説明

ホーリーファイバ、及び、これを用いたレーザ装置

【課題】 所望の位置で、クラッドを伝播する漏れ光を放出することができるホーリーファイバ、及び、これを用いたレーザ装置を提供することを目的とする。
【解決手段】 ホーリーファイバ50は、一端58及び他端59を有すると共に、コア51と、コア51を被覆する内側クラッド52と、多数の空孔が形成されると共に内側クラッドを被覆する空孔層53と、空孔層53を被覆する外側クラッド54と、を有するホーリーファイバであって、空孔56がファイバの長さ方向に所定長さ潰されているコラプス領域60が設けられていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ホーリーファイバ、及び、これを用いたレーザ装置に関し、更に詳しくは、所望の位置で、クラッドを伝播する漏れ光を放出することができるホーリーファイバ、及び、これを用いたレーザ装置に関する。
【背景技術】
【0002】
ファイバレーザ装置は、加工機、医療機器、測定器の分野等において用いられ、増幅用光ファイバにおいて増幅された光が出力されるものである。このようなファイバレーザ装置においては、増幅用光ファイバのコアから出力された出力光が、デリバリファイバのコアに入力されて、デリバリファイバにより所望の場所まで伝播されてから、出力される場合がある。
【0003】
しかし、増幅用光ファイバとデリバリファイバとの接続部において、コア同士の軸ずれや、コア同士の角度の不整合や、コア同士のモードフィールドの違い等により、増幅用光ファイバから出力される出力光の一部が、デリバリファイバのクラッドに漏れて、デリバリファイバのクラッドを伝播する場合がある。この場合、クラッドを伝播する漏れ光が、デリバリファイバの被覆層に吸収されて、被覆層が焼損するといった問題が生じることがある。
【0004】
下記特許文献1には、このようなクラッドを伝播する漏れ光を光ファイバから放出する光学部品が記載されている。この光学部品においては、一端側の内径が小さく、他端側の内径が大きなガラス管に光ファイバが挿入されており、ガラス管の一端側の内壁が光ファイバのクラッドに融着されて、ガラス管の他端側の内壁が光ファイバから離されている。そして、光ファイバのクラッドに漏れた漏れ光は、ガラス管の一端側の融着部分においてクラッドからガラス管に伝播され、ガラス管に入力した光は、ガラス管の他端側から外に放出される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−158096号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、上記特許文献1に記載の光学部品においては、漏れ光は、光ファイバの被覆層等に吸収される前に放出される必要があるために、光ファイバの端部近傍に設けなければならず、設置位置が制限されていた。
【0007】
そこで、本発明は、所望の位置で、クラッドを伝播する漏れ光を放出することができるホーリーファイバ、及び、これを用いたレーザ装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明のホーリーファイバは、一端及び他端を有すると共に、コアと、前記コアを被覆する内側クラッドと、多数の空孔が形成されると共に前記内側クラッドを被覆する空孔層と、前記空孔層を被覆する外側クラッドと、を有するホーリーファイバであって、前記空孔がファイバの長さ方向に所定長さ潰されているコラプス領域が設けられていることを特徴とするものである。
【0009】
このようなホーリーファイバによれば、コアに入力される光や、コアから出力される光の一部が、漏れ光として、内側クラッドに漏えいする場合においても、内側クラッドが空孔層に被覆されるため、漏れ光は、内側クラッドに閉じ込められて、内側クラッドを伝播する。このため意図しない場所において、漏れ光がホーリーファイバから放出されることが防止できる。従って、ホーリーファイバが、被覆層で被覆される場合においても、この被覆層を焼損することが防止できる。そして、コラプス領域においては、空孔層の空孔が潰されているため、漏れ光は、内側クラッドから空孔層を介して外側クラッドに伝播して、ホーリーファイバの外に放出される。従って、コラプス領域を所望の位置に設けることにより、所望の位置で、内側クラッドを伝播する漏れ光を放出することができる。
【0010】
また、上記ホーリーファイバにおいて、前記空孔は、前記コラプス領域において、直径が細くなるように潰されていることが好ましい。
【0011】
内側クラッドに入力する漏れ光は、開口数(NA)の高い成分からNAの低い成分まで含まれる。そこで、このようなホーリーファイバによれば、空孔の直径を細くすることにより、空孔層の屈折率の平均を調整することができるので、コラプス領域において内側クラッドで伝播できる光のNAを調整できる。従って、コラプス領域において内側クラッドで伝播できる光のNAを超えた漏れ光の成分を放出することができる。こうして、漏れ光の放出量を調整することができる。
【0012】
或いは、上記ホーリーファイバにおいて、前記空孔は、前記コラプス領域において、完全に潰されていることが好ましい。
【0013】
このようなホーリーファイバによれば、コラプス領域において、空孔が完全に潰されているため、漏れ光の放出量を最大限にすることができる。
【0014】
また、上記ホーリーファイバにおける前記コラプス領域において、前記空孔は、前記一端から前記他端に向かう方向にかけて、徐々に直径が小さくなるように潰されていることが好ましい。
【0015】
このようなホーリーファイバによれば、コラプス領域において、ホーリーファイバの一端から他端に向かう方向にかけて、空孔層の屈折率の平均が徐々に大きくなっていき、内側クラッドで伝播できる光のNAが徐々に小さくなる。従って、内側クラッドを一端から他端に向かって伝播する漏れ光は、コラプス領域において、空孔層の屈折率の平均が大きくなるにつれて、NAの大きな漏れ光の成分から順にNAの小さな漏れ光の成分まで、徐々に放出される。従って、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0016】
或いは、上記ホーリーファイバにおける前記コラプス領域において、前記空孔は、前記一端から前記他端に向かう方向にかけて、段階的に直径が小さくなるように潰されていることがやはり好ましい。
【0017】
このようなホーリーファイバによれば、コラプス領域において、ホーリーファイバの一端から他端に向かう方向にかけて、空孔層の屈折率の平均が段階的に大きくなっていき、内側クラッドで伝播できる光のNAが段階的に小さくなる。従って、内側クラッドを一端から他端に向かって伝播する漏れ光は、コラプス領域において、空孔層の屈折率の平均が大きくなるにつれて、NAの大きな漏れ光の成分から順にNAの小さな漏れ光の成分まで、段階的に放出される。従って、このようなホーリーファイバにおいても、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0018】
さらに、上記ホーリーファイバにおいて、前記空孔は、最も直径が小さい部分と隣り合う部分において、完全に潰されていることがより好ましい。
【0019】
このようなホーリーファイバによれば、コラプス領域において、空孔が、徐々にまたは段階的に直径が小さくなるように潰されて、最終的には完全に潰されている。従って、空孔が完全に潰されていない部分において、放出されなかった漏れ光を放出することができる。
【0020】
また、上記ホーリーファイバにおいて、前記コラプス領域は、複数設けられ、前記空孔は、前記一端に最も近い前記コラプス領域から前記他端に最も近い前記コラプス領域にかけて、段階的に直径が小さくなるように潰されていることを特徴とすることが好ましい。
【0021】
このようなホーリーファイバによれば、複数のコラプス領域において、ホーリーファイバの一端から他端に向かう順に、コラプス領域における空孔層の屈折率の平均が段階的に大きくなる。従って、それぞれのコラプス領域毎に内側クラッドで伝播できる光のNAが段階的に小さくなる。このため、内側クラッドを一端から他端に向かって伝播する漏れ光は、それぞれのコラプス領域において、NAの大きな漏れ光の成分から順に段階的に放出される。従って、このようなホーリーファイバによれば、それぞれのコラプス領域から漏れ光が段階的に分けられて出力されるため、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0022】
さらに、上記ホーリーファイバにおいて、前記他端に最も近い前記コラプス領域において、前記空孔は完全に潰されていることがより好ましい。
【0023】
このようなホーリーファイバによれば、空孔が完全に潰されていないコラプス領域において、放出されなかった漏れ光を放出することができる。
【0024】
また、上記ホーリーファイバにおいて、前記コラプス領域は、複数設けられ、複数の前記コラプス領域は、前記一端に最も近い前記コラプス領域から前記他端に最も近いコラプス領域にかけて、段階的に長くされていることが好ましい。
【0025】
このようなホーリーファイバによれば、それぞれのコラプス領域において、ホーリーファイバの一端から他端に向かう順に、漏れ光が放出され易くなる。従って、内側クラッドを一端から他端に向かって伝播する漏れ光は、それぞれのコラプス領域において、段階的に放出される。従って、このようなホーリーファイバによれば、それぞれのコラプス領域から漏れ光が段階的に分けられて出力されるため、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0026】
また、上記ホーリーファイバにおいて、前記一端は、前記コアに光を入力する入力端であることが好ましい。
【0027】
このようなホーリーファイバによれば、ホーリーファイバの一端から光が入力するときに、入力する光の一部がコアから漏れて、漏れ光として、ホーリーファイバの一端から他端に向かって、クラッドを伝播する場合がある。しかし、このような場合においても、コラプス領域において、漏れ光を出力することができる。特に、一端から他端に伝播する漏れ光が徐々に放出されたり、段階的に放出される構成である場合には、放出される漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0028】
或いは、上記ホーリーファイバにおいて、前記一端は、前記コアから光を出力する出力端であることが好ましい。
【0029】
このようなホーリーファイバによれば、ホーリーファイバの一端から光が出力するときに、出力する光の一部が反射して、反射した光が漏れ光として、ホーリーファイバの一端から他端に向かって、クラッドを伝播する場合がある。しかし、このような場合においても、コラプス領域において、漏れ光を出力することができる。特に、一端から他端に伝播する漏れ光が徐々に放出されたり、段階的に放出される構成である場合には、放出される漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0030】
また、上記ホーリーファイバにおける前記コラプス領域において、前記外側クラッドの少なくとも1部は、前記外側クラッドの屈折率以上の屈折率を有する光放出部材で被覆されていることが好ましい。
【0031】
このようなホーリーファイバによれば、外側クラッドから光放出部材に漏れ光を伝播し易く、漏れ光をより効率よく放出することができる。
【0032】
さらに、上記ホーリーファイバにおいて、前記光放出部材は、熱変換部材に接続されていることがより好ましい。
【0033】
このようなホーリーファイバによれば、光放出部材に伝播した漏れ光を熱変換部材に吸収させて熱に変換することが出来るので、空間に漏れ光が無駄に放出されることを抑制することができる。
【0034】
また、本発明のレーザ装置は、上記のホーリーファイバを備え、前記ホーリーファイバにより出力光が伝播されることを特徴とするものである。
【0035】
このようなレーザ装置によれば、出力光をホーリーファイバにより伝播することができると共に、漏れ光が生じて、この漏れ光がホーリーファイバのクラッドを伝播する場合においても、所望の位置で、漏れ光を放出することができる。
【0036】
さらに、上記レーザ装置において、コア及びクラッドを有すると共に、前記ホーリーファイバに端面接続され、前記ホーリーファイバの前記コアに前記出力光を入力する光ファイバをさらに備え、前記クラッドの外径は、前記内側クラッドの外径以下とされることが好ましい。
【0037】
このようなレーザ装置によれば、ホーリーファイバに接続される光ファイバにおいて、不要な漏れ光が生じて、この漏れ光が光ファイバのクラッドから出力される場合においても、漏れ光をホーリーファイバの内側クラッドに閉じ込め易くすることができる。また、端面接続されるとき、ホーリーファイバの空孔が基となり泡が形成されることを抑制することができる。
【発明の効果】
【0038】
以上のように、本発明によれば、所望の位置で、クラッドを伝播する漏れ光を放出することができるホーリーファイバ、及び、これを用いたレーザ装置が提供される。
【図面の簡単な説明】
【0039】
【図1】本発明の第1実施形態に係るレーザ装置を示す図である。
【図2】図1の増幅用光ファイバの長さ方向に垂直な断面の様子を示す図である。
【図3】図1のホーリーファイバの長さ方向に垂直な断面の様子を示す図である。
【図4】増幅用光ファイバとホーリーファイバとの接続の様子を示す図である。
【図5】図1のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。
【図6】本発明の第2実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。
【図7】本発明の第3実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。
【図8】本発明の第4実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。
【図9】本発明の第5実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。
【図10】本発明の第6実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。
【発明を実施するための形態】
【0040】
以下、本発明に係るホーリーファイバ、及び、これを用いたレーザ装置の好適な実施形態について図面を参照しながら詳細に説明する。
【0041】
(第1実施形態)
図1は、本発明の第1実施形態に係るレーザ装置を示す図である。
【0042】
図1に示すように、レーザ装置1は、ファイバレーザ装置であり、種光を出力する種光源10と、励起光を出力する励起光源20と、種光と励起光とが入力する増幅用光ファイバ30と、種光源10及び励起光源20と増幅用光ファイバ30とを接続するコンバイナ40と、増幅用光ファイバ30に一端が接続されているデリバリファイバとしてのホーリーファイバ50と、を主な構成として備える。
【0043】
種光源10は、例えば、レーザダイオードから成るレーザ光源や、ファブリペロー型やファイバリング型のファイバレーザ装置から構成されている。この種光源10から出力される種光は、特に制限されるものではないが、例えば、波長が1070nmのレーザ光とされる。また、種光源10は、コア、及び、コアを被覆するクラッドから構成される種光伝播用ファイバ15に接続されており、種光源10から出力される種光は、種光伝播用ファイバ15のコアを伝播する。種光伝播用ファイバ15としては、例えば、シングルモードファイバが挙げられ、この場合、種光は種光伝播用ファイバ15をシングルモード光として伝播する。
【0044】
励起光源20は、複数のレーザダイオード21から構成され、上述のように種光の波長が1070nmの場合、例えば、波長が915nmの励起光を出力する。また、励起光源20のそれぞれのレーザダイオード21は、励起光伝播用ファイバ22に接続されており、レーザダイオード21から出力される励起光は、励起光伝播用ファイバ22を伝播する。励起光伝播用ファイバ22としては、例えば、マルチモードファイバが挙げられ、この場合、励起光は励起光伝播用ファイバ22をマルチモード光として伝播する。
【0045】
図2は、増幅用光ファイバ30の長手方向に垂直な断面の構造を示す図である。図2に示すように、増幅用光ファイバ30は、コア31と、コア31を被覆するクラッド32と、クラッド32を被覆する樹脂クラッド33と、樹脂クラッド33を被覆する被覆層34とから構成される。クラッド32の屈折率はコア31の屈折率よりも低く、樹脂クラッド33の屈折率はクラッド32の屈折率よりもさらに低くされている。コア31の直径は、例えば、15μmとされ、クラッド32の外径は、例えば、400μmとされる。このような、コア31を構成する材料としては、例えば、屈折率を上昇させるゲルマニウム等の元素、及び、励起光源20から出力される励起光により励起されるイッテルビウム(Yb)等の活性元素が添加された石英が挙げられる。このような活性元素としては、希土類元素が挙げられ、希土類元素としては、上記Ybの他にツリウム(Tm)、セリウム(Ce)、ネオジウム(Nd)、ユーロピウム(Eu)等が挙げられる。さらに活性元素として、希土類元素の他に、ビスマス(Bi)やクロム(Cr)等が挙げられる。また、クラッド32を構成する材料としては、例えば、何らドーパントが添加されていない純粋石英が挙げられる。また、樹脂クラッド33を構成する材料としては、例えば、紫外線硬化樹脂が挙げられ、被覆層34を構成する材料としては、例えば、樹脂クラッド33を構成する樹脂とは異なる紫外線硬化樹脂が挙げられる。
【0046】
コンバイナ40は、種光伝播用ファイバ15及びそれぞれの励起光伝播用ファイバ22と、増幅用光ファイバ30とを接続している。具体的には、コンバイナ40において、種光伝播用ファイバ15のコアが、増幅用光ファイバ30のコア31に端面接続されている。さらにコンバイナ40において、それぞれの励起光伝播用ファイバ22のコアが、増幅用光ファイバ30の一端において、クラッド32に端面接続されている。こうして、種光源10から出力される種光は、増幅用光ファイバ30のコア31に入力され、励起光源20から出力される励起光は、増幅用光ファイバ30のクラッド32に入力される。
【0047】
図3は、図1のホーリーファイバ50の長さ方向に垂直な断面の様子を示す図である。図3に示すように、ホーリーファイバ50は、コア51と、コア51を被覆する内側クラッド52と、内側クラッド52を被覆する空孔層53と、空孔層53を被覆する外側クラッド54と、外側クラッド54を被覆する被覆層55とから構成される。コア31の直径は、例えば、15μmとされ、内側クラッド52の外径は、例えば、400μmとされる。また、空孔層53は、内側クラッド52を被覆するように多数の空孔56が形成され、それぞれの空孔56の間には、リブ57が形成されている。それぞれの空孔56の直径は、例えば、6.8μmであり、空孔56の間隔(リブ57の幅)は、例えば、最短部分で、1.2μmとされる。そして、内側クラッド52、リブ57、外側クラッド54は、共にコア51よりも屈折率が低い同じ材料から構成されている。このような、コア51を構成する材料としては、例えば、屈折率を上昇させるゲルマニウム等の元素が添加された石英が挙げられ、内側クラッド52、リブ57、外側クラッド54を構成する材料としては、例えば、何らドーパントが添加されていない純粋石英が挙げられる。また、被覆層55を構成する材料としては、例えば、紫外線硬化樹脂が挙げられる。
【0048】
図1に示すように、このホーリーファイバ50の一端58は、上述のように増幅用光ファイバ30と接続されており、他端59にはなにも接続されておらず自由端とされている。図4は、このような増幅用光ファイバ30とホーリーファイバ50との接続の様子を示す図である。なお、理解の容易のために、図4においては、増幅用光ファイバ30及びホーリーファイバ50を構成する各部の縮尺が図2、図3と変えられている。図4に示すように、ホーリーファイバ50は、一端58付近において、被覆層55が剥離されている。また、増幅用光ファイバ30は、他端39付近において、樹脂クラッド33及び被覆層34が剥離されている。そして、ホーリーファイバ50の一端58は、増幅用光ファイバ30の他端39に端面接続され、ホーリーファイバ50のコア51と、増幅用光ファイバ30のコア31とが接続され、ホーリーファイバ50の内側クラッド52と増幅用光ファイバ30のクラッド32とが接続されている。なお、本実施形態の様にホーリーファイバ50に出力光を入力する増幅用光ファイバ30とホーリーファイバ50とが端面接続される場合、増幅用光ファイバ30のクラッド32の外径が、ホーリーファイバ50の内側クラッド52の外径以下とされることが好ましい。このような構成にされることにより、増幅用光ファイバ30とホーリーファイバ50とが端面接続されるとき、ホーリーファイバの空孔が基となり泡が形成されることを抑制することができる。
【0049】
また、ホーリーファイバ50には、図1に示すようにコラプス領域60が形成されている。図5は、図1のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。なお、理解の容易のために、図5においては、ホーリーファイバ50を構成する各部の縮尺が図3と変えられており、増幅用光ファイバ30が省略されている。図5に示すようにコラプス領域60及びその周辺の領域においては、被覆層55が剥離されている。そして、コラプス領域60においては、それぞれの空孔56は、直径が細くなるように潰されており、ぞれぞれの空孔56の間に形成されているリブ57の幅が大きくされている。従って、コラプス領域60においては、空孔層53の屈折率の平均が大きくされており、ホーリーファイバ50の他の領域よりも、内側クラッド52で伝播できる光のNAが小さくなっている。このため、ホーリーファイバ50のコラプス領域以外において内側クラッド52で伝播できる光であっても、コラプス領域60においては、一部の光は、内側クラッド52で伝播されず、空孔層53を介して外側クラッド54に伝播する。
【0050】
なお、コラプス領域60における空孔56の直径は、例えば、コラプス領域60以外の空孔56の直径の0〜80%とされ、特に内側クラッド52のNAがコア51のNA以下となるような直径とされることが、増幅用光ファイバ30のコア31からデリバリファイバ50の内側クラッド52へと漏れ出す光のNAは、コア51のNAよりも大きい場合が多いことから、必要最低限の工数で十分な効果が得られるため好ましい。また、コラプス領域60の長さは、例えば、100mmとされる。
【0051】
このようなコラプス領域は、ホーリーファイバ50の被覆層55を剥離して、被覆層55が剥離された領域の少なくとも1部を加熱して空孔56を潰すことで設けることができる。このとき、加熱温度及び加熱時間を制御することにより、空孔の潰し方を調整することができる。このような、加熱には、CO2レーザや酸水素炎や放電加工を用いることができる。
【0052】
また、コラプス領域60における外側クラッド54の外周面の少なくとも一部は、光放出部材61で被覆されており、光放出部材61は、熱変換部材62に接続されている。光放出部材61は、外側クラッド54の屈折率以上の屈折率を有する材料から構成されている。このような材料としては、例えば、高屈折率のシリコン樹脂等が挙げられる。また、熱変換部材62は、光を熱に変換する部材であれば、特に限定されるわけではないが、放熱性に優れる部材であることが好ましく、例えばステンレス鋼等の金属から構成されている。
【0053】
次にレーザ装置1の動作について説明する。
【0054】
まず、種光源10から種光が出力されると共に、励起光源20から励起光が出力される。このとき種光源10から出力される種光は、上述のように、例えば、波長が1080nmとされる。種光源10から出力された種光は、種光伝播用ファイバ15のコアを伝播して、コンバイナ40に入力する。
【0055】
一方、励起光源20のそれぞれのレーザダイオード21から出力される励起光は、上述のように、例えば、波長が915nmとされる。それぞれのレーザダイオード21から出力された励起光は、励起光伝播用ファイバ22を伝播しコンバイナ40に入力する。
【0056】
こうしてコンバイナ40に入力した種光は、増幅用光ファイバ30のコア31に入力して、コア31を伝播する。一方、コンバイナ40に入力した励起光は、増幅用光ファイバ30のクラッド32に入力して、クラッド32を主に伝播する。
【0057】
そして、励起光がコア31を通過するときに、コア31に添加されている活性元素に吸収されて、活性元素を励起する。励起された活性元素は、誘導放出を起こし、この誘導放出により種光が増幅されて、出力光として増幅用光ファイバ30の他端39から出力される。
【0058】
そして、増幅用光ファイバ30のコア31から出力した出力光は、ホーリーファイバ50のコア51に入力し、コア51を伝播して、ホーリーファイバ50の他端59から出力される。
【0059】
このとき、増幅用光ファイバ30とホーリーファイバ50との接続部分において、コア同士の軸ずれや、コア同士の角度の不整合や、コア同士のモードフィールドの違い等により、増幅用光ファイバ30から出力される出力光の一部が漏れ光としてホーリーファイバ50の内側クラッド52に入力する場合がある。この場合、内側クラッド52に入力した漏れ光は、空孔層53が内側クラッド52を被覆しているため、内側クラッド52に閉じ込められて伝播する。そして、内側クラッド52を伝播する漏れ光は、コラプス領域60に達する。ところで、内側クラッド52に入力する漏れ光は、NAの高い成分からNAの低い成分まで含む。しかし、上述のように、コラプス領域60における内側クラッド52は、コラプス領域60以外における内側クラッド52よりも、伝播できる光のNAが小さいため、漏れ光のうち、内側クラッド52で伝播できる光のNAを超えている成分は、空孔層53を介して、外側クラッド54に伝播する。そして、外側クラッド54に伝播した漏れ光は、光放出部材61に放出されて、熱変換部材62により熱に変換されて消滅する。
【0060】
以上説明したように、本実施形態におけるレーザ装置1によれば、ホーリーファイバ50において、コア51に入力される出力光の一部が、漏れ光として、内側クラッド52に漏えいする場合においても、内側クラッド52が空孔層53に被覆されるため、漏れ光は、内側クラッド52に閉じ込められて、内側クラッド52を伝播する。このため使用者が意図しない場所において、漏れ光がホーリーファイバ50から放出されることが防止できる。従って、ホーリーファイバ50が、被覆層55で被覆される場合においても、この被覆層55を焼損することが防止できる。そして、コラプス領域60においては、空孔層53の空孔56が潰されているため、漏れ光は、内側クラッド52から空孔層53を介して外側クラッド54に伝播して、ホーリーファイバ50の外に放出される。従って、コラプス領域60を所望の位置に設けることにより、所望の位置で、内側クラッド52を伝播する漏れ光を放出することができる。
【0061】
また、空孔56は、コラプス領域60において、直径が細くなるように潰されているため、空孔56の直径を細くすることにより、空孔層53の屈折率の平均を自由に調整することができる。従って、このようなホーリーファイバ50によれば、コラプス領域60において内側クラッド52で伝播できる光のNAを調整できるので、コラプス領域60において内側クラッド52で伝播できる光のNAを超えた漏れ光の成分を放出することができる。こうして、漏れ光の放出量を調整することができる。
【0062】
また、コラプス領域60に光放出部材61を設けることにより、外側クラッド54から光放出部材61に漏れ光を伝播し易く、漏れ光をより効率よく放出することができ、光放出部材61に熱変換部材62を接続することにより、光放出部材61に伝播した漏れ光を熱変換部材62に吸収させて熱に変換することが出来るので、空間に漏れ光が無駄に放出されることを抑制することができる。
【0063】
また、本実施形態においては、ホーリーファイバ50の一端に端面接続される増幅用光ファイバ30のクラッド32の外径が、ホーリーファイバ50の内側クラッド52の外径以下とされるため、漏れ光をホーリーファイバ50の内側クラッド52に閉じ込めやすくすることができる。
【0064】
また、本実施形態においては、増幅用光ファイバ30入力される励起光の一部が、増幅用光ファイバ30に吸収されずに、クラッド32を伝播して、増幅用光ファイバ30の他端39から出力される場合においても、この出力された励起光を、ホーリーファイバ50の内側クラッド52に入力させることができる。この場合、内側クラッド52に入力した励起光は、漏れ光と共に内側クラッド52を伝播して、コラプス領域60から放出される。そして、本実施形態においては、上述のように、ホーリーファイバ50の一端に端面接続される増幅用光ファイバ30のクラッド32の外径が、ホーリーファイバ50の内側クラッド52の外径以下とされるため、増幅用光ファイバ30から出力された励起光を、効率良くホーリーファイバ50の内側クラッド52に入力させることができる。
【0065】
(第2実施形態)
次に、本発明の第2実施形態について図6を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。図6は、本発明の第2実施形態に係るレーザ装置のホーリーファイバ50の長さ方向に沿ったコラプス領域60の断面の様子を示す図である。なお、理解の容易のために、図6においても、ホーリーファイバ50を構成する各部の縮尺が図3と変えられており、増幅用光ファイバ30が省略されている。
【0066】
図6に示すように、本実施形態のレーザ装置は、ホーリーファイバ50に設けられているコラプス領域60において、空孔56が完全に潰されている点で、第1実施形態のレーザ装置1と異なる。従って、空孔56が完全に潰されている部分において、図1に示すリブ57は、全て繋がっている。
【0067】
本実施形態におけるレーザ装置1によれば、ホーリーファイバ50のコラプス領域60において、空孔56が完全に潰されているため、漏れ光を内側クラッドに閉じ込める構造が存在しなく、漏れ光の放出量を最大限にすることができる。
【0068】
(第3実施形態)
次に、本発明の第3実施形態について図7を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。図7は、本発明の第3実施形態に係るレーザ装置のホーリーファイバ50の長さ方向に沿ったコラプス領域60の断面の様子を示す図である。なお、理解の容易のために、図7においても、ホーリーファイバ50を構成する各部の縮尺が図3と変えられており、増幅用光ファイバ30が省略されている。
【0069】
図7に示すように、本実施形態のレーザ装置は、ホーリーファイバ50に設けられているコラプス領域60において、空孔56が、ホーリーファイバ50の一端58から他端59に向かう方向にかけて、徐々に直径が小さくなるように潰されている点で、第1実施形態のレーザ装置1と異なる。つまり、コラプス領域60において、空孔56を形成する内壁がホーリーファイバ50の長手方向に対して傾斜するようにして、空孔56の直径が徐々に小さくされている。このため、コラプス領域60においては、ホーリーファイバ50の一端58から他端59に向かう方向にかけて、図3のリブ57の幅が徐々に大きくされ、空孔層53の屈折率の平均が徐々に大きくされている。従って、コラプス領域60においては、ホーリーファイバ50の一端58から他端59に向かう方向にかけて、内側クラッド52で伝播できる光のNAが徐々に小さくされている。そして、空孔56における最も直径が小さい部分と隣り合う部分においては、空孔56が完全に潰されている。
【0070】
本実施形態におけるレーザ装置によれば、内側クラッド52をホーリーファイバ50の一端58から他端59に向かって伝播する漏れ光は、コラプス領域60において、空孔層53の屈折率の平均が徐々に大きくなるにつれて、NAの大きな漏れ光の成分から順にNAの小さな漏れ光の成分まで、徐々に放出される。従って、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0071】
(第4実施形態)
次に、本発明の第4実施形態について図8を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。図8は、本発明の第4実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。なお、理解の容易のために、図8においても、ホーリーファイバ50を構成する各部の縮尺が図3と変えられており、増幅用光ファイバ30が省略されている。
【0072】
図8に示すように、本実施形態のレーザ装置は、ホーリーファイバ50に設けられているコラプス領域60において、空孔56が、ホーリーファイバ50の一端58から他端59に向かう方向にかけて、段階的に直径が小さくなるように潰されている点において、第1実施形態のレーザ装置1と異なる。つまり、コラプス領域60においては、ホーリーファイバ50の一端58から他端59に向かう方向にかけて、図3のリブ57の幅が段階的に大きくされ、空孔層53の屈折率の平均が段階的に大きくされている。従って、コラプス領域60においては、ホーリーファイバ50の一端58から他端59に向かう方向にかけて、内側クラッド52で伝播できる光のNAが段階的に小さくされている。そして、空孔56における最も直径が小さい部分と隣り合う部分においては、空孔56が完全に潰されている。
【0073】
本実施形態におけるレーザ装置によれば、内側クラッド52をホーリーファイバ50の一端58から他端59に向かって伝播する漏れ光は、コラプス領域60において、空孔層53の屈折率の平均が段階的に大きくなるにつれて、NAの大きな漏れ光の成分から順にNAの小さな漏れ光の成分まで、段階的に放出される。従って、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0074】
(第5実施形態)
次に、本発明の第5実施形態について図9を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。図9は、本発明の第5実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。なお、理解の容易のために、図9においても、ホーリーファイバ50を構成する各部の縮尺が図3と変えられており、増幅用光ファイバ30が省略されている。
【0075】
図9に示すように、本実施形態のレーザ装置は、ホーリーファイバ50に複数のコラプス領域60a〜60dが設けられており、空孔56は、ホーリーファイバ50の一端58に最も近いコラプス領域60aから他端59に最も近いコラプス領域60dにかけて、段階的に直径が小さくなるように潰されている点において、第1実施形態のレーザ装置1と異なる。そして、ホーリーファイバ50の他端59に最も近いコラプス領域60dにおいて、空孔56は完全に潰されている。つまり、それぞれのコラプス領域60a〜60dにおけるリブ57の幅が、コラプス領域60aからコラプス領域60dにかけて段階的に大きくされ、空孔層53の屈折率の平均が段階的に大きくされている。従って、それぞれのコラプス領域60a〜60dにおいては、コラプス領域60aからコラプス領域60dにかけて、内側クラッド52で伝播できる光のNAが段階的に小さくされている。なお、本実施形態においては、それぞれのコラプス領域60a〜60dは、互いに同じ長さとされている。
【0076】
そして、それぞれのコラプス領域60a〜60dにおいては、第1実施形態のコラプス領域60と同様にして、外側クラッド54の外周面の少なくとも一部が、光放出部材61で被覆されており、光放出部材61は、熱変換部材62に接続されている。
【0077】
本実施形態におけるレーザ装置によれば、ホーリーファイバ50の一端58から他端59に向かうコラプス領域60a〜60dにかけて、NAの大きな漏れ光の成分から順に放出され易くなる。従って、内側クラッド52をホーリーファイバ50の一端58から他端59に向かって伝播する漏れ光は、それぞれのコラプス領域60a〜60dにおいて、段階的に放出される。従って、このようなホーリーファイバ50によれば、それぞれのコラプス領域60a〜60dから漏れ光が段階的に分けられて出力されるため、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0078】
さらに他端に最も近いコラプス領域60dにおいて、空孔56が完全に潰されているため、空孔56が完全に潰されていないコラプス領域60a〜60cにおいて、放出されなかった漏れ光を放出することができる。
【0079】
(第6実施形態)
次に、本発明の第6実施形態について図10を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。図10は、本発明の第6実施形態に係るレーザ装置のホーリーファイバの長さ方向に沿ったコラプス領域の断面の様子を示す図である。なお、理解の容易のために、図10においても、ホーリーファイバ50を構成する各部の縮尺が図3と変えられており、増幅用光ファイバ30が省略されている。
【0080】
図10に示すように、本実施形態のレーザ装置は、ホーリーファイバ50に複数のコラプス領域60a〜60dが設けられており、複数の前記コラプス領域60a〜60dは、ホーリーファイバ50の一端58に最も近いコラプス領域60aから他端59に最も近いコラプス領域60dにかけて、段階的に長くされている点において、第1実施形態のレーザ装置1と異なる。なお、本実施形態においては、それぞれのコラプス領域60a〜60dにおいて、空孔56は、直径が同じ大きさになるように、潰されている。
【0081】
そして、それぞれのコラプス領域60a〜60dにおいては、第1実施形態のコラプス領域60と同様にして、外側クラッド54の外周面の少なくとも一部が、光放出部材61で被覆されており、光放出部材61は、熱変換部材62に接続されている。
【0082】
本実施形態におけるレーザ装置によれば、ホーリーファイバ50の、複数のコラプス領域60a〜60dにおいて、ホーリーファイバ50の一端58から他端59に向かう順に、漏れ光が放出され易くなる。従って、内側クラッド52を一端58から他端59に向かって伝播する漏れ光は、それぞれのコラプス領域60a〜60dにおいて、段階的に放出される。従って、このようなホーリーファイバ50によれば、それぞれのコラプス領域60a〜60dから漏れ光が段階的に分けられて出力されるため、放出させる漏れ光を局所的に集中させず、ファイバの長さ方向に分散させることができる。
【0083】
以上、本発明について、第1〜第6実施形態を例に説明したが、本発明はこれらに限定されるものではない。
【0084】
例えば、第1実施形態〜第6実施形態において、レーザ装置をファイバレーザ装置を例に説明したが、本発明はこれに限らず、例えば、固体レーザ装置のデリバリファイバとして、ホーリーファイバ50が接続される構成であっても良い。
【0085】
また、第1実施形態〜第6実施形態においては、ホーリーファイバ50が出力光のデリバリファイバとして用いられたレーザ装置を説明したが、ホーリーファイバ50は、出力光のデリバリファイバ以外にも適用でき、特にパワーの大きな光を伝播する光ファイバに適用されることが好適である。
【0086】
また、第1〜第6実施形態においては、ホーリーファイバの一端58が出力光の入力端とされ、他端59が出力光の出力端とされた。しかし、本発明はこれに限らず、ホーリーファイバの他端59が出力光の入力端とされ、一端58が出力光の出力端とされても良い。この場合、出力光が、一端58において出力されるときに、一部の出力光が端面の反射により、漏れ光として内側クラッド52を一端58から他端59に伝播する場合においても、この漏れ光をコラプス領域において放出することができる。特に、第3〜第6実施形態において、一端58が出力光の出力端とされる場合においては、出力光の反射光が漏れ光として、内側クラッド52を伝播する場合に、この漏れ光を徐々に、或いは、段階的に放出することができるため好ましい。
【0087】
また、第1〜第6実施形態において、被覆層55は必ずしも必要ではなく、更に、光放出部材61や熱変換部材62は必ずしも必要ではない。この場合においても、コラプス領域において、内側クラッドから外側クラッドに伝播した漏れ光の少なくとも一部は、コラプス領域からホーリーファイバ外に放出される。
【0088】
また、第2、第3実施形態において、空孔56における最も直径が小さい部分と隣り合う部分においては、空孔56が完全に潰されている構成としたが、空孔56が完全に潰される部分は、必ずしも必要とされない。同様に、第5実施形態において、コラプス領域60dにおいて、空孔56は、コラプス領域60cにおける空孔56よりも直径が小さい限りにおいて、完全に潰される必要はない。
【0089】
また、第5実施形態において、第6実施形態の様に、コラプス領域60a〜60dの長さを段階的に長くしても良い。
【0090】
また、第6実施形態において、それぞれのコラプス領域60a〜60dの構成を、第2実施形態の様に、空孔56が完全に潰された構成としても良く、第3実施形態の様に空孔56が徐々に潰される構成としても良く、第4実施形態の様に空孔56が段階的に潰される構成としても良い。
【0091】
また、上記実施形態においては、ホーリーファイバ50の一端58に接続される増幅用光ファイバ30のクラッド32の外径は、ホーリーファイバ50の内側クラッド52以下とされたが、本発明はこれに限らず、ホーリーファイバ50に接続される光ファイバのクラッドの外径が、ホーリーファイバ50の内側クラッド52の外径よりも大きくても良い。
【実施例】
【0092】
以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものでは無い。
【0093】
(実施例1)
図3に示すホーリーファイバを準備した。このホーリーファイバは、コアの直径が15μmで、内側クラッドの外径が約400μmで、空孔層には6.8μmの空孔が157個形成され、外側クラッドの外径が500μmであり、外側クラッドが被覆層で被覆されているものとした。また、出力光を出力するダブルクラッドファイバを準備した。このダブルクラッドファイバは、コアがホーリーファイバと同じ直径であり、クラッドの外径が400μmであり、このクラッドが、樹脂クラッドで被覆されており、更にこの樹脂クラッドが被覆層で被覆されているものであった。
【0094】
次に、ホーリーファイバの一方の端部付近の被覆層を剥離すると共に、ダブルクラッドファイバの出力端付近の被覆層を剥離した。そして、ホーリーファイバとダブルクラッドファイバのコアとが結合するように、ホーリーファイバの一方の端部とダブルクラッドファイバの出力端とを端面接続した。
【0095】
次に、ホーリーファイバの一方の端部から50cm離れた場所において、被覆層を1カ所だけ長さ110mm剥離した。そして、被覆層を剥離した領域において、長さ100mmに渡り、CO2レーザを用いて、空孔が無くなるまでホーリーファイバを加熱して、コラプス領域を設けた。そして、コラプス領域の外側クラッドを高屈折率のシリコン樹脂で被覆して、このシリコン樹脂を用いて、V溝が切ってありシートシンクに接続してあるステンレス鋼に、外側クラッドを接着固定した。こうして、シリコン樹脂を光放出部材とし、ステンレス鋼を熱変換部材とした。
【0096】
次にダブルクラッドファイバとホーリーファイバとの接続部から50Wの漏れ光が発生するようにダブルクラッドファイバの出力端から出力光を出力した。このときホーリーファイバの被覆層の温度は、約60℃であった。
【0097】
(実施例2)
実施例1と同様のホーリーファイバ及びダブルクラッドファイバを準備し、実施例1と同様にホーリーファイバとダブルクラッドファイバを接続した。
【0098】
次に、ホーリーファイバの被覆層をホーリーファイバの一方の端部から50cm離れた場所において、10カ所剥離した。剥離の長さは、それぞれ実施例1と同じ長さとして、剥離の間隔は、5cmとした。そして、それぞれの被覆層が剥離された領域において、実施例1と同様の方法で、実施例1と同じ長さのコラプス領域を設けた。ただし、それぞれのコラプス領域を設けるとき、ホーリーファイバの加熱を調整して、ホーリーファイバの一方の端部に最も近い(ダブルクラッドファイバとの接続部に最も近い)コラプス領域から他方の端部に最も近いコラプス領域にかけて、空孔の潰し方を強くして、空孔の直径が段階的に小さくなるようにした。そして、それぞれのコラプス領域において、実施例1と同様にして、熱変換部材に接続された光放出部材で外側クラッドを被覆した。
【0099】
次にダブルクラッドファイバとホーリーファイバとの接続部から50Wの漏れ光が発生するようにダブルクラッドファイバから出力光を出力した。このときホーリーファイバの被覆層の温度は、約60℃であった。
【0100】
(実施例3)
実施例1と同様のホーリーファイバ及びダブルクラッドファイバを準備し、実施例1と同様にホーリーファイバとダブルクラッドファイバを接続した。
【0101】
実施例2と同様にして、被覆層を10カ所剥離した。そして、それぞれの被覆層が剥離された領域において、実施例1と同様の方法で、実施例1と同様に空孔が完全に潰れるまでホーリーファイバを加熱してコラプス領域を設けた。ただし、それぞれのコラプス領域の長さが、ホーリーファイバの一方の端部に最も近いコラプス領域から順に10mm、20mm、30mm、40mm、50mm、60mm、70mm、80mm、90mm、100mmとなるようにした。そして、それぞれのコラプス領域において、実施例1と同様にして、熱変換部材に接続された光放出部材で外側クラッドを被覆した
【0102】
次にダブルクラッドファイバとホーリーファイバとの接続部から50Wの漏れ光が発生するようにダブルクラッドファイバから出力光を出力した。このときホーリーファイバの被覆層の温度は、約60℃であった。
【0103】
(実施例4)
一方の端部から種光が入力される増幅用光ファイバを準備した。この増幅用光ファイバは、コアの直径が、15μmであり、クラッドの直径が400μmであり、クラッドが樹脂クラッドで被覆されて、樹脂クラッドが被覆層で被覆されているものとした。また、コアの直径が15μmで、内側クラッドの外径が約80μmで、空孔層には6.9μmの空孔が31個形成され、外側クラッドの外径が140μmのホーリーファイバを準備した。さらに、コアの直径が105μmの励起光伝播用ファイバとしてのマルチモードファイバを6本準備した。
【0104】
次に、増幅用光ファイバの他方の端部(出力端)付近の被覆層を剥離すると共に、ホーリーファイバの一方の端部付近の被覆層を剥離した。そして、ホーリーファイバのコアが増幅用光ファイバのコアと結合されるように、ホーリーファイバの一方の端部と増幅用光ファイバの出力端とを端面接続するとともに、ホーリーファイバの回りに6本のマルチモードファイバを配置して、マルチモードファイバのコアが増幅用光ファイバのクラッドに結合されるように、マルチモードファイバの一方の端部と増幅用光ファイバの出力端とを端面接続した。
【0105】
こうして増幅用光ファイバから出力される出力光がホーリーファイバに入力され、増幅用光ファイバの出力端側から励起光が入力される後方励起型のファイバレーザ装置を作製した。
【0106】
次に、ホーリーファイバの一方の端部から50cm離れた場所において、実施例1と同様に被覆層を1カ所剥離した。そして、被覆層が剥離された領域において、実施例1と同様の方法で、実施例1と同じ長さのコラプス領域を設けた。ただし、コラプス領域を設けるとき、ホーリーファイバの加熱を調整して、コラプス領域におけるホーリーファイバの一方の端部に最も近い(増幅用光ファイバとの接続部に最も近い)部分から他方の端部に最も近い部分にかけて、徐々に空孔の潰し方を強くして、空孔の直径が徐々に小さくなるようにした。そして、コラプス領域の他方の端部に最も近い部分においては、空孔が完全に潰れるようにした。そして、コラプス領域において、実施例1と同様にして、熱変換部材に接続された光放出部材で外側クラッドを被覆した。
【0107】
次に、増幅用光ファイバの一方の端部から種光を入力するとともに、それぞれのマルチモードファイバに励起光入力して、増幅用光ファイバから種光が増幅された出力光を出力した。このとき励起光の強度を調整して、増幅用光ファイバとホーリーファイバとの接続部から50Wの漏れ光が発生するように増幅用光ファイバから出力光が出力されるようにした。このときホーリーファイバの被覆層の温度は、約60℃であった。
【0108】
以上、実施例1〜4において、いずれのホーリーファイバの被覆層も過剰に温度が上昇しないことが確認された。このことから、クラッドを伝播する漏れ光が被覆層に殆ど吸収されず、所望の位置に設けられたコラプス領域から放出されているものと考えられる。
【産業上の利用可能性】
【0109】
本発明によれば、所望の位置で、クラッドを伝播する漏れ光を放出することができるホーリーファイバ、及び、これを用いたレーザ装置が提供される。
【符号の説明】
【0110】
1・・・レーザ装置
10・・・種光源
15・・・種光伝播用ファイバ
20・・・励起光源
21・・・レーザダイオード
22・・・励起光伝播用ファイバ
30・・・増幅用光ファイバ
31・・・コア
32・・・クラッド
33・・・樹脂クラッド
34・・・被覆層
40・・・コンバイナ
50・・・ホーリーファイバ
51・・・コア
52・・・内側クラッド
53・・・空孔層
54・・・外側クラッド
55・・・被覆層
56・・・空孔
57・・・リブ
60、60a、60b、60c、60d・・・コラプス領域
61・・・光放出部材
62・・・熱変換部材

【特許請求の範囲】
【請求項1】
一端及び他端を有すると共に、コアと、前記コアを被覆する内側クラッドと、多数の空孔が形成されると共に前記内側クラッドを被覆する空孔層と、前記空孔層を被覆する外側クラッドと、を有するホーリーファイバであって、
前記空孔がファイバの長さ方向に所定長さ潰されているコラプス領域が設けられている
ことを特徴とするホーリーファイバ。
【請求項2】
前記空孔は、前記コラプス領域において、直径が細くなるように潰されていることを特徴とする請求項1に記載のホーリーファイバ。
【請求項3】
前記空孔は、前記コラプス領域において、完全に潰されている領域を含むことを特徴とする請求項1に記載のホーリーファイバ。
【請求項4】
前記コラプス領域において、前記空孔は、前記一端から前記他端に向かう方向にかけて、徐々に直径が小さくなるように潰されていることを特徴とする請求項1に記載のホーリーファイバ。
【請求項5】
前記コラプス領域において、前記空孔は、前記一端から前記他端に向かう方向にかけて、段階的に直径が小さくなるように潰されていることを特徴とする請求項1に記載のホーリーファイバ。
【請求項6】
前記空孔は、最も直径が小さい部分と隣り合う部分において、完全に潰されていることを特徴とする請求項4または5に記載のホーリーファイバ。
【請求項7】
前記コラプス領域は、複数設けられ、
前記空孔は、前記一端に最も近い前記コラプス領域から前記他端に最も近い前記コラプス領域にかけて、段階的に直径が小さくなるように潰されている
ことを特徴とする請求項1に記載のホーリーファイバ。
【請求項8】
前記他端に最も近い前記コラプス領域において、前記空孔は完全に潰されていることを特徴とする請求項7に記載のホーリーファイバ。
【請求項9】
前記コラプス領域は、複数設けられ、
複数の前記コラプス領域は、前記一端に最も近い前記コラプス領域から前記他端に最も近いコラプス領域にかけて、段階的に長くされている
ことを特徴とする請求項1から8のいずれか1項に記載のホーリーファイバ。
【請求項10】
前記一端は、前記コアに光を入力する入力端であることを特徴とする請求項1〜9のいずれか1項に記載のホーリーファイバ。
【請求項11】
前記一端は、前記コアから光を出力する出力端であることを特徴とする請求項1〜9のいずれか1項に記載のホーリーファイバ。
【請求項12】
前記コラプス領域において、前記外側クラッドの少なくとも1部は、前記外側クラッドの屈折率以上の屈折率を有する光放出部材で被覆されていることを特徴とする請求項1〜11に記載のホーリーファイバ。
【請求項13】
前記光放出部材は、熱変換部材に接続されていることをと特徴とする請求項12に記載のホーリーファイバ。
【請求項14】
請求項1〜13のいずれか1項に記載のホーリーファイバを備え、
前記ホーリーファイバにより出力光が伝播される
ことを特徴とするレーザ装置。
【請求項15】
コア及びクラッドを有すると共に、前記ホーリーファイバに端面接続され、前記ホーリーファイバの前記コアに前記出力光を入力する光ファイバをさらに備え、
前記クラッドの外径は、前記内側クラッドの外径以下とされる
ことを特徴とする請求項14に記載のレーザ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−197486(P2011−197486A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−65311(P2010−65311)
【出願日】平成22年3月20日(2010.3.20)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】