モード及び保持モードにおいて設定圧Psに対応する開弁電流を増圧リニア制御弁66に通電しておくことにより、パルス増に伴う制御液圧の変動を補償するように増圧リニア制御弁66を機械的に開閉することができる。特に、設定圧Psをリニア制御液圧に等しく設定することにより、パルス増に伴う制御液圧の目標液圧からの乖離を最小化することができる。このようにして本実施形態によればホイールシリンダ圧の制御性を向上させることができる。
【0089】
次に本発明の第2の実施形態を説明する。第2の実施形態においては、ブレーキECU70は、液圧の異なるホイールシリンダ間を接続する流路がパルス増に際して遮断されるようにホイールシリンダ圧制御系統を制御する。本実施形態は具体的には、パルス増の実行に際して分離弁60が閉弁される点で第1の実施形態とは異なる。増圧リニア制御弁66に対しては第1の実施形態と同様に開弁電流が通電される。分離弁60が閉弁されることにより、分離弁60の一方の側に設けられているホイールシリンダから他方の側に設けられているホイールシリンダへの作動液の回り込みを防止することができる。よって、この実施形態は、分離弁60が閉弁されたときにリニア制御輪が増圧リニア制御弁66から遮断される一方、EBD制御輪は増圧リニア制御弁66との連通状態が維持される場合に有効である。例えば図1に示されるブレーキシステムにおいては、前輪がリニア制御輪であり、後輪がEBD制御輪である場合に本実施形態は有効である。なお、以下では第1の実施形態と共通の箇所については説明を適宜省略する。
【0090】
分離弁60は、閉弁により前輪に対応するホイールシリンダ23FR、23FLが増圧リニア制御弁66から遮断される一方、後輪に対応するホイールシリンダ23RR、23RLは増圧リニア制御弁66との連通が維持されるよう配置されている。本実施形態では、ブレーキECU70は、後輪に対応するABS保持弁53、54を開弁したときに分離弁60を閉弁するとともに、後輪のホイールシリンダ圧を増圧目標値に向けて増圧するために増圧リニア制御弁66が機械的に開弁されるよう開弁圧を制御する。
【0091】
分離弁60の閉弁により前輪側のホイールシリンダ23FR、23FLから後輪側のホイールシリンダ23RR、23RLへの作動液の回り込みが防止される。それとともに、後輪側のホイールシリンダ圧が目標圧へと増圧されるように増圧リニア制御弁66が機械的に開弁されるので、後輪側のホイールシリンダ圧を速やかに目標値まで増圧させることができる。
【0092】
図6は、本発明の第2の実施形態に係る処理を説明するためのフローチャートである。図6に示される処理は、リニア制御モードの実行中にブレーキECU70により例えば数msec程度の演算周期で周期的に実行される。まずブレーキECU70は、EBD制御の実行中であるか否かを判定する(S30)。EBD制御中であると判定された場合には(S30のYes)、ブレーキECU70は更にパルス増を実行すべきタイミングであるか否かを判定する(S32)。EBD制御の実行中ではないと判定された場合(S30のNo)、またはパルス増を実行すべきタイミングではないと判定された場合には(S32のNo)、ブレーキECU70は、通常のリニア制御モードと同様に増圧リニア制御弁66及び減圧リニア制御弁67に制御電流を通電して処理を終了する(S40)。
【0093】
パルス増の実行タイミングであると判定された場合には(S32のYes)、ブレーキECU70は、パルス増を実行すべく対応するABS保持弁を開弁するとともに分離弁60を閉弁する(S34)。ブレーキECU70は、更に減圧リニア制御弁67への制御電流の通電を停止し(S36)、増圧リニア制御弁66に設定圧Psに応じた開弁電流を通電する(S38)。第2の実施形態においては、パルス増の実行中はリニア制御モードは中断される。このようにして図6に示される処理は終了する。
【0094】
ここで、増圧リニア制御弁66への開弁電流は、EBD制御輪例えば後輪の増圧目標値を設定圧Psとするように制御されることが望ましい。このようにすれば、EBD制御輪の液圧が増圧目標値に達したときに増圧リニア制御弁66がちょうど閉弁されることになる。よって、EBD制御輪の液圧を自動的に目標値に合わせることができる。図1に示されるブレーキシステムのように分離弁60が閉弁された場合に後輪側の液圧を直接測定するためのセンサが設けられていない場合に特に好ましい。その結果、図7に示されるように、後輪側のホイールシリンダ圧はパルス増により目標圧へと自動的に追従する。また、前輪側のホイールシリンダ圧は、分離弁60の閉弁により作動液の回り込みが生じないので、目標液圧から乖離することなく良好に制御されている。
【0095】
また、増圧リニア制御弁66への開弁電流は、EBD制御輪の増圧目標値を超える値を設定圧Psとするように制御されてもよい。このようにすれば、EBD制御輪に対するパルス増をより迅速に行うことが可能となる。この場合、増圧目標値に達したときにABS保持弁を閉弁するようパルス増の実行時間を適宜設定することが望ましい。
【0096】
次に本発明の第3の実施形態を説明する。第3の実施形態においても第2の実施形態と同様に、ブレーキECU70は、液圧の異なるホイールシリンダ間を接続する流路がパルス増に際して遮断されるようにホイールシリンダ圧制御系統を制御する。第3の実施形態においては、パルス増に際して対象輪のABS保持弁が開弁されるとともに他のABS保持弁がパルス増の実行中閉弁される。リニア制御されているホイールシリンダの液圧がパルス増の実行中保持されるので、作動液の回り込みが防止される。また、EBD制御輪のABS保持弁の開弁とともに増圧リニア制御弁66が開弁されて対象のホイールシリンダに作動液が供給される。増圧リニア制御弁66を通じて作動液を供給することにより速やかにパルス増を完了させることができる。なお、以下では上述の第1及び第2の実施形態と共通の箇所については説明を適宜省略する。
【0097】
図8は、本発明の第3の実施形態に係る処理を説明するためのフローチャートである。図8に示される処理は、リニアモードの実行中にブレーキECU70により例えば数msec程度の演算周期で周期的に実行される。以下では、左前輪に液圧を保持するABD制御が実行されている場合を一例として説明しているが、第3の実施形態は、第1及び第2の実施形態と同様に後輪をEBD制御輪とする場合にも適用可能である。
【0098】
まずブレーキECU70は、EBD制御の実行中であるか否かを判定する(S50)。EBD制御中であると判定された場合には(S50のYes)、ブレーキECU70は更にパルス増を実行すべきタイミングであるか否かを判定する(S52)。EBD制御の実行中ではないと判定された場合(S50のNo)、またはパルス増を実行すべきタイミングではないと判定された場合には(S52のNo)、ブレーキECU70は、通常のリニア制御モードと同様に増圧リニア制御弁66及び減圧リニア制御弁67に制御電流を通電して処理を終了する(S60)。
【0099】
パルス増の実行タイミングであると判定された場合には(S52のYes)、ブレーキECU70は、本実施形態においてパルス増の対象となる左前輪のABS保持弁52を開弁するとともに、他のABS保持弁51、53、54を閉弁する(S54)。ブレーキECU70は、更に減圧リニア制御弁67への制御電流の通電を停止し(S56)、増圧リニア制御弁66に対して当該弁を全開とする制御電流を通電する(S58)。これにより保持弁上流圧はアキュムレータ圧にまで増圧され、速やかにパルス増が完了され処理が終了する。
【0100】
この実施形態ではパルス増の実行中、リニア制御モードが中断されるとともにパルス増対象外のABS保持弁が閉弁され、対応するホイールシリンダ圧を任意に制御することができない。よって、パルス増をできるだけ短時間で完了させるために、増圧リニア制御弁66を全開つまり最大の開度とするが望ましい。その結果、図9に示されるように、右前輪のホイールシリンダ圧を目標液圧に良好に追従させることができるとともに、左前輪のホイールシリンダ圧を必要に応じてパルス増により階段状に増圧させることができる。なお、左右後輪のホイールシリンダ圧は、右前輪のホイールシリンダ圧と共通の制御液圧に制御されている。このようにして作動液の回り込みを防止することができる。
【0101】
なお、パルス増を要求時間内に完了することが可能であれば、パルス増開始時点でのリニア制御液圧すなわち他のABS保持弁51、53、54により保持される液圧よりも保持弁上流圧を高圧にするように増圧リニア制御弁66を制御してもよい。保持されるホイールシリンダ圧よりも保持弁上流圧が高圧であれば、本実施形態においては作動液の回り込みを防止することができる。保持弁上流圧のほうが高圧である場合にはリターンチェック弁81〜84を通じて作動液が主流路45に還流することがなく、リターンチェック弁81〜84を通じての作動液の回り込みが生じないからである。
【0102】
上述の各実施形態においては、ABS保持弁の閉弁による保持圧をリニア制御液圧よりも低圧としているが、本発明はこれに限られない。本発明においては保持圧がリニア制御液圧よりも高圧に保持されている場合にも適用することができる。保持弁がパルス的に開弁されるときに、例えば第2の実施形態においては分離弁60が閉弁されることによりホイールシリンダ間での作動液の回り込みを抑えることができる。また、例えば第3の実施形態においても、閉弁されている保持弁を開弁するとともに他の保持弁を閉弁することによりホイールシリンダ間での作動液の回り込みを抑えることができる。
【図面の簡単な説明】
【0103】
【図1】本発明の一実施形態に係るブレーキ制御装置を示す系統図である。
【図2】EBD制御中のホイールシリンダ圧の時間変化の一例を示す図である。
【図3】第1の実施形態におけるホイールシリンダ圧の時間変化の一例を示す図である。
【図4】増圧リニア制御弁に作用する差圧ΔPと開弁電流Iとの関係の一例を示す図である。
【図5】本発明の第1の実施形態に係る処理を説明するためのフローチャートである。
【図6】本発明の第2の実施形態に係る処理を説明するためのフローチャートである。
【図7】第2の実施形態におけるホイールシリンダ圧の時間変化の一例を示す図である。
【図8】本発明の第3の実施形態に係る処理を説明するためのフローチャートである。
【図9】第3の実施形態におけるホイールシリンダ圧の時間変化の一例を示す図である。
【符号の説明】
【0104】
20 ブレーキ制御装置、 23 ホイールシリンダ、 51〜54 ABS保持弁、 60 分離弁、 66 増圧リニア制御弁、 70 ブレーキECU。

【特許請求の範囲】
【請求項1】
作動液の供給により複数の車輪の各々に制動力を付与する複数のホイールシリンダと、
前記複数のホイールシリンダに液圧を保持するためにそれぞれに対応して設けられている複数の保持弁と、前記複数のホイールシリンダに作動液を供給するために前記複数の保持弁の上流に設けられている共通の制御弁と、を含むホイールシリンダ圧制御系統と、
前記複数のホイールシリンダの液圧を前記制御弁により共通に制御しているときに前記保持弁のうち少なくとも1つを閉弁して対応するホイールシリンダの液圧を共通の制御液圧とは異なる液圧に保持することにより車輪間の制動力配分を制御する制御部と、を備えるブレーキ制御装置であって、
前記制御部は、閉弁されている保持弁を開弁したときの前記対応するホイールシリンダと他のホイールシリンダとの間での作動液の回り込みを緩和するように前記ホイールシリンダ圧制御系統を制御することを特徴とするブレーキ制御装置。
【請求項2】
前記制御部は、閉弁されている保持弁を開弁したときに差圧に応じて前記制御弁が機械的に開閉されるよう前記制御弁の開弁圧を制御することを特徴とする請求項1に記載のブレーキ制御装置。
【請求項3】
前記制御部は、保持されているホイールシリンダ圧の増圧目標値以上に設定される所定の設定圧よりも低い液圧が前記制御弁の下流側に作用するときに前記制御弁が機械的に開弁されるよう前記制御弁の開弁圧を制御することを特徴とする請求項2に記載のブレーキ制御装置。
【請求項4】
前記制御部は、前記共通の制御液圧が目標制御液圧を下回っている間、前記制御弁が機械的に開弁されるように開弁圧を制御することを特徴とする請求項2に記載のブレーキ制御装置。
【請求項5】
前記制御弁は、当該弁上下流間の差圧が、通電される制御電流に応じた所定圧を超える場合に機械的に開弁される電磁制御弁であって、
前記制御部は、前記制御弁下流側の液圧が前記対応するホイールシリンダにおける保持圧の増圧目標値に一致するときの前記制御弁上下流間の差圧を前記所定圧とする制御電流以上の制御電流を前記制御弁に供給することを特徴とする請求項1に記載のブレーキ制御装置。
【請求項6】
前記制御弁は、当該弁上下流間の差圧が、通電される制御電流に応じた所定圧を超える場合に機械的に開弁される電磁制御弁であって、
前記制御部は、前記制御弁下流側の液圧が前記共通の制御液圧の目標値に一致するときの前記制御弁上下流間の差圧を前記所定圧とする制御電流以下の制御電流を前記制御弁に供給することを特徴とする請求項1に記載のブレーキ制御装置。
【請求項7】
前記ホイールシリンダ圧制御系統は、少なくとも1つのホイールシリンダを前記制御弁から遮断する分離弁をさらに含み、
前記制御部は、閉弁されている保持弁を開弁するとともに前記分離弁を閉弁することを特徴とする請求項1に記載のブレーキ制御装置。
【請求項8】
前記制御部は、閉弁されている保持弁を開弁するとともに他の保持弁を閉弁することを特徴とする請求項1に記載のブレーキ制御装置。
【請求項9】
前記制御部は、前記対応するホイールシリンダの液圧を増圧目標値に向けて増圧するために、閉弁されている保持弁を開弁するとともに前記制御弁を開弁することを特徴とする請求項8に記載のブレーキ制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−221866(P2008−221866A)
【公開日】平成20年9月25日(2008.9.25)
【国際特許分類】
【出願番号】特願2007−58510(P2007−58510)
【出願日】平成19年3月8日(2007.3.8)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】