説明

プラスチックレンズの製造方法及びプラスチックレンズ

【課題】チオウレタン系プラスチックレンズとチオエポキシ系プラスチックレンズの欠点を改良し、高屈折率、高アッベ数で、耐熱性が高く、機械的強度に優れかつ染色性も良好な、プラスチックレンズを得る。
【解決手段】下記(A)、(B)、(C)の成分を含む重合性組成物を混合した後、重合硬化することによって製造する、プラスチックレンズの製造方法。(A) エピスルフィド基を含む化合物、(B) メルカプト基を含む化合物、(C) イソシアナート基またはイソチオシアナート基を含む化合物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、矯正用レンズ、サングラスレンズ、ファッションレンズ、フォトクロミックレンズ、カメラ用レンズ、光学装置用レンズ等に用いられるプラスチックレンズの製造方法に関する。
【背景技術】
【0002】
従来、光学用途に用いられてきた無機ガラスレンズに代わる物として、以前より種々のプラスチックレンズが研究されている。プラスチックレンズは軽量で耐衝撃性に優れ、かつ染色が容易であることから、眼鏡レンズ用として近年多用されている。一般に眼鏡レンズ等には、ジエチレングリコールビスアリルカーボネート(CR−39)が幅広く用いられているが、レンズを薄型化、軽量化する上で、CR−39の低い屈折率が問題となっている。このため眼鏡レンズ等の光学用途に対して、高屈折率のレンズを作製するために、様々な材料や製造方法が提案されている。また、高屈折率素材では一般にアッベ数が低くなる傾向があるが、レンズの色収差を低減するために高アッベ数化も必要になっている。
【0003】
特公平4−58489号公報、特開平5−148340号公報には、ポリチオール化合物とポリイソシアナート化合物との反応によるチオウレタン構造を持つ熱硬化型プラスチックレンズが提案されている。また、特開平9−71580号公報、特開平9−110979号公報、特開平9−255781号公報にはエピスルフィド化合物の重合硬化によるチオエポキシ系のプラスチックレンズが提案されている。
【発明の開示】
【発明が解決しようとする課題】
【0004】
これらのチオウレタン系プラスチックレンズは、高屈折率で、破壊強度が強いという長所を持つが、耐熱性が低いという短所があった。また、チオエポキシ系プラスチックレンズは、高屈折率、高アッベ数であり、耐熱性に優れるという長所を持つが、破壊強度が弱いという短所があり、特に眼鏡レンズ用途にはレンズ素材としての脆さが問題となっている。また、チオエポキシ系プラスチックレンズはレンズ素材の吸水率が極めて低いため、染色加工時間が長時間となり、眼鏡レンズ用としての染色加工は困難であった。
【課題を解決するための手段】
【0005】
本発明者らは、かかる問題点を解決するべく鋭意研究を重ねた結果、下記(A)、(B)、(C)の重合性単量体を含む化合物を、重合硬化することによって、上記問題点が解決できることを見いだし、本発明を完成するに至った。
【0006】
(A) エピスルフィド基を含む化合物
(B) メルカプト基を含む化合物
(C) イソシアナート基またはイソチオシアナート基を含む化合物
なお、エピスルフィド基を含む化合物とは、下記一般式(1)で示される官能基を1分子中に1つ以上含む化合物を意味する。
【0007】
【化1】

【0008】
チオウレタン系プラスチックレンズは、高屈折率で、機械強度が強いという長所を持つが、耐熱性が低いという短所があった。これはポリチオールとポリイソシアナートの反応によって高屈折率のプラスチックレンズを製造するにあたっては、高屈折率化の為に、ポリマーの架橋密度を上げることが困難なためである。また、チオエポキシ系プラスチックレンズは、高屈折率、高アッベ数であり、耐熱性に優れるという長所を持つが、機械強度が弱く,染色性に劣るという短所があった。これはエピスルフィド基同士の反応によって、チオエポキシ系プラスチックレンズを製造するにあたっては、ポリマー中の架橋密度が非常に高くなることが避けられず、その結果レンズの靱性がなくなることによって機械強度が低下するためである。また、チオエポキシ系プラスチックレンズでは、一般的に吸水率が低くなり、かつレンズの耐熱性が高いことから、染色スピードが遅くなるという短所があった。
【0009】
プラスチックレンズを製造する際には、ポリマー中の架橋密度のコントロールは非常に重要な要素であるが、チオウレタン系プラスチックレンズの製造において、ポリチオールとポリイソシアナートのみの反応で、高屈折率を保ったまま、架橋密度を増やすのは困難であった。また、チオエポキシ系プラスチックレンズの製造において、エピスルフィド基のみの反応によって架橋密度を下げるためには、エピスルフィド基を持つ化合物を2官能性で長大な一本鎖の重合性単量体にする必要があり、原料の合成方法を考えるとあまり実用的ではなかった。
【0010】
本発明では、エピスルフィド基を含む化合物、メルカプト基を含む化合物、イソシアナート基またはイソチオシアナート基を含む化合物、の3つを混合した後、重合硬化を行うことによって、適切な架橋密度にコントロールすることが可能になり、高屈折率、高アッベ数で耐熱性も高く、破壊強度に優れるプラスチックレンズを製造することが可能になった。また、同時にチオエポキシ系レンズよりも吸水率がやや増えるために、染色性の向上も可能となった。
【0011】
本発明における上記(A)、(B)、(C)成分の組成比については特に限定されないが、好ましくは、
(A)成分 5〜95重量部、
(B)、(C)成分の合計 5〜95重量部
の範囲である。(A)成分が5重量部未満で(B)、(C)成分の合計が95重量部を超える場合には、チオウレタン系の場合と同様にポリマーの架橋密度を十分に高くすることができず、製造したプラスチックレンズの耐熱性が低くなる。
また、(B)、(C)成分の合計が5重量部未満で(A)成分が95重量部を超える場合には、チオエポキシ系プラスチックレンズの場合と同様にポリマーの架橋密度が必要以上に高くなり、製造したプラスチックレンズが、破壊強度が弱く、非常に脆い物となってしまう。
【0012】
また、重合硬化によって製造したプラスチックレンズに残存するメルカプト基、イソシアナート基またはイソチオシアナート基の量が多いと、レンズの耐候性などに問題が発生することが多い。したがって、製造したプラスチックレンズに残存するメルカプト基、イソシアナート基またはイソチオシアナート基の量を減らすために、(B)、(C)成分の割合は、(B)のメルカプト基のモル数をBm、(C)のイソシアナート基またはイソチオシアナート基のモル数をCmとしたときに、0.5 < Cm/Bm < 2の範囲にあることが望ましい。
【0013】
本発明において使用されるエピスルフィド基を持つ化合物については特に制限はなく、公知のエピスルフィド基を持つ化合物が何ら制限なく使用できる。エピスルフィド基を持つ化合物の具体例としては、既存のエポキシ化合物のエポキシ基の一部あるいは全部をエピスルフィド化して得られるエピスルフィド化合物が挙げられる。また、プラスチックレンズの高屈折率化と高アッベ数化のためには、エピスルフィド基以外にも硫黄原子を含有する物がより好ましい。具体例としては、1,2−ビス(β−エピチオプロピルチオ)エタン、ビス−(β−エピチオプロピル)スルフィド、1,4−ビス(β−エピチオプロピルチオメチル)ベンゼン、2,5−ビス(β−エピチオプロピルチオメチル)−1,4−ジチアン。
本発明において使用されるメルカプト基を持つ化合物については特に制限はなく、公知のメルカプト基を持つ化合物が何ら制限なく使用できる。公知のメルカプト基を持つ化合物の具体例としては、1,2−エタンジチオール、1,6−ヘキサンジチオール、1,1−シクロヘキサンジチオール等の脂肪族ポリチオール、1,2−ジメルカプトベンゼン、1,2,3−トリス(メルカプトメチル)ベンゼン等の芳香族ポリチオールが挙げられる。また、プラスチックレンズの高屈折率化と高アッベ数化のためには、本発明で使用されるメルカプト基を持つ化合物は、メルカプト基以外にも硫黄原子を含有する物がより好ましく、具体例としては、1,2−ビス(メルカプトメチルチオ)ベンゼン、1,2,3−トリス(メルカプトエチルチオ)ベンゼン、1,2−ビス((2−メルカプトエチル)チオ)−3−メルカプトプロパン等が挙げられる。
【0014】
本発明において使用されるイソシアナート基またはイソチオシアナート基を持つ化合物については特に制限はなく、公知のイソシアナート基またはイソチオシアナート基を持つ化合物が何ら制限なく使用できる。イソシアナート基を持つ化合物の具体例としては、エチレンジイソシアナート、トリメチレンジイソシアナート、2,4,4−トリメチルヘキサンジイソシアナート、ヘキサメチレンジイソシアナート、m−キシリレンジイソシアナート等が挙げられる。
【0015】
本発明における(A)、(B)、(C)3成分の混合による重合性組成物の重合硬化に際しては、1種類以上の硬化触媒の存在下で重合硬化を行い、プラスチックレンズを製造することができる。硬化触媒としては、特に制限はないが、エポキシ樹脂用または、ウレタン樹脂用として公知の物等が使用できる。硬化触媒の具体例としては、エチルアミン、エチレンジアミン、トリエチルアミン、トリブチルアミン等のアミン化合物、ジブチル錫ジクロライド、ジメチル錫ジクロライド等が挙げられる。
【0016】
また、本発明では重合硬化前の重合性組成物に、必要に応じて紫外線安定剤を混合した後に、重合硬化を行いプラスチックレンズを製造することによって、プラスチックレンズの耐候性を向上させることが可能である。紫外線安定剤の具体例としては、ヒンダートアミン系光安定剤、ヒンダートフェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤等を挙げることができる。
【0017】
本発明によるプラスチックフォトクロミックレンズを、矯正用レンズやファッションレンズ、として用いる場合には、光線透過率を高め、表面反射によるちらつきを防止するために、反射防止膜を施すことが好ましく、さらに、レンズ基材と反射防止膜の密着性を高め、表面の傷防止のためにハードコート層を設けることが特に好ましい。
【0018】
ハードコート層の好ましい例としては、下記(イ)および(ロ)を主成分とするコーティング組成物を塗布し硬化させた物が挙げられる。
(イ)少なくとも一種以上の反応基を有するシラン化合物の一種以上。
(ロ)酸化ケイ素、酸化アンチモン、酸化ジルコニウム、酸化チタン、酸化スズ、酸化タンタル、酸化タングステン、酸化アルミニウム等の金属微粒子;酸化チタン、酸化セリウム、酸化ジルコニア、酸化ケイ素、酸化鉄のうちの2つ以上を用いた複合金属微粒子;酸化スズと酸化タングステンの複合金属微粒子で酸化スズ微粒子を被覆した複合金属微粒子から選ばれる1種以上。
【0019】
(ロ)の成分は、ハードコートの屈折率を調整し、かつ、硬度を高めるのに有効な成分であり、単独または混合して用いることができる。しかし、(ロ)の成分だけでは成膜性が悪く、(イ)の成分を併用することによって透明で強靭な膜が得られる。(イ)の成分は、そのまま使用することも可能であるが加水分解して使用する方が膜の耐水性や硬度を向上させることができることから好ましい。
【0020】
ハードコート層の厚さは、通常0.2μm〜10μm程度が好ましく、より好ましくは、1μm〜3μm程度である。また、本発明では、レンズ生地とハードコート層の間にプライマー層を設ける様なハードコートも使用できる。このプライマー層は、レンズ生地とハードコート層の密着性をより向上させたり、ハードコート処理後のレンズの耐衝撃性を向上させる効果がある。
【0021】
矯正用レンズとしての使用では、前述のごとくハードコート層表面に反射防止膜を施すことによって、光学性能がさらにアップする。反射防止膜としては、屈折率の異なる薄膜を積層して得られる多層膜であり、反射率の低減されるものであれば、無機物でも有機物でも可能である。しかし、表面の硬度や干渉縞の防止を重視するためには、無機物からなる単層または多層の反射防止膜を設けることが最も好ましい。使用できる無機物としては、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化ハフニウム、フッ化マグネシウム等の酸化物あるいはフッ化物が挙げられ、イオンプレーティング、真空蒸着、スパッタリング等のいわゆるPVD法によって施すことができる。
【発明を実施するための最良の形態】
【0022】
以下本発明の詳細について実施例に基づき説明するが、本発明はこれらに限定される物ではない。実施例および比較例で使用する物質の略称は以下の通りである。
【0023】
(エピスルフィド基を含む化合物)
略称 : 物質名
A−1:ビス−(β−エピチオプロピル)スルフィド
A−2:1,4−ビス(β−エピチオプロピルチオメチル)ベンゼン
A−3:2,5−ビス(β−エピチオプロピルチオメチル)−1,4−ジチアン(メルカプト基を含む化合物)
略称 : 物質名
B−1:1,2−ビス((2−メルカプトエチル)チオ)−3−メルカプトプロパン
(イソシアナート基またはイソチオシアナート基を含む化合物)
略称 : 物質名
C−1:m−キシリレンジイソシアナート
C−2:1,4−ビス(シクロヘキサンイソシアナート)
(実施例1)
プラスチックレンズ原料として、表1に示す割合で100g調合し、紫外線吸収剤としてSEESORB701(シプロ化成工業)0.05g、重合触媒としてジブチル錫ジクロライド0.05gを加えて混合し、常温で良く攪拌した後、5mmHgに減圧して攪拌しながら30分間脱気を行った。この原料を、ガスケットを介した鏡面仕上げのガラス板製鋳型中に注入し、35℃から120℃まで16時間かけて昇温し、重合硬化させた。その後、型よりレンズを離型し、120℃で2時間加熱してアニール処理を行った。
【0024】
このようにして製造したプラスチックレンズを、下記の方法で評価し、結果を表2に示す。屈折率:アッベ屈折率計により、20℃で589.3nmのD線の屈折率を測定した。
アッベ数:アッベ屈折計により、20℃でのアッベ数を測定した。
耐熱性:TMA試験器により、荷重50gでのTgを測定した。
曲げ試験:JIS K7203にしたがって、曲げ強さを測定した。
【0025】
染色性:水温を90℃に調整した恒温水槽を用意し、水1リットルを入れたガラスビーカーを恒温水槽中に沈め、染色ポットとして用いた。染色剤としてセイコープラックス染色剤グレー(服部セイコー)を1.5g、分散剤として界面活性剤NES−203(日光ケミカルズ)3cc、染色キャリアーとしてベンジルアルコール10ccを染色ポットに添加した後、良くかき混ぜながら攪拌を行い、染色ポットを調整した。作製したプラスチックレンズを調整した染色ポット中に完全に沈め、20分後染色ポットから取りだし、レンズの染色濃度をBPIフォトメータによる可視光線透過率の測定によって評価した(可視光線透過率が低い方が染色性が良好である)。
【0026】
【表1】

【0027】
【表2】

【0028】
(実施例2〜5)
プラスチックレンズ原料として、表1に示す割合で100g調合し、その他の条件は実施例1と同様にして、プラスチックレンズを製造と品質評価を行った。
結果を表2に示す。
【0029】
(比較例1〜2)
プラスチックレンズ原料として、表1に示す割合で100g調合し、その他の条件は実施例1と同様にしてプラスチックレンズの製造と品質評価を行った。結果を表2に示す。
【0030】
(比較例3〜5)
プラスチックレンズ原料として、表1に示す割合で100g調合し、重合触媒としてトリブチルアミン0.05gを用い、その他の条件は実施例1と同様にして、プラスチックレンズの製造と品質評価を行った。結果を表2に示す。
【0031】
本発明におけるプラスチックレンズの製造方法によれば、チオウレタン系プラスチックレンズとチオエポキシ系プラスチックレンズの欠点を改良し、高屈折率、高アッベ数で、耐熱性が高く、機械的強度に優れかつ染色性も良好な、プラスチックレンズを得ることができる。

【特許請求の範囲】
【請求項1】
少なくとも下記(A)、(B)、(C)の3成分を主成分とする重合性組成物を混合した後、該重合性組成物を重合硬化させて製造することを特徴とする、プラスチックレンズの製造方法。
(A) エピスルフィド基を含む化合物
(B) メルカプト基を含む化合物
(C) イソシアナート基またはイソチオシアナート基を含む化合物
【請求項2】
請求項1に記載のプラスチックレンズの製造方法において、前記(A)、(B)、(C)の組成比が、以下に示す範囲であることを特徴とするプラスチックレンズの製造方法。
(A) : 5〜95重量部、
(B)と(C)の合計: 5〜95重量部
【請求項3】
請求項1または2に記載のプラスチックレンズの製造方法において前記(B)のメルカプト基のモル数をBm、前記(C)のイソシアナート基またはイソチオシアナート基のモル数をCmとしたときに、0.5 < Cm/Bm < 2の範囲にあることを特徴とするプラスチックレンズの製造方法。
【請求項4】
請求項1ないし3のいずれか1項に記載の製造方法で製造されたプラスチックレンズ。
【請求項5】
前記プラスチックレンズ表面にハードコート層が設けられていることを特徴とする、請求項4記載のプラスチックレンズ。

【公開番号】特開2008−233917(P2008−233917A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2008−75144(P2008−75144)
【出願日】平成20年3月24日(2008.3.24)
【分割の表示】特願平10−162302の分割
【原出願日】平成10年6月10日(1998.6.10)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】