説明

マイクロチップ、マイクロチップの製造方法および成分検出方法

マイクロチップは、試料の通る流路を備えるクラッド層と、クラッド層より屈折率の高い材料により、前記クラッド層内部に形成された光導波路とを有し、光導波路は、流路と光学的に作用するように形成されている。これにより、微細な構造のマイクロチップにおいても、流路を流れる試料は精度よく分析される。

【発明の詳細な説明】
【技術分野】
本発明はマイクロチップ、マイクロチップの製造方法、および成分検出方法に関する。
【背景技術】
核酸やタンパク質等の生体分子を分離し、分離された試料の分析に用いられるマイクロチップは、臨床検査やプロチオミクス解析において強いニーズがある。このような試料の分析では、分離された微量の試料を光学的に検出する手法が用いられる。光学的に試料を分析する方式として、透過光方式と拡散反射方式が知られている。
拡散反射方式では、試料に照射されたレーザー光の反射光を検知することによって試料を分析する。特開2002−98637号公報に記載された濃度測定装置は、レーザー発光素子を用いており、拡散反射方式で被測定液中の濁質成分の濃度を測定する。この濃度測定装置では、レーザー光発生用の光ファイバと受光用の光ファイバが、それぞれ複数束ねられ、1つのセンサー部として構成されている。
一方、図1は、実開昭62−108858号公報に記載された、透過光方式を用いた濃度測定装置を示す図である。この濃度測定装置は、光源221からの光を投光用光ファイバ束222を介して流体流路201に導き、投光用光ファイバ束222の端面から出射された光を流体流路201を介して受光用光ファイバ束223の端面に入射させて流体流路内を通流する流体の濃度を受光器224で計測する。
また、特開平1−233345号公報に記載された光学式分析計は、光源からの光を分岐光ファイバにより複数のチャネルに分岐することを特徴とする。分岐された1つのチャネルの光は、試料に入射されることなく参照用受光素子に入射される。分岐された他のチャネルの光は、試料に入射され、その試料からの光は試料用受光素子に入射される。
図2は、特開平9−288090号公報に記載された毛細管電気泳動装置を示す図である。この毛細管電気泳動装置は、流路120が形成された基板114と、基板114に埋設された光ファイバ108と、光ファイバ108に接続された光源103と、基板114に接続された受光器135から構成される。この装置では、受光器135は流路120の上方に設けられており、試料溶液は蛍光試薬により誘導体化された状態で流路に導入される。光ファイバ108の他端には光源103から試料励起光が導入され、光ファイバ108から出射した光は流路120の検出部に照射される。液体試料は、検出部で光照射を受けて蛍光を発生し、発生した蛍光は受光器135に入射する。
実開昭62−108858号公報に記載された装置のように、流体流路の両端に光ファイバ束を配置させる構成においては、投光用光ファイバ束222および受光用光ファイバ束223を正確に位置合わせするのが困難である。そのため、流路を流れる試料の濃度を精度よく測定できないおそれがある。
特開平9−288090号公報に記載された装置のように、受光器135が流路120の上方に設けられる構成の場合、流路120が浅いと、上方からの観察では吸収計測のための光路長を充分に確保するのが困難である。また、基板114に形成された溝122に光ファイバ108を接着剤で固定する構成となっている。そのため、上述したような光ファイバの位置合わせを行うとともに接着剤で固定する工程が必要になり、製造方法が複雑である。
【発明の開示】
本発明の目的は、微細な構造のマイクロチップにおいても、流路を流れる試料を精度よく分析できる技術を提供することである。
本発明の別の目的は、平面上に形成された極めて微小な流路においても、試料中の成分を光学的に検出できる技術を提供することである。
本発明のまた別の目的は、浅い流路においても充分な光路長を確保し、流路を流れる試料中の成分を精度よく検出できる技術を提供することである。
本発明のまた別の目的は、マイクロチップの構造を簡略化することを目的とする。
本発明によれば、マイクロチップは、試料の通る流路を備えるクラッド層と、クラッド層より屈折率の高い材料により、クラッド層内部に形成された光導波路とを有する。光導波路は、流路と光学的に作用するように形成されており、これにより流路を流れる試料中の成分を分析することが可能となる。ここで、光学的に作用するとは、光導波路を伝わる光が流路中の試料に影響を及ぼすことをいう。よって、光導波路は、流路と物理的に接続されてもよいし、光学的に接続されてもよい。また、光導波路は、流路と交差してもよいし、接してもよい。
クラッド層は、コア層(光導波路)よりも屈折率が低い材料により構成される。クラッド層は、コア層の下部および側部を覆うクラッド層とにより構成することができる。また、クラッド層は、コア層の上部を覆うクラッド層をも構成要素として含むことができ、この場合、コア層の上部を覆うクラッド層表面流路を含むことができる。以上の構成により、コア層の周囲をクラッド層で覆うことができ、コア層が光導波路として機能する。なお、クラッド層は、コア層と接する内側から外側に向かって、屈折率が連続的に低くなるような構造とすることもできる。
本発明のマイクロチップは、光導波路がクラッド層に形成されているため、従来の装置のように、クラッド層に光ファイバを接着剤等で固定させる必要がなく、構造を簡略化することができる。また、光導波路がクラッド層に平面状に形成されているため、微細な加工を行うことができ、また、マイクロチップの製造工程を簡略化することもできる。そのため、マイクロチップの加工コストを低減することもできる。また、流路および光導波路をクラッド層に形成するので、流路や光導波路のサイズを所望の値に制御性よく作製することができる。
本発明による第一の観点では、光導波路は流路と交差する。この場合、光導波路の一方の端部から導入された光は、流路を通過し、光導波路の他方の端部から出力される。このようにすると、光導波路の他方の端部から出力された光の強度等の特性に基づき、流路を流れる試料中の成分を検出することができる。流路は、光導波路を二つに分割するように形成されてもよい。
本発明のマイクロチップにおいては、試料の通る流路と、流路と交差して設けられた光導波路とがクラッド層に形成されるので、位置合わせをすることなく、流路を隔てた光導波路の一方側を投光用、他方側を受光用とすることができる。さらに、流路がクラッド層に形成されるので、たとえばエッチングなど、微細な加工を行うことができる既存の技術を用いて、所望のサイズの流路を形成することができる。
光導波路の一方の端部および他方の端部が、光導波路の他の領域よりも幅広に形成されてもよい。また、光導波路と流路との境界領域が、光導波路の他の領域よりも幅広に形成されてもよい。この構成によれば、流路を隔てた光導波路の一方側から流路に入射する光の伝達領域が広がるので、流路を隔てた一方側から他方側に光を精度よく伝達することができ、流路を通る試料を透過した光の特性を精度よく検出することができる。
クラッド層内部に、複数の光導波路が、形成されてもよい。複数の光導波路は、互いに所定の間隔を隔てて形成されてもよく、また互いに略平行に形成されてもよい。こうすることにより、流路の異なる位置を流れる試料を透過した光の特性を略同時に検出することができ、流路を流れる試料の分離パターンを検出することができる。
クラッド層内部に、複数の光導波路が形成され、複数の光導波路は、複数の投光用光導波路と、受光用光導波路により構成されてもよい。流路は、複数の投光用光導波路と受光用光導波路に挟まれて形成される。複数の投光用光導波路は、流路の複数の異なる位置に光を導入する。受光用光導波路は、複数の異なる位置の各々を通過した光を、受け取り出力するように形成される。複数の投光用光導波路は、互いに間隔を隔て、流路に略直角に形成されてもよい。受光用光導波路は、流路に沿って形成されてもよい。この場合、受光用光導波路の流路に沿う側面と反対側の側面を予め鏡面加工しておくことができる。こうすることにより、流路を介して受光用光導波路に入射された光を損失無く受光用光導波路中で伝達することができ、試料中の成分を精度よく検出することができる。
また、クラッド層内部に、複数の光導波路が形成され、複数の光導波路は、複数の投光用光導波路と、複数の投光用光導波路と同数の、複数の第一受光用光導波路と、一つの第二受光用光導波路により構成されてもよい。流路は、複数の投光用光導波路と複数の第一受光用光導波路に挟まれて形成される。複数の投光用光導波路は、流路の複数の異なる位置に光を導入する。複数の第一受光用光導波路の各々は、複数の異なる位置の対応する各々を通過した光を受け取る。第二受光用光導波路は、複数の第一受光用光導波路の各々を伝播した光を受け取り出力するように形成される。複数の投光用光導波路及び複数の第一受光用光導波路は、互いに間隔を隔て、流路に略直角に形成されてもよい。第二受光用光導波路は、流路に沿って形成されてもよい。
これらのように、マイクロチップが複数の投光用光導波路を有する場合、流路の異なる位置に、所定の時間差で光を入射することにより、流路を流れる試料の経時変化を測定することができる。これにより、本発明のマイクロチップを試料中の成分の分離に用いる場合、分離中の成分の回収タイミングを検知することができる。特に未知の試料を分離・回収する場合であっても、各成分の流出時間を予見することができるので、目的の成分を確実に回収することができる。また、複数の光導波路のうちの一つを参照用として用いることもできる。これらにより、試料中の成分を精度よく検出することができる。上述したように、本発明のマイクロチップは、光導波路が形成されたクラッド層において、光導波路と交差するように流路が形成されているので、位置合わせをすることなく流路を隔てた光導波路の一方側を投光用、他方側を受光用とすることができる。そのため、複数の光導波路が配置された構造を容易に形成することができる。
本発明によれば、光導波路と流路とは必ずしも同じ平面内で交差していなくてもよく、光導波路の一端から入射した光が流路を通る試料によって何らかの作用を受け、他端から出力される構成となっていればよい。
本発明の第二の観点では、光導波路は、流路に接するように形成される。流路と接するのは、光導波路の一部であればよく、光導波路は、流路に接する領域と、その領域に光を導入する投光用光導波路と、その領域を伝播した光を受け取り出力する受光用光導波路とから構成することができる。このようにすると、流路と光導波路とが接する部分において、エバネッセント波と試料が相互作用し、試料中の成分を検出することができる。
本発明の第三の観点では、光導波路は干渉計としての機能を果たす。光導波路は、投光用光導波路と受光用光導波路を有する。投光用光導波路は、クラッド層内で第一投光用光導波路と第二投光用光導波路に分岐する。受光用光導波路は、クラッド層内で第一受光用光導波路と第二受光用光導波路に分岐する。流路は、第一投光用光導波路と第一受光用光導波路の間、および、第二投光用光導波路と第二受光用光導波路の間を通るように形成される。第一投光用光導波路から流路に導入された第一の光は、流路を通過し、第一受光用光導波路に入射する。第二投光用光導波路から流路に導入された第二の光は、流路を通過し、第二受光用光導波路に入射し、第一の光と第二の光は受光用光導波路で合成される。その干渉の様子から流路の様子を検出することができる。
本発明の第四の観点では、光導波路は、流路に光を導入する投光用光導波路と、流路を通過した光を、受け取り、出力する受光用光導波路と、加温用光導波路とを有する。加温用光導波路は、投光用光導波路より流路の上流側に形成されている。加温用光導波路は、流路に交差するように形成されても、流路に接するように形成されても、流路を取り囲むように形成されてもよい。加温用光導波路と流路の境界面は着色されている。加温用光導波路に導入された光は、着色された境界面で吸収され、境界面に接する流路中の試料は加温される。このように、新たな外部ヒーターもしくは電気回路を形成することなく、適温で試料が検出されうる。これにより、簡略なマイクロチップで、試料を精度よく分析することができる。
本発明の第五の観点では、微細な流路を有するマイクロチップにおいて、近接場光を利用することによって、試料の検出を行う。光導波路は、流路に沿い、流路に露出する面を持つ第一光導波路と、第二光導波路とを有する。流路は、第一光導波路と第二光導波路に挟まれて形成されており、流路の幅は、試料中の生体分子のサイズ程度である。流路の幅は、50nm以下であってもよい。あるいは、マイクロチップは、近接場プローブを更に有してもよい。近接場プローブの先端は、流路内部に達する。光導波路は、流路に沿うように形成され、近接場プローブの先端に対向する領域において、流路に露出する。光導波路の表面は、試料中の生体分子を吸着するように処理されてもよい。このような構成により、極めて微小な流路においても、試料中の成分を光学的に検出することができる。
本発明のマイクロチップにおいて、流路は、試料を分離する分離領域と、分離領域で分離された試料を検出する検出領域とを含むことができ、検出領域において、光導波路から流路に光が導かれるようにできる。検出領域は、分離領域と直線で繋がっている必要はなく、角度を有して設けられてもよい。
上述したように、本発明のマイクロチップによれば、流路および光導波路がクラッド層に形成されているので、流路や光導波路のサイズを所望の値に制御性よく作製することができる。たとえば微細加工により流路に分離領域を設けた場合、検出領域の流路の体積が大きいと、せっかく分離領域で分離された成分が検出領域において混合してしまい、試料中の成分の検出が行えなかったり、分離した成分を回収することができなくなったりする。本発明のマイクロチップによれば、検出領域も微細に形成することができるので、分離領域で分離された試料を分離された状態のまま精度よく検出することができ、分離された成分を回収することもできる。本発明によれば、光導波路のサイズを自在に制御することができるので、流路の深さをたとえば50nm〜5μm程度としてナノ加工により分離領域を形成することができる。
本発明のマイクロチップにおいて、流路は、クラッド層に形成された溝とすることができる。クラッド層表面に作り込まれた溝により流路が実現されるので、流路のサイズ(幅、深さ)を所望の値に制御性よく作製することができる。たとえば流路の幅を流路の深さよりも大きく形成することもできる。このように、流路のサイズを自在に制御することができるので、流路を、試料を精度よく分離するのに要求される深さに形成するとともに試料を精度よく検出するのに要求される幅に形成することができる。たとえば、溝の深さを5μm以下とすることができる。溝の深さの下限は特に限定されないが、たとえば50nm以上とすることができる。
本発明のマイクロチップにおいて、光導波路は、端部において、光ファイバと接続可能に形成することができる。端部を斜面状に形成することもできる。クラッド層に形成された光導波路を光ファイバと接続可能に形成することにより、たとえば外部の光源からの光や外部の検出器への光の伝達を光ファイバを介して行うことができる。また、このように構成すれば、必要に応じて光ファイバをマイクロチップに取り付けたり取り外したりすることができ、マイクロチップの構成を簡略化することができる。光ファイバは、マイクロチップの側面や上面に取り付け可能に構成することができる。マイクロチップにおいて、試料を投入したり分離した試料を取り出したりするための液溜めは、マイクロチップの上面側に設けられることが多い。そのため、光ファイバがマイクロチップの上面側に取り付け可能に構成された場合、操作面を同じ面とすることができ、マイクロチップの取り扱いの利便性を高めることができる。
本発明によれば、マイクロチップの製造方法は、(a)下地基板に、下部クラッド層を形成するステップと、(b)下部クラッド層に、少なくとも一つ溝を、形成するステップと、(c)溝内に、下部クラッド層よりも屈折率の高い光導波路を、形成するステップと、(d)光導波路を覆うように、下部クラッド層の上に、光導波路よりも屈折率の低い上部クラッド層を、形成するステップと、(e)光導波路と光学的に作用するように、流路を、形成するステップとを有する。
流路を形成するステップ(e)において、光導波路と交差するように流路を形成してもよい。流路を形成するステップ(e)において、光導波路を分割するように流路を形成してもよい。流路を形成するステップ(e)において、光導波路と接するするように流路を形成してもよい。
溝を形成するステップ(b)において、斜面を有するように溝の端部を形成してもよい。溝を形成するステップ(b)において、溝の表面に反射層を形成してもよい。上部クラッド層を形成するステップ(d)において、下部クラッド層と実質的に屈折率が等しくなるように上部クラッド層を形成してもよい。
流路は、エッチングにより形成することができる。また、光導波路が形成されたフィルムを金型で打ち抜く等して流路を形成し、フィルムを他のフィルムと貼りあわせて流路および光導波路が形成されたクラッド層を製造することもできる。このようにして形成された流路の表面は、親水性処理や試料が流路に付着するのを防止する付着防止処理を行うことができる。付着防止処理としては、細胞壁を構成するリン脂質に類似した構造を有する物質やフッ素樹脂を流路の側壁に塗布することができる。
本発明によれば、流路を備えるクラッド層と、流路と交差するようにクラッド層内に形成された複数の投光用光導波路及びの受光用光導波路とを含むマイクロチップにおいて、(A)流路に、試料を、流すステップと、(B)複数の投光用光導波路を介して、流路の複数の位置に略同時に、光を、入射するステップと、(C)光を、複数の位置のそれぞれにおける試料の中を、通過させるステップと、(D)複数の位置のそれぞれを通過した光を、複数の受光用光導波路を介して、取り出すステップと、(E)取り出された光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
ここで、略同時とは複数の光源を用いて複数の光導波路に実質的に同時に光を入射することであってもよく、一つの光源からの光を走査して複数の光導波路に略同時に光を入射することであってもよい。光の特性とは、強度特性や波長特性等光のプロファイルのことである。この方法によれば、複数の光導波路から略同時に光が入射され、流路を通過した光を流路の位置に対応付けて取り出すことができるので、試料中の成分の分離パターンを検出することができる。これにより、本発明のマイクロチップを試料中の成分の分離に用いる場合、分離中の成分の回収タイミングを検知することができる。特に未知の試料を分離・回収する場合であっても、各成分の流出時間を予見することができるので、目的の成分を確実に回収することができる。
分析するステップ(E)において、複数の位置における資料を略同時に分析してもよい。また、入射するステップ(B)と、取り出すステップ(D)とが、所定の時間間隔で複数回繰り返されてもよい。この場合、分析するステップ(E)において、複数の位置と所定の時間間隔に基づいて、流路を通る試料の移動速度が検出される。
本発明によれば、流路を備えるクラッド層と、流路と交差するようにクラッド層内に形成された複数の投光用光導波路と、流路に沿うようにクラッド層中に形成された受光用光導波路とを含むマイクロチップにおいて、(F)流路に、試料を、流すステップと、(G)複数の投光用光導波路を用い、流路の複数の位置に順次光を入射するステップと、(H)光を、複数の位置のそれぞれにおける試料の中を、通過させるステップと、(I)複数の位置のそれぞれを通過した光を、受光用光導波路を介して、順次取り出すステップと、(J)取り出された光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
順次、光を入射するステップ(G)において、試料が流路を流れる速度よりも充分速く、光を走査してもよい。光を走査するとは、一つの光源からの光を用いて行うこともできるが、複数の投光用光導波路の一方側の端部に複数の光源を直接、または光ファイバ等を介して接続しておき、これらの複数の光源を順次発光させることにより行うこともできる。ここで、光を走査する速度は、試料が流路のどの位置にあるかを検出可能な程度に、試料が流路を流れる速度に対して充分速くすることができる。このようにすれば、複数の投光用光導波路に光を略同時に入射したのと同様の検出結果を得ることができる。この方法によれば、一つの光源を用いて複数の光導波路に光を入射することができる。
複数の光導波路から略同時に光が入射され、流路を通過した光を流路の位置に対応付けて順次取り出すことができるので、試料中の成分の分離パターンを検出することができる。従来、流路を流れる試料の位置を検出するのに、顕微鏡やCCDが用いられていたが、微細な流路を流れる試料の位置を検出する場合、顕微鏡やCCDでは、上部からの観察しかできず、また、狭い範囲のイメージしか得ることができなかった。そのため、流路の上部から複数回にわたって流路のイメージを撮影し、それらのイメージを合成することによってしか試料中の成分の分離パターンを検出することはできなかった。また、深さの浅い流路を上部から撮影した場合、充分な光路長がとれないので、試料成分の濃度に関する情報までを得ることはできなかった。本発明の成分検出方法によれば、光源からの光を複数の光導波路の一方側から流路に順次入射するだけで、流路の幅方向を通過した光を取り出して流路中の成分を検出することができるので、出力光の強度特性等から試料成分の濃度に関する情報を得ることもできる。
入射するステップ(G)と、取り出すステップ(I)とが、所定の時間間隔で複数回繰り返されてもよい。この場合、分析するステップ(J)において、複数の位置と所定の時間間隔に基づいて、流路を通る試料の移動速度が検出される。これにより、本発明のマイクロチップを試料中の成分の分離に用いる場合、分離中の成分の回収タイミングを検知することができる。特に未知の試料を分離・回収する場合、従来の装置ではその試料の各成分の移動速度を検出することができなかったが、各成分の移動速度を検出することができるので、目的の成分を確実に回収することができる。また、流路を流れる試料の移動速度を検出することができるので、移動速度に基づいて、試料中の成分をより精度よく検出することができる。
本発明によれば、流路を備えるクラッド層と、流路と接するようにクラッド層内に形成された光導波路とを含むマイクロチップにおいて、(K)流路に、試料を、流すステップと、(L)光導波路の一方側から、光を入射するステップと、(M)流路と光導波路が接する領域において、光のエバネッセント波試料との相互作用が発生するステップと、(N)光導波路の他方側から、光を、取り出すステップと、(O)取り出された光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
本発明によれば、流路を備えるクラッド層と、クラッド層内に形成され、流路に交差する第一投光用光導波路と第二投光用光導波路に分岐する投光用光導波路と、クラッド層内に形成され、流路に交差する第一受光用光導波路と第二受光用光導波路に分岐する受光用光導波路を含むマイクロチップにおいて、(P)流路に、試料を、流すステップと、(Q)投光用光導波路から導入された光を、第一投光用光導波路を伝播する第一の光と、第二投光用光導波路を伝播する第二の光とに、分岐させるステップと、(R)第一の光を、第一投光用光導波路を介して、流路に、導入するステップと、(S)第二の光を、第二投光用光導波路を介して、流路に、導入するステップと、(T)流路を通過した第一の光を、第一受光用光導波路により、受け取るステップと、(U)流路を通過した第二の光を、第二受光用光導波路により、受け取るステップと、(V)第一の光と第二の光とを、受光用光導波路において合成するステップと、(W)合成された光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
本発明によれば、流路を備えるクラッド層と、流路に交差するようにクラッド層内に形成された投光用光導波路と、受光用光導波路と、加温用光導波路とを含み、加温用導波路は投光用光導波路より流路の上流側に形成され、加温用光導波路と流路の境界面は着色されているマイクロチップにおいて、(AA)流路に、試料を、流すステップと、(BB)加温用光導波路に、加温用光を、導入するステップと、(CC)加温用光によって、加温用光導波路と流路の境界面を、温めるステップと、(DD)温められた境界面に接触する試料を、温めるステップと、(EE)投光用光導波路に導入された光を、温められた試料の中を、通過させるステップと、(FF)光を、受光用光導波路を介して、取り出すステップと、(GG)取り出された光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
本発明によれば、流路を備えるクラッド層と、流路に沿うようにクラッド層内に形成された光導波路と、先端が流路内部に達する近接場プローブとを含み、光導波路は、近接場プローブの先端に対向する領域で、流路に露出するマイクロチップにおいて、(HH)流路に、試料を、流すステップと、(II)近接場プローブに、光を、導入するステップと、(JJ)近接場プローブの先端近傍に、近接場を、発生させるステップと、(KK)近接場と試料との相互作用により、散乱光を、発生させるステップと、(LL)散乱光を、光導波路により、受け取るステップと、(MM)受けとった散乱光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
本発明によれば、流路を備えるクラッド層と、流路に沿うようにクラッド層内に形成され、流路に露出する面を持つ第一光導波路と、第二光導波路とを含むマイクロチップにおいて、(NN)流路に、試料を、流すステップと、(OO)第一光導波路に、光を、導入するステップと、(PP)第一光導波路の、流路に露出する面の近傍に、近接場を、発生させるステップと、(QQ)近接場と試料の相互作用により、散乱光を、発生させるステップと、(RR)散乱光を、第二光導波路により、受け取るステップと、(SS)受けとった散乱光の特性に基づき、流路を流れる試料を、分析するステップとを有する成分検出方法が提供される。
【図面の簡単な説明】
図1は、従来の濃度測定装置を示す図である。
図2は、従来の毛細管電気泳動装置を示す図である。
図3Aは、本発明の第一の実施の形態に係るマイクロチップを示す模式図である。
図3Bは、図3AにおけるマイクロチップのA−A’の断面図である。
図3Cは、図3BにおけるマイクロチップのB−B’の断面図である。
図4は、本発明の第一の実施の形態に係るマイクロチップの他の例を示す模式図である。
図5は、本発明の第二の実施の形態に係るマイクロチップの構成を示す断面図である。
図6Aは、本発明の第三の実施の形態に係るマイクロチップを示す模式図である。
図6Bは、本発明の第三の実施の形態に係るマイクロチップの構成を示す断面図である。
図7は、本発明の第四の実施の形態に係るマイクロチップの構成を示す断面図である。
図8A及び8Bは、本発明の第四の実施の形態において、受光用光導波路から出力された光の強度を示す図である。
図9は、本発明の第四の実施の形態に係るマイクロチップの変形例を示す模式図である。
図10Aは、本発明の第五の実施の形態に係るマイクロチップの構成を示す断面図である。
図10Bは、図10AにおけるマイクロチップのC−C’の断面図である。
図11Aは、本発明の第五の実施の形態に係るマイクロチップの変形例の構成を示す断面図である。
図11Bは、図11AにおけるマイクロチップのD−D’断面図である。
図11Cは、図11Aにおけるマイクロチップの側面図である。
図12Aは、本発明の第五の実施の形態に係るマイクロチップの他の変形例の構成を示す断面図である。
図12Bは、本発明の第五の実施の形態に係るマイクロチップの更に他の変形例の構成を示す断面図である。
図12Cは、図12BにおけるマイクロチップのD−D’断面図である。
図13は、本発明の第六の実施の形態に係るマイクロチップの構成を示す断面図である。
図14Aは、本発明の第七の実施の形態に係るマイクロチップの構成を示す断面図である。
図14Bは、図14Aにおけるマイクロチップの構成の詳細図である。
図15Aは、本発明の第八の実施の形態に係るマイクロチップの構成を示す模式図である。
図15Bは、図15AにおけるマイクロチップのA−A’断面図である。
図16は、本発明の第九の実施の形態に係るマイクロチップの構成を示す模式図である。
図17A〜17Hは、図3A〜3Cに示したマイクロチップの製造工程を示す図である。
図18A〜18Dは、マイクロチップの光導波路の製造工程の一例を示す図である。
図19A〜19Cは、マイクロチップの製造工程の一例を示す図である。
図20A及び20Bは、マイクロチップの製造工程の一例を示す図である。
図21A〜21Cは、マイクロチップの製造工程の一例を示す図である。
図22A及び22Bは、マイクロチップと光ファイバの接続の一例を示す図である。
図23A及び23Bは、図22A及び22Bに示したマイクロチップと光ファイバの上面図である。
【発明を実施するための最良の形態】
<第一の実施の形態>
図3A〜3Cは、本発明の第一の実施の形態に係るマイクロチップの構成を示す模式図である。本実施の形態におけるマイクロチップ10は、試料中の成分を分離する機能を有する。図3Aは、マイクロチップ10の上面図を示す。マイクロチップ10には液溜め22a、液溜め22b、液溜め23、液溜め24、液溜め25a、および液溜め25bが設けられる。また、マイクロチップ10には光コネクタ40aを介して投光用光ファイバ42aが接続され、光コネクタ40bを介して受光用光ファイバ42bが接続される。
図3Bは、図3AにおけるマイクロチップのA−A’断面図である。マイクロチップ10は、基板12と、カバー部材20とを含む。基板12は、下部クラッド層14と、下部クラッド層14上に設けられた上部クラッド層18とを含む。基板12内には、投光用光導波路32aおよび受光用光導波路32bが形成される。基板12表面には、投光用光導波路32aと受光用光導波路32bの間に分離用流路28が設けられる。投光用光導波路32aおよび受光用光導波路32bは、分離用流路28を通る試料中の成分を検出するのに用いられる。投光用光ファイバ42aは、図示していない外部の光源に接続され、受光用光ファイバ42bは、図示していない外部の検出器に接続される。
図3Cは、図3BにおけるマイクロチップのB−B’断面図である。液溜め22aと液溜め22bとの間には投入用流路26が、投入用流路26と液溜め24の間には分離用流路28が、液溜め25aと液溜め25bとの間には回収用流路27が形成されている。分離用流路28には検出部30が設けられ、検出部30の両側に分離用流路28と交差するように投光用光導波路32aおよび受光用光導波路32bが配置される。これにより、検出部30を通る試料を光学的に分析・検出することができる。各々の液溜め22a、22b、23、24、25aおよび25bには電極が設けられており、これを用いてたとえば分離用流路28の両端に電圧を印加することができる。
マイクロチップ10の外形寸法は用途に応じて適宜な値が選択されるが、ここでは、たとえば、縦5mm〜5cm、横3mm〜3cmである。また、下部クラッド層14の厚さはたとえば15μmとすることができ、カバー部材20の厚さは約200μmとすることができる。分離用流路28の幅は、投光用光導波路32aから分離用流路28に光を導入し、分離用流路28を通過した光を受光用光導波路32bから取り出す際に、透過光を精度よく検出するために必要な光路長、たとえば幅50〜200μmに形成することができる。分離用流路28の深さは、分離用流路28を流れる試料中の成分を分離できる程度の深さ、たとえば50nm〜5μmとすることができる。投光用光導波路32aおよび受光用光導波路32b、ならびに上部クラッド層18の厚さは、特に限定されないが、分離用流路28の深さよりも薄く形成することができる。投光用光導波路32aおよび受光用光導波路32bの幅は、たとえば1μm〜5μmとすることができる。
下部クラッド層14、投光用光導波路32a、受光用光導波路32b、上部クラッド層18、およびカバー部材20は、石英系材料または有機系ポリマー材料により形成することができる。投光用光導波路32aおよび受光用光導波路32bは、下部クラッド層14および上部クラッド層18よりも屈折率が高くなるように形成される。これらの部材の屈折率の制御は、後述するように、材料に応じて適宜行われる。
以下、図17A〜17Hおよび図18A〜18Dを参照して、下部クラッド層14、投光用光導波路32a、受光用光導波路32b、上部クラッド層18、およびカバー部材20を石英系材料で構成したマイクロチップ10の製造方法を説明する。シリコンまたは石英ガラスから構成された下地基板61上に、テトラエチルオルソシリケート(Si(OC2H5)4)からなる有機ソースをオゾン(O3)により分解する常圧化学気相堆積法(TEOS−O3によるAPCVD(Atmospheric pressure CVD))を用いて、リン(P)とボロン(B)を添加した石英系膜(BPSG:SiO2+P2O5+B2O3)により下部クラッド層14を成膜する(図17A)。その後、下部クラッド層14に溝を形成し、その溝内に光導波路32を形成する(図17B)。
光導波路32の形成方法について、図18A〜18Dを参照して説明する。まず、フオトリソグラフイ及びリアクティブイオンエッチング(RIE)または反応性イオンビームエッチング(RIBE)により、下部クラッド層14に溝を形成する。この溝は、所望の光導波路32の形状に形成する。本実施の形態において、この溝の端部は斜面を有するように形成される(図18A)。次いで、溝の表面に、クロムまたはチタン等を蒸着し、その上に金、銀、またはアルミニウム等を蒸着して反射層66を形成する(図18B)。続いて、溝を埋め込むように、下部クラッド層14全面にP、ゲルマニウム(Ge)を添加した石英系膜(GPSG:SiO2+P2O5+GeO2)からなるコア層62を成膜する(図18C)。続いて、溝外部に形成された反射層66およびコア層62を研磨により除去して所定の形状の光導波路32を得る(図18D)。ここで、光導波路32は、たとえば幅が約5μm、厚さが約1μmから5μmとなるように形成される。光導波路32は、分離用流路28に導入する波長の光を伝達できる厚さに形成されていれば、さらに薄くすることもできる。
図17Cに戻り、光導波路32を覆うように、下部クラッド層14の上に上部クラッド層18を成膜する(図17C)。上部クラッド層18は下部クラッド層14と同様にして形成することができる。下部クラッド層14、コア層62および上部クラッド層18を成膜後にはそれぞれアニール処理を行うのが好ましい。なお、下部クラッド層14、上部クラッド層18、およびコア層62(図18C参照)の材料としては、上記したものの他、P、GeあるいはBのうち一または複数のドーパントを含む石英系材料、あるいはSiON膜、SiN膜等種々の材料を用いることができる。下部クラッド層14、コア層62、および上部クラッド層18の屈折率は、P、Ge、またはB等のドーパントの濃度を変えることにより制御することができる。ここで、下部クラッド層14と上部クラッド層18の屈折率は同じになるように形成するのが好ましい。こうすることにより、後に形成される投光用光導波路32aおよび受光用光導波路32bの周囲を同じ屈折率を有する材料で取り囲むことができるので、投光用光導波路32aおよび受光用光導波路32bにおける光の伝達率を高く保つことができる。
次に、エッチングにより上部クラッド層18の光導波路32の上方領域に光導波路32に達する接続孔18aおよび18bを形成し(図17D)、接続孔18aおよび18bを埋め込むように、上部クラッド層18上部にコア層64を成膜する。コア層64はコア層62と同様の材料により同様に形成する(図17E)。続いて、接続孔18aおよび18b外部に形成されたコア層64をたとえばRIEにより除去し、接続部31aおよび31bを形成する(図17F)。
次に、光導波路32を二つに分割するように、エッチングにより光導波路32に交差する分離用流路28を形成する。これにより、投光用光導波路32aおよび受光用光導波路32bが形成される(図17G)。なお、分離用流路28の表面は、たとえば熱酸化法やCVD法(化学気相成長法)によりシリコン酸化膜とすることができる。これにより、分離用流路28に試料の水溶液を流すことができる。次に、接続部21aおよび接続部21bが形成されたカバー部材20を上部クラッド層18上に配置し、接着剤等で上部クラッド層18に固定する。接続部21aおよび接続部21bは、光ファイバを保持する光コネクタを収容可能に形成される(図17H)。ここで、接続部21aおよび21bは、接続される光コネクタに応じて種々のサイズに形成され得るが、たとえば直径3mmとすることができる。
以上によりマイクロチップ10が形成される。投光用光導波路32aおよび受光用光導波路32bの端部に、反射層66が形成された斜面を設けることにより、上方から入射した光を投光用光導波路32aおよび受光用光導波路32b中を介して再び上方から取り出すことができる。このようにして形成されたマイクロチップ10に光ファイバを保持した光コネクタを接続することにより、図3A〜3Cに示した構成とすることができる。マイクロチップ10の投光用光導波路32aおよび受光用光導波路32bと光ファイバとの接続は、既存の各種光コネクタ等を用いて行うことができる。光ファイバは、マイクロチップ10に固定することもできるが、着脱可能な光コネクタを用いて取り外し可能に接続することもできる。
なお、投光用光導波路32aおよび受光用光導波路32bは、図4に示したように、投光用光ファイバ42aおよび受光用光ファイバ42bと接続する部分において幅広となるように形成することができる。このようにすれば、投光用光導波路32aと投光用光ファイバ42aとの接続、および受光用光導波路32bと受光用光ファイバ42bとの接続をより確実に行うことができる。
次に、下部クラッド層14、投光用光導波路32a、受光用光導波路32b、上部クラッド層18、およびカバー部材20を有機系ポリマー材料で形成する方法を例示する。ここでも、図17A〜17Hを参照して説明する。まず、下地基板61上にスピンコート法によりエポキシ樹脂を塗布したのち、加熱処理を行って樹脂を固化させ、下部クラッド層14を形成する。次に、石英ガラスの例で図18A〜18Dを参照して説明したのと同様にフオトリソグラフイ及びリアクティブイオンエッチング(RIE)または反応性イオンビームエッチング(RIBE)により、下部クラッド層14に所定の形状の溝を形成し(図18A)、反射層66を形成する(図18B)。続いて、下部クラッド層14と同様の方法により、下部クラッド層14の構成材料よりも屈折率の高い材料(たとえばエポキシ樹脂)を用いてコア層62を形成する(図18C)。溝外部に形成された反射層66およびコア層62を除去して所定の形状の光導波路32を得る(図18D)。次に、下地基板61上の全面に、下部クラッド層14と同様の方法により、下部クラッド層14と同一の構成材料を用いて上部クラッド層18を形成する(図17C)。なお、下部クラッド層14、コア層62および上部クラッド層18は、それらの各下地層上に光硬化性樹脂を塗布したのち、この光硬化性樹脂に対して光照射を行って樹脂を硬化させることにより形成するようにしてもよい。
その後、たとえばRIEにより接続孔18aおよび18bを形成し(図17D)、コア層62と同様の方法により、コア層62と同一の構成材料を用いてコア層64を形成する(図17E)。続いて、接続孔18aおよび18b外部に形成されたコア層64をたとえばRIEにより除去し、接続部31aおよび31bを形成する(図17F)。次に、上部クラッド層18上に、フォトレジスト膜を形成し、フォトレジスト膜に所定の露光処理および現像処理を施してフォトレジスト膜を分離用流路28に対応する所定のパターンに加工する。次に、フォトレジスト膜をマスクとして、たとえばRIEにより光導波路32の異方性エッチングを行う。これにより、光導波路32と交差する分離用流路28が形成される。その後、フォトレジスト膜を除去する(図17G)。
以上のように、本実施の形態においては、下部クラッド層14上に光導波路32を形成した後に、分離用流路28を形成して光導波路32を投光用光導波路32aおよび受光用光導波路32bに分断するので、従来、問題となっていた投光用光ファイバと受光用光ファイバの位置合わせの問題を解決することができる。
また、投光用光導波路32aおよび受光用光導波路32bは、以下の方法により形成することもできる。以下、図19A〜19Cおよび図20A、20Bを参照して説明する。まず、機械加工あるいはエッチング法によりマスタを製作し、このマスタを電気鋳造反転して製作した金型を用いて、射出成形または射出圧縮成形により溝部70が形成された下部クラッド層14を形成する。ここでも、溝部70の端部は斜面状に形成され、その斜面の表面は鏡面加工が施される(図19A)。その後、下部クラッド層14の溝部70に、硬化させると下部クラッド層14よりも屈折率が高くなるコア層料71をモノマー状態で塗布し(図19B)、その上から下部クラッド層14と同様の材料により構成された上部クラッド層18をクランプ治具を用いて押しつけ、余分なコア層料71を除去した後、全体に紫外線を照射してコア層料71を硬化させる(図19C)。図20Aは、このようにして形成された基板の上面図を示す。このようにして形成された基板に、たとえばRIEにより分離用流路28を形成して投光用光導波路32aおよび受光用光導波路32bを形成することができる(図20B)。
また、図21Aに示すように、所定の領域に光導波路32が形成されたフィルム状のクラッドシート72を準備し、分離用流路28に対応する領域を金型で打ち抜く等して開口部74を形成する(図21B)。その後、クラッドシート72を、クラッドシート72を構成する材料と同じ材料により構成されたクラッド基板76に貼りあわせて下部クラッド層14、分離用流路28、投光用光導波路32a、および受光用光導波路32bを形成することができる(図21C)。ここで、クラッドシート72とクラッド基板76の貼りあわせは、超音波圧着や熱圧着、または接着剤等により行うことができる。
下部クラッド層14、投光用光導波路32a、受光用光導波路32b、上部クラッド層18、およびカバー部材20は、用途に応じて種々の材料により構成することができるが、投光用光導波路32aおよび受光用光導波路32bは、下部クラッド層14および上部クラッド層18を構成する材料よりも屈折率の高い材料により構成することができる。たとえば、下部クラッド層14および上部クラッド層18は、屈折率が1.52程度のエポキシ樹脂により構成することができ、投光用光導波路32aおよび受光用光導波路32bは、屈折率が1.54程度のエポキシ樹脂により構成することができる。また、下部クラッド層14、投光用光導波路32a、受光用光導波路32b、上部クラッド層18、およびカバー部材20は、投光用光導波路32aおよび受光用光導波路32bの屈折率が下部クラッド層14および上部クラッド層18の屈折率よりも大きいという条件を満たすものであれば、他の材料、たとえば、ポリイミド、ポリメチルメタクリレート(PMMA:Polymethyl Methacrylate)などのアクリル樹脂、ポリエチレン、ポリスチレン、管状ポリオレフィンなどのポリオレフィン樹脂、PDMS、あるいは合成ゴムにより構成されていてもよい。
下部クラッド層14および光導波路32を疎水性の材料により構成した場合、分離用流路28を形成した後に、適宜、親水性を付与するための表面処理を行うことができる。親水性を付与するための表面処理としては、たとえば、親水基をもつカップリング剤を分離用流路28の側壁に塗布することができる。親水基をもつカップリング剤としては、たとえばアミノ基を有するシランカップリング剤が挙げられ、具体的にはN−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が例示される。これらのカップリング剤は、スピンコート法、スプレー法、ディップ法、気相法等により塗布することができる。また、流路壁に試料の分子が粘着するのを防ぐために、分離用流路28に付着防止処理を行うことができる。付着防止処理としては、たとえば、細胞壁を構成するリン脂質に類似した構造を有する物質を分離用流路28の側壁に塗布することができる。このような処理により、試料がタンパク質等の生体成分である場合、成分の変性を防ぐことができると共に、分離用流路28における特定の成分の非特異吸着を抑制することができ、回収率を向上することができる。親水性処理および付着防止処理としては、たとえば、リピジュア(登録商標、日本油脂社製)を用いることができる。この場合、リピジュア(登録商標)を0.5wt%となるようにTBEバッファ等の緩衝液に溶解させ、この溶液で分離用流路28内を満たし、数分間放置することによって分離用流路28の内壁を処理することができる。この後、溶液をエアガン等で吹き飛ばして分離用流路28を乾燥させる。付着防止処理の他の例としては、たとえばフッ素樹脂を分離用流路28の側壁に塗布することができる。
図3A〜3Cに戻り、マイクロチップ10を使って試料中の成分を分離して検出する方法を説明する。試料中の成分の検出に先立ち、マイクロチップ10の投光用光導波路32aは、投光用光ファイバ42aを介して外部の光源と接続され、受光用光導波路32bは、受光用光ファイバ42bを介して外部の検出器と接続される。検出器としては、たとえば吸光光度計等、受光用光ファイバ42bを介して伝達される光の特性を検出可能な種々の装置を用いることができる。
まず試料を液溜め22aまたは液溜め22bに注入する。液溜め22aに注入した場合は、液溜め22bの方向へ試料が流れるように電圧を印加し、液溜め22bに注入した場合は、液溜め22aの方向へ試料が流れるように電圧を印加する。これにより、試料は投入用流路26へと流入し、結果的に投入用流路26の全体を満たす。この時、分離用流路28上では、試料は投入用流路26との交点にのみ存在する。
次に、液溜め22a、液溜め22bの間への電圧印加をやめ、液溜め23と液溜め24の間に、試料が液溜め24の方向へ流れるように電圧を印加する。これにより試料は分離用流路28を通過することになる。マイクロチップ10は、分離用流路28において、たとえばキャピラリー電気泳動の原理を利用して試料中の成分を分離することができる。これにより、分離用流路28を通過した試料は種々の成分のバンドに分離される。また、分離用流路28は、内部に、たとえばナノ加工技術により形成された多数の柱状体が一定の間隔で配設された構成とすることもできる。このように配設された柱状体の間隔を通る際の通りやすさは、分子のサイズ等にしたがって変化する。そのため、様々なサイズの分子を含む試料を多数の柱状体が配設された分離用流路28中に導くと、その大きさにしたがって、分離用流路28を通過する速度が異なり、それぞれ異なる速度で移動するバンドに分離される。バンドとは、試料中に含まれる各成分が細い幅の集団を形成したものを指す。
これらの分離されたバンドは、検出部30に至ると、光学的な方法で検出される。光学的な検出方法としては、たとえば可視・紫外線吸収スペクトル法(UVスペクトル)を用いることができる。たとえば、タンパク質は280nm付近に極大をもつ紫外吸収スペクトルを示し、DNAやRNAは260nm付近に極大をもつ紫外吸収スペクトルを示す。したがって、タンパク質、DNA、またはRNAを検出対象とする場合、投光用光導波路32aおよび受光用光導波路32bは、UV透過性の材料により構成するのが好ましい。また、たとえばヘモグロビン等の色素タンパク質の場合、たとえば550nm付近に極大をもつ吸収スペクトルを示す。投光用光導波路32aおよび受光用光導波路32bは、検出対象の成分の吸収スペクトルの極大値となる波長の光を透過する材料により構成することができる。検出部30において、投光用光導波路32aを介して外部の光源からの光が入射され、分離用流路28中の分離されたバンドを透過した光は受光用光導波路32bを介して外部の検出器に伝達される。これにより、外部の検出器において、分離されたバンドを透過した光の強度等の特性を検出することができる。既知の物質であれば、その物質の吸光係数を用いて、試料の吸光度から試料の濃度を検出することができる。分離されたバンドは、さらに、バンドごとに回収することができる。所望のバンドが検出部30を通過したことを目安に、液溜め23、液溜め24間への電圧印加をやめ、代わりに液溜め25aと液溜め25bの間に電圧を印加する。すると分離用流路28中と、回収用流路27の交差点に存在するバンドは、回収用流路27に流れこむ。液溜め25aと液溜め25bの間への電圧印加を一定時間の後に停止すると、液溜め25aまたは液溜め25bに、分離されたバンドに含まれる所望の成分が回収される。本実施の形態におけるマイクロチップ10は、電圧を印加することによって試料を移動させる方式を採用しているが、電圧の印加に代え、圧力を加える方式や毛細管現象により試料を移動させる方式を採用することもできる。
本実施の形態におけるマイクロチップ10は、様々な物質を検出・定量することに応用できるが、グルコース、アラニンアミノトランスフェラーゼ、アルブミン、アルカリ性フォスファターゼ、アミラーゼ、カルシウムイオン、総コレステロール、過酸化脂質、クレアチニン、カリウムイオン、ビリルビン、総蛋白などの血液生化学検査;Hbs抗原・抗体、HCV抗体、HIV抗体などの免疫血清学的検査;CEA、CA19−9、PSA、CA−125などの腫瘍マーカーの分析への応用が例示される。
グルコースの検出の場合、分離用流路28の検出部30にグルコースオキシターゼ、ペルオキシダーゼ、ならびに4−アミノアンチピリンおよびN−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−m−トルイジン・ナトリウム等の発色性の混合微粒子またはこれらを含有する乾燥試薬ビーズ等を導入しておくことにより、発色性の混合微粒子の発色に基づきグルコースの存在を確認することができる。この原理は以下のとおりである。検出部30において、水分を吸収してゲル化した上記試薬ビーズ内にグルコースが移行すると、グルコースはグルコースオキシダーゼの作用により過酸化水素とグルコン酸に分解される。分解された過酸化水素は、ペルオキシターゼの作用により、4−アミノアンチピリンおよびN−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−m−トルイジン・ナトリウムと反応し、キノン系色素が生成し、赤紫色に発色する。このキノン系色素の呈色を測定することにより、グルコースの定量が行える。本実施の形態におけるマイクロチップ10は、微細な構造に形成することができるので、微量の試料でも精度のよい測定をすることができる。
なお、上記の乾燥試薬ビーズは次のようにして作製することができる。まず賦形剤として、アガロースやポリアクリルアミド、メチルセルロースなどの吸水性ポリマーを含むゾルを調製する。こうしたゾルは時間とともに自然にゲル化する。このゾルと、所定量のグルコースオキシダーゼ、ペルオキシダーゼ、4−アミノアンチピリンおよびN−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−m−トルイジン・ナトリウムを混合する。こうして得られたゾルを乾燥空気中に噴霧することにより液滴とする。当該液滴は落下中にゲル化し、乾燥するため、目的の乾燥試薬ビーズを得ることができる。
また、上記の乾燥試薬ビーズの作製方法として、次の方法を採用することもできる。フラスコなどの表面において、上記の試薬を含有するゾルをゲル化させた後、真空凍結乾燥させる。その結果、多数の空胞を有する固形物が得られる。この固形物は容易に粉砕でき、ビーズないしパウダーとすることが可能である。
次に、以上のようにして形成した乾燥試薬ビーズをマイクロチップ10に充填させる方法を説明する。まず、液溜め23から適量の吸水部材を挿入しておく。次いで、上記乾燥試薬ビーズおよび水の混合体を液溜め23から流し込む。当該乾燥試薬ビーズは、毛細管現象により分離用流路28中を液溜め24の方向への移動することにより充填される。当該乾燥試薬ビーズ中に含まれる水分は上記の吸水部材により吸収される。吸水部材による吸水が終了後、当該吸水部材を取り除き、マイクロチップ10を真空乾燥、減圧乾燥、または真空凍結乾燥等により乾燥し、乾燥試薬ビーズをマイクロチップ10の分離用流路28に充填することができる。また、たとえば試薬およびバインダを溶剤に溶解ないし均一に懸濁させ、その溶液ないし懸濁液を分離用流路28に流し込み、真空乾燥、減圧乾燥、または真空凍結乾燥等により乾燥させることにより発色性の混合微粒子をマイクロチップ10に充填することもできる。
また、試料中のHCV抗体を検出することを目的として、たとえば固層免疫定量法やELISA法(Enzyme−Linked immuno−sorbent Assay)を利用することができる。この場合、たとえばHCVの構造蛋白であるコア蛋白を分離用流路28の検出部30底面に付着させる。具体的には、バッファーに当該コア蛋白を分散させたものを分離用流路28に導入することにより、分離用流路28の底面に当該コア蛋白を付着させることができる。その後、当該コア蛋白を認識するHCV抗体が試料中に含まれるときは、当該抗体が上記コア蛋白と結合し、抗体−抗原複合体を形成する。ついで、バッファーを液溜め22aまたは液溜め22bより導入し、当該バッファーを分離用流路28内に流通させることにより分離用流路28内を洗浄する。そして上記HCV抗体を認識するポリクローナル抗体(二次抗体)を分離用流路28へ導入し、二次抗体を上記抗体−抗原複合体にさらに結合させ、再度分離用流路28内を上記と同様にして洗浄する。このとき、二次抗体に蛍光標識またはアルカリホスファターゼなどの酵素を結合させておくことにより、HCV抗原の高感度な検出が実現する。蛍光標識を二次抗体に結合させた場合は、ブラックライトなどで分離用流路28内を照射することにより、HCV抗体の存在を確認することができる。一方、アルカリホスファターゼを二次抗体に結合させた場合、p−ニトロフェニルフォスフェートなどの発色基質を分離用流路28へ導入すると、アルカリホスファターゼによる酵素反応が生じ、発色するため、これによりHCV抗体を検出することができる。
上記では、試料中に含まれる抗体の検出について、HCV抗体の例を用いて述べたが、試料中の特定の蛋白、たとえばHCVの構造蛋白であるコア蛋白を検出することを目的として、次のような手法を採用することもできる。HCVの構造蛋白であるコア蛋白のN末端の領域を認識するモノクローナル抗体(一次抗体)を分離用流路28の底面に結合させておく。液溜め22aまたは液溜め22bから試料を導入し、毛細管現象により分離用流路28へ移動させる。当該試料に上記コア蛋白が含まれているときは、一次抗体とコア蛋白とが抗体一抗原複合体を形成する。次いで、上記と同様にして分離用流路28内を洗浄する。そして上記コア蛋白のN末端以外の領域を認識するモノクローナル抗体(二次抗体)を分離用流路28へ導入し、二次抗体を上記抗体−抗原複合体にさらに結合させ、再度分離用流路28内を上記と同様にして洗浄する。このとき、二次抗体に蛍光標識またはアルカリホスファターゼなどの酵素を結合させておくことにより、上記HCV抗体の場合と同様の手法でHCV抗原についても高感度な検出が可能である。
<第二の実施の形態>
図5は、本発明の第二の実施の形態に係るマイクロチップの構成を示す断面図である。本実施の形態において、図3Cに示した第一の実施の形態と同様の構成要素には同様の符号を付し、適宜説明を省略する。
投光用光導波路32aを介して外部の光源から伝達された光が分離用流路28に入射すると、分離用流路28内で光が広がったり散乱したりするため、受光用光導波路32bに伝搬する光の量が減少してしまう。そのため、本実施の形態においては、分離用流路28との境界領域において、投光用光導波路32aおよび受光用光導波路32bは、他の領域よりも幅広に形成された幅広部を有するように形成される。たとえば、投光用光導波路32aおよび受光用光導波路32bの他の領域の幅を約5μmとすることができ、分離用流路28との境界領域における幅を約10μmとすることができる。これにより、受光用光導波路32bに伝搬する光の量の減少を抑えることができ、外部の検出器に充分な量の光を伝達することができるので、試料中の成分をより精度よく検出することができる。
なお、投光用光導波路32aおよび受光用光導波路32bは、図4に示したように、投光用光ファイバ42aおよび受光用光ファイバ42bと接続する部分において幅広となるように形成することもできる。
<第三の実施の形態>
図6Aは、本発明の第三の実施の形態に係るマイクロチップを示す模式図である。図6Bは、図6Aにおけるマイクロチップの断面図を示す。本実施の形態において、図3A、図3Cに示した第一の実施の形態と同様の構成要素には同様の符号を付し、適宜説明を省略する。
本実施の形態において、マイクロチップ52は、投光用光導波路32aおよび受光用光導波路32bの組み合わせ、ならびに投光用光導波路34aおよび受光用光導波路34bの組み合わせを有する点で第一の実施の形態と異なる。投光用光導波路32aおよび受光用光導波路32b、ならびに投光用光導波路34aおよび受光用光導波路34bは、それぞれ、分離用流路28を挟んで対向して設けられる。
本実施の形態における構成により、分離用流路28の異なる位置を流れる試料を同時に分析することができる。たとえば、投光用光導波路32aおよび受光用光導波路32bの組み合わせ、または投光用光導波路34aおよび受光用光導波路34bの組み合わせのいずれか一方を参照用に用いることができる。これにより、同じ条件下で測定した参照データを用いて測定データの補正を行うことができるので、試料をより精度よく分析することができる。
また、分離用流路28の異なる位置における試料を分析することにより、分離された各試料の移動速度を検出することができる。これにより、分離中の試料の成分の回収タイミングを検知することができる。特に未知の試料を分離・回収する場合であっても、各成分の流出時間を予見することができるので、目的の成分を確実に回収することができる。
本実施の形態においても、投光用光導波路32aおよび受光用光導波路32b、ならびに投光用光導波路34aおよび受光用光導波路34bは、図4に示したように、マイクロチップ外部と接続する部分において幅広に形成することができ、また、図5で示したように、分離用流路28との境界領域において、他の領域よりも幅広に形成することもできる。
<第四の実施の形態>
図7は、本発明の第四の実施の形態に係るマイクロチップの構成を示す断面図である。本実施の形態において、図3Cに示した第一の実施の形態と同様の構成要素には同様の符号を付し、適宜説明を省略する。マイクロチップ54は、複数の投光用光導波路56を有する点、およびこれら複数の投光用光導波路56に分離用流路28を挟んで対向するように設けられた受光用光導波路58を有する点で第一の実施の形態と異なる。
本実施の形態において、複数の投光用光導波路56は、分離用流路28の試料進行方向に実質的に直角な方向に、互いに所定の間隔を隔てて配置される。また、受光用光導波路58は、分離用流路28に沿って、分離用流路28の試料進行方向に実質的に平行な方向に配置される。本実施の形態において、投光用光導波路56の幅は3μm以上に形成され、複数の投光用光導波路56は、それぞれ6μm以上の間隔を隔てて配置される。受光用光導波路58の幅も3μm以上に形成される。
各投光用光導波路56は、分離用流路28と接する一端56aとは異なる領域において、外部の光源からの光が入射可能に形成される。たとえば、本実施の形態においては、各投光用光導波路56は、分離用流路28と接する一端56aとは反対の他端56bから外部の光源の光を入射可能に形成される。外部の光源からの光は、直接、または光ファイバ等を介して間接的に光投光用光導波路56の他端56bから入射される。ここで、一つの外部の光源を走査することにより、複数の投光用光導波路56の各他端56bに光を順次入射することができる。また、複数の投光用光導波路56のそれぞれの他端56bに発光ダイオード(LED)を直接、または光ファイバ等を介して間接的に接続し、それらの発光ダイオードを順に発光させることにより、複数の投光用光導波路56の各他端56bに光を順次入射することができる。本実施の形態においては、一つの外部の光源からの光をフォーカスレンズ60でフォーカスして、当該外部の光源を走査することにより、複数の投光用光導波路56に順次光を入射する。
受光用光導波路58は、外部の検出器に接続可能に構成される。たとえば、本実施の形態においては、受光用光導波路58の端部58aは、表面が鏡面加工された斜面状に形成される。これにより、受光用光導波路58中を伝達してきた光を端部58aにおいて上方に伝達することができ、第一の実施の形態で示したマイクロチップ10と同様に、マイクロチップ54の上方向から取り出すことができる。このような構成は、第一の実施の形態において図17A〜17Hおよび図18A〜18Dを用いて説明したのと同様にして形成することができる。
次に、マイクロチップ54を用いて試料の分離を行い、分離された試料に光を照射して試料を透過した光の強度を測定する方法を説明する。ここで、マイクロチップ10の受光用光導波路58は、図示しない外部の検出器に接続される。
第一の実施の形態において説明したのと同様、まず、液溜め22aおよび液溜め22bに試料を注入する。この試料は、それぞれ投入用流路26を通過し、投入用流路26および分離用流路28とが交差する箇所で、分離用流路28に導かれる。ここで、分離用流路28内の試料は、電圧の印加により液溜め24の方向に流動される。
続いて、図示したように、外部の光源からの光をフォーカスレンズ60でフォーカスして、各投光用光導波路56の他端56bに順次光が入射するように光を走査する。各投光用光導波路56の他端56bから入射した光は各投光用光導波路56を通り、一端56aから分離用流路28に入射する。分離用流路28を流れる試料を透過した光は受光用光導波路58を介して、受光用光導波路58の端部58aから外部の検出器に伝達される。これにより、外部の検出器において、分離用流路28を通る試料を透過した光の強度を検出することができる。
ここで、各投光用光導波路56の他端56bに光を走査する速度は、分離用流路28中の試料の移動速度に比べて充分速くなるように設定される。光を走査する速度は、1m/秒〜10m/秒以上とすることができる。たとえば分離用流路28中の試料の移動速度は約100μm/秒程度であるので、光を走査する速度を1m/秒としても、分離用流路28中の試料の移動速度に比べて充分速い。そのため、試料が分離用流路28中のどの位置にあるかを検出することができる。この条件下において、外部の光源からの光を一回走査することにより、受光用光導波路58の端部58aから取り出された光は、略同時に測定されたものとして取り扱うことができる。したがって、外部の光源からの光を一回走査することにより、分離用流路28中を移動する試料の分離パターンを検知することができる。
また、所定の時間間隔を隔てて外部の光源からの光を走査して試料を透過した光の強度を測定することにより、分離された各試料の移動速度を検出することもできる。また、試料中の成分の移動速度を検出することができるので、移動速度にも基づいて、試料中の各成分をより精度よく検出することができる。たとえば、試料とともに基準物質を導入しておき、その基準物質の移動速度と各成分との移動速度を比較することにより、各成分の検出を行うことができる。
図8Aおよび図8Bはそれぞれ、時間t1、および時間t1から所定の時間経過後の時間t2を開始時間として、外部の光源からの光を走査して各投光用光導波路56の他端56bに順次光を入射したときに得られた出力光の強度を示す図である。図中縦軸は光強度、横軸は外部の光源からの光の照射位置(時間)を示す。これにより、分離用流路28中のどの位置に試料があるかを略リアルタイムに検知することができる。ここで、たとえば時間t1において、分離用流路28中には試料中の成分a、bおよびcが分離していることがわかる。また、時間t2において、成分bおよびcの間隔が時間t1における成分bおよびcの聞隔に比べて開いていることがわかる。時間t1および時間t2における各成分a、bおよびcの位置の変化量と時間t1および時間t2の時聞間隔とから各成分の移動速度を検出することができる。このように、本実施の形態のマイクロチップ54によれば、分離用流路28を流れる試料の分離パターンおよび各試料の移動速度を検出することができるので、分離中の試料の成分の回収タイミングを検知することができる。特に未知の試料を分離・回収する場合であっても、各成分の流出時間を予見することができるので、目的の成分を確実に回収することができる。また、目的の物質の同定を精度よく行うことができる。
以上のように、本実施の形態によれば、分離中の試料の成分のピーク位置を検出するという従来の装置にはなかった機能を実現することができる。
また、マイクロチップ54は、図9に示したような構成とすることもできる。図9において、マイクロチップ54は、分離用流路28を隔てて複数の投光用光導波路56にそれぞれ対向して設けられた複数の受光用光導波路59を有する。複数の受光用光導波路59は、分離用流路28と接する領域とは反対側の端部において受光用光導波路58と光学的に接続される。また、この場合も受光用光導波路58は、図7に示したのと同様に端部58aから上方に光を取り出すことができるように形成される。これにより、図7に示したのと同様に、複数の投光用光導波路56のそれぞれから入射された光を集光して一つの出力として取り出すことができる。これにより、分離中の試料の成分の回収タイミングを検知することができる。特に未知の試料を分離・回収する場合であっても、各成分の流出時間を予見することができるので、目的の成分を確実に回収することができる。
<第五の実施の形態>
図10Aは、本発明の第五の実施の形態に係るマイクロチップの構成を示す断面図である。図10Bは、図10AにおけるマイクロチップのC−C’断面図である。
上述した実施の形態においては、マイクロチップ10の分離用流路28が投光用光導波路32aおよび受光用光導波路32bの間に設けられていた。本実施の形態においては、図10Aに示すように、投光用光導波路32aおよび受光用光導波路32bは一体の光導波路32として形成され、光導波路32が分離用流路28に接して形成されている。また、図10Bに示すように、光導波路32の端部は斜面状に形成され、その表面に反射層66が形成された構成とすることができる。これにより、基板12の上方向から入射した光を光導波路32中に伝達することができ、光導波路32を通過した光を再び基板12の上方向から取り出すことができる。
この場合、光導波路32に光が導入されると、光導波路32と分離用流路28が接する領域において、エバネッセント波が分離用流路28中にしみ出す。このエバネッセント波と分離用流路28中の試料との相互作用を検出することにより、試料中の成分を検出することができる。
図11Aは、本実施の形態に係るマイクロチップの変形例の構成を示す断面図である。図11Bは、図11AにおけるマイクロチップのD−D’断面図である。
本変形例においては、図11Bに示すように、光導波路32は、分離用流路28の下方に形成されている。この場合、光導波路32には基板12の側面から投光用光導波路32cを介して光が導入され、受光用光導波路32dを介して基板12の側面から光が取り出される。図11Cは、図11Aの投光用光導波路32cおよび受光用光導波路32dが形成された側面を示す図である。この変形例においても、光導波路32に光が導入されると、光導波路32と分離用流路28が接する領域において、エバネッセント波が分離用流路28中にしみ出す。このエバネッセント波と分離用流路28中の試料との相互作用を検出することにより、試料中の成分を検出することができる。
図12Aは、本実施の形態に係るマイクロチップの他の変形例の構成を示す断面図である。マイクロチップ10は、分離用流路28および回収用流路27との間に、分離用流路28および回収用流路27に対して角度を有して設けられた検出用流路29を含むことができる。この例においては、たとえば毛細管現象や圧力の印加により、液溜め23に導入された試料が液溜め24の方向に移動する。この場合、検出部30は検出用流路29に設けられる。
図12Aに示すように、光導波路32は、検出用流路29に接して設けられる。また、図12Bに示すように、光導波路32を検出用流路29の下方に形成することもできる。図12Cは、図12Bに示したマイクロチップのD−D’断面図である。これらの例においても、光導波路32に光が導入されると、光導波路32と検出用流路29が接する領域において、エバネッセント波が検出用流路29中にしみ出す。このエバネッセント波と検出用流路29中の試料との相互作用を検出することにより、試料中の成分を検出することができる。
<第六の実施の形態>
図13は本発明の第六の実施の形態に係るマイクロチップの構成を示す断面図である。この場合、投光用光導波路32aは、基板内の分岐部85で、第一投光用光導波路32a1と第二投光用光導波路32a2に分岐している。また、受光用光導波路32bは、第一受光用光導波路32b1と第二受光用光導波路32b2に分かれており、その両方は基板内の合流部86で合流している。分離用流路28は、第一、第二投光用光導波路32a1、32a2及び第一、第二受光用光導波路32b1、32b2と交差するように設けられる。第三の実施の形態における光導波路と同様に、第一受光用光導波路32b1と第二受光用光導波路32b2は、第一投光用光導波路32a1と第二投光用光導波路32a2にそれぞれ対応している。
このように構成された光導波路は、マイクロチップ上の干渉計としての機能を果たす。投光用光導波路32aに入射した光は、分岐部85で、第一投光用光導波路32a1を伝播する第一の光と、第二投光用光導波路32a2を伝播する第二の光とに分割される。第一の光と第二の光は、それぞれ分離用流路28を透過し、第一受光用光導波路32b1と第二受光用光導波路32b2の対応する方にそれぞれ入射する。第一の光と第二の光は合流部86で合成される。合成された光は、受光用光導波路32bを介して外部の検出器に伝達される。
生体成分が溶けた液は、屈折率が高くなる。そのため、生体成分が溶けた液の中を光が通過すると、その光の位相がややずれる。分離用流路28を流れる試料中の生体成分が、第一投光用光導波路32a1と第一受光用光導波路32b1との間の領域に達しない状態では、流路を通過した光の位相はずれない。そのため、投光用光導波路32aから入射した光は、ほとんど減衰せずに受光用光導波路32bから出射する。生体成分が、第一投光用光導波路32a1部か、第一受光用光導波路32b1部のどちらか一方に達すると、流路を通過した光の位相がずれる。そのため、投光用光導波路32aから入射した光は、合流部86で滅衰し、受光用光導波路32bから出射する光は、入射した光に比べて有意に弱くなる。したがって、出射光の強さを計測することで、生体成分の到達を検出することができる。
第三の実施の形態のように分離用流路28に交差する二本の光導波路を設けた後に、マイクロチップ外部で分岐部と合流部を構成することも可能であるが、マイクロチップ上の温度分布差により検出誤差が生じるという問題がある。しかしながら、上述の例のように、マイクロチップ上に微小な干渉回路を構成することによって、マイクロチップ上の温度分布の差の影響が抑制され、正確な検出を行うことが可能となる。この干渉回路の大きさは数ミリ角であることが望ましい。本実施の形態によると、微細なマイクロチップにおいても、流路を流れる試料を精度よく分析できる。
<第七の実施の形態>
図14Aは本発明の第七の実施の形態に係るマイクロチップの構成を示す断面図である。この場合、投光用光導波路32aと受光用光導波路32bに加えて、加温用光導波路32hが分離用流路28に交差するように形成されている。この加温用光導波路32hは、投光用光導波路32a及び受光用光導波路32bよりも分離用流路28の上流側に形成されている。図14Bは、本実施の形態における分離用流路28と光導波路の斜視図である。加温用光導波路32hが分離用流路28と交差する面88には色がつけてある。なお、加温用光導波路32hは、分離用流路28に接するように形成されてもよいし、分離用流路28を取り囲むように形成されていてもよい。
加温用光導波路32hに入射した加温用光によって、色のついた面88は加温され、それにより分離用流路28を流れる試料も加温される。すなわち、加温用光導波路32hはヒーターとしての機能を果たすことになる。投光用光導波路32aと受光用光導波路32bは、上述の実施の形態と同じく試料の分析のため用いられる。加温用光導波路32hは、投光用光導波路32a及び受光用光導波路32bの上流に形成されているため、試料は光学的に分析される前に温められることになる。
臨床検査などに利用される酵素が関与する生化学反応は、38℃前後で最もよく反応が進むことが知られている。通常、流路の温度は室温の25℃程度であるが、マイクロチップの微小領域を加温することによって、生化学反応は促進され、試料の分析効率は向上する。
マイクロチップの微小領域を加温するためには、マイクロチップ外に加温装置を設けるか、分析用の光導波路とは別に、チップ内に電気回路(ヒーター)を設ける必要があった。しかしながら、上述の例によると、分析用の光導波路と同様の手法で形成できる光導波路がヒーターとして用いられる。したがって、マイクロチップ外に加温装置を用意する必要がなくなる。更に、マイクロチップ内に電気回路を形成する付加的な工程を省くことができる。本装置は、マイクロチップの構造を複雑化することなく、試料を分析前に適温にすることよって、短い時間で精度良く試料の分析をすることを可能とする。
<第八の実施の形態>
図15Aは、本発明の第八の実施の形態に係るマイクロチップの流路と光導波路を示す模式図である。図15Bは、図15AにおけるマイクロチップのA−A’断面図である。
分離用流路28の底面に光導波路32が形成されており、その光導波路32の一部が流路底面に露出している。光導波路32の材料を水よりも屈折率が大きい材料とすることによって、分離用流路28のバッファーとの界面で全反射が起こるようにしておく。分離用流路28に露出した光導波路32の部分の表面は、積極的に分子を吸着できるように形成される。そのためには、吸着防止処理を施さない、抗体分子をコートするなどの手段がある。分離用流路28上には、流路フタ91が形成され、その流路フタ91を貫通するように近接場プローブ90が設置される。近接場プローブ90の先端は、分離用流路28の内部に到達しており、流路底面からの距離はdである。距離dは10nmから50nm程度に設定される。プローブの構造は、一般的なものである。
近接場光を用いる試料の検出方法には、照明モードによる検出方法と、集光モードによる検出方法が可能である。
照明モードによる検出方法によれば、近接場プローブ90が照明に用いられ、弱い光が導入される。近接場プローブ90に弱い光が導入されると、近接場プローブ90の先端に近接場が生じる。上述のように、分離用流路28に露出した光導波路32の表面は、生体分子が吸着しやすいように構成されている。近接場が、この吸着した生体分子と相互作用する結果、微弱な散乱光が生じる。この散乱光は、光導波路32に受けとられ、光導波路32の出射部で検出される。生体分子が、分離用流路28に露出した光導波路32の部分の表面に吸着すると、近接場プローブ90の先端の近接場が、誘電体である生体分子に近づくため散乱光が強くなる。これによって、生体分子の存在を検出することが可能となる。
集光モードによる検出方法によれば、光導波路32に光が通され、近接場プローブ90の出力部分には図示されていない高感度検出器が設置される。光導波路32に光が通されると、分離用流路28に露出した光導波路32に吸着した生体分子表面にも近接場が形成される。そのため、近接場プローブ90の先端付近で、微弱な散乱光が生じる。この散乱光が、高感度光検出器により検出される。生体分子が、分離用流路28に露出した光導波路32の部分に吸着すると、近接場プローブ90と近接場が近づくため散乱光が強くなる。これによって、生体分子の存在を検出することが可能となる。
生体分子の検出に用いられる通常の吸光分析においては、十分な光路長(100μm以上)と十分な生体分子濃度(数十万分子/ml)が必要である。バイオチップの集積化、試料の少量化に伴い、流路サイズが小さく、生体分子濃度が希薄になると、流路内で生体分子を検出する手段がなかった。本実施の形態によると、流路サイズが小さく(1μm以下)、生体分子濃度が希薄(数百分子/ml)になっても、流路内で生体分子を検出可能になる。極めて微小な流路においても、試料中の成分を光学的に検出できる。
<第九の実施の形態>
図16は、本発明の第九の実施の形態に係るマイクロチップの、流路と光導波路の構成を示す模式図である。本実施の形態も、第八の実施の形態同様、近接場を利用することによって、試料の検出を可能としている。
本実施の形態において、分離用流路28は微細であり、その幅は50nm以下となっている。光導波路32i、32jは、共に分離用流路28に沿うように形成されており、分離用流路28を挟んで対向するように設置されている。この時、光導波路32i、32jの分離用流路28側の面は、分離用流路28に露出している。また、第八の実施の形態における光導波路と同様に、光導波路32i、32jの材料を水よりも屈折率が大きい材料とすることによって、分離用流路28のバッファーとの界面で全反射が起こるようにしておく。光導波路32i、32jの幅は5μm〜100μmとすることができる。
一方の光導波路32iに光を導入すると、分離用流路28側の表面に近接場が発生する。この時、分離用流路28の幅が、分離用流路28を流れる生体分子のサイズ程度に極めて細いので、生体分子が分離用流路28を通過するだけで、生体分子を光導波路の表面に吸着させなくても、近接場は生体分子と相互作用することができる。近接場と試料中の生体分子が相互作用すると、微弱な散乱光を生じる。この散乱光が、他方の光導波路32jを介して、高感度光検出器(図示されていない)により検出される。本実施の形態によると、簡略なマイクロチップ構造でも、極めて微小な流路における試料中の成分を光学的に検出することが可能である。
以上、本発明を実施の形態をもとに説明した。これらの実施の形態は例示であり、その各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
図22A、22B、23A、23Bに示すように、投光用光導波路32aおよび受光用光導波路32bは、側面で投光用光ファイバ42aおよび受光用光ファイバ42bに接続される構成とすることができる。図22Aは、マイクロチップ及び接続に使われれるコネクタ41の側面断面図を示す。図22Bは、図22Aにおけるマイクロチップとコネクタ41が接続された状態を示す図である。図22B及び23Bは、それぞれ、図22A及び22Bにおける構成の上面図である。
この場合、マイクロチップ10の投光用光導波路32aおよび受光用光導波路32bは、それぞれ、コネクタ41を介して投光用光ファイバ42aおよび受光用光ファイバ42bに接続される。コネクタ41は、クラッド層43およびコア層45を含み、クラッド層43は、マイクロチップ10を収容可能な凹部を含むように形成することができる。また、コネクタ41は、マイクロチップ10をクラッド層43に形成された凹部に収容した際に、マイクロチップ10の投光用光導波路32aおよび受光用光導波路32bがそれぞれコア層45に接続されるように形成される。
コネクタ41および/または基板12には、コネクタ41を基板12に位置あわせするための位置あわせ部が形成される。位置あわせ部としては、種々の構成が挙げられるが、たとえば図23A、23Bに示したように、基板12に凸部80a、80b、80c、および80dを形成することができる。また、コネクタ41に凸部を形成し、基板12にその凸部と係合する溝を形成することもできる。また、カバー部材20に、コネクタ41aを所定の位置に収容可能な切欠部を形成し、当該切欠部にコネクタ41を収容するようにすることもできる。
このようなコネクタ41は、上述した全ての実施の形態におけるマイクロチップに対して適用することが可能である。
また、第四の実施の形態で説明したように、投光用光導波路には光源からの光がフォーカスレンズを介して、または直接入射されるようにすることができる。また、以上の実施の形態において、受光用光導波路からは光ファイバを介して外部の検出器に光が伝達されるとしたが、受光用光導波路からの光を伝達する手段は光ファイバに限られず、たとえば直接検出器により検出される構成としたり、他の手段を介して検出器に光が伝達される構成とすることができる。
また、光導波路が形成された基板は、実施の形態で説明したものに限られず、種々の方法で作製することができる。たとえば、石英系材料の場合、減圧CVD(LPCVD)、プラズマCVD法や、火炎堆積法、蒸着法、スパッタ法、ゾルゲル法、イオン拡散法等により作製することができる。
更に、実施の形態において、マイクロチップは液溜め23と液溜め24との間に分離用流路28を有するとして説明したが、マイクロチップは、分離用に限られず、試料を移動させるだけのもの等、他の目的の流路を含むこともできる。
【図1】

【図2】


【図4】

【図5】


【図7】


【図9】




【図13】



【図16】









【特許請求の範囲】
【請求項1】
試料の通る流路を備えるクラッド層と、
前記クラッド層より屈折率の高い材料により、前記クラッド層内部に形成された光導波路と
を具備し、
前記光導波路は、前記流路と光学的に作用するように形成された
マイクロチップ。
【請求項2】
請求の範囲1において、
前記光導波路の一方の端部から導入された光が、前記流路を通過し、前記光導波路の他方の端部から出力される
マイクロチップ。
【請求項3】
請求の範囲2において、
前記流路は、前記光導波路を分割するように形成された、
マイクロチップ。
【請求項4】
請求の範囲2及び3のいずれかにおいて、
前記クラッド層内部に、複数の前記光導波路が、互いに間隔を隔てて形成された
マイクロチップ。
【請求項5】
請求の範囲2乃至4のいずれかにおいて、
前記光導波路の前記一方の端部および前記他方の端部が、前記光導波路の他の領域よりも幅広に形成された
マイクロチップ。
【請求項6】
請求の範囲2乃至5のいずれかにおいて、
前記光導波路と前記流路との境界領域において、前記光導波路が、前記光導波路の他の領域よりも幅広に形成された
マイクロチップ。
【請求項7】
請求の範囲1において、
前記クラッド層内部に、複数の前記光導波路が形成され、前記複数の光導波路は、
複数の投光用光導波路と、
受光用光導波路とを有し、
前記流路は、前記複数の投光用光導波路と前記受光用光導波路に挟まれて形成され、前記複数の投光用光導波路は、前記流路の複数の異なる位置に光を導入し、前記受光用光導波路は、前記複数の異なる位置の各々を通過した前記光を、受け取り出力するように形成された
マイクロチップ。
【請求項8】
請求の範囲7において、
前記複数の投光用光導波路が、互いに間隔を隔て、前記流路に略直角に形成された
マイクロチップ。
【請求項9】
請求の範囲7及び8において、
前記受光用光導波路は、前記流路に沿って形成された
マイクロチップ。
【請求項10】
請求の範囲1において、
前記クラッド層内部に、複数の前記光導波路が形成され、前記複数の光導波路は、
複数の投光用光導波路と、
前記複数の投光用光導波路と同数の、複数の第一受光用光導波路と、
一つの第二受光用光導波路とを有し、
前記流路は、前記複数の投光用光導波路と前記複数の第一受光用光導波路に挟まれて形成され、前記複数の投光用光導波路は、前記流路の複数の異なる位置に光を導入し、前記複数の第一受光用光導波路の各々は、前記複数の異なる位置の対応する各々を通過した前記光を受け取り、前記第二受光用光導波路は、前記複数の第一受光用光導波路の各々を伝播した前記光を受け取り出力するように形成された
マイクロチップ。
【請求項11】
請求の範囲10において、
前記複数の投光用光導波路が、互いに間隔を隔て、前記流路に略直角に形成され、前記複数の第一受光用光導波路が、互いに間隔を隔て、前記流路に略直角に形成された
マイクロチップ。
【請求項12】
請求の範囲10及び11において、
前記第二受光用光導波路は、前記流路に略平行に形成された
マイクロチップ。
【請求項13】
請求の範囲1において、
前記光導波路は、前記流路に接するように形成された
マイクロチップ。
【請求項14】
請求の範囲13において、
前記光導波路は、
前記流路に接する領域と、
前記領域に接続し、前記領域に光を導入する投光用光導波路と、
前記領域に接続し、前記領域を伝播した前記光を受け取り出力する受光用光導波路とを有する
マイクロチップ。
【請求項15】
請求の範囲13において、
前記流路は、
前記試料を分離する分離領域と、
前記分離領域に接続し、前記分離領域に対して角度を有して形成された検出領域とを有し、
前記光導波路は、前記検出領域と接する
マイクロチップ。
【請求項16】
請求の範囲1において、
前記光導波路は、
前記クラッド層内で第一投光用光導波路と第二投光用光導波路に分岐し、前記流路に光を導入する投光用光導波路と、
前記クラッド層内で第一受光用光導波路と第二受光用光導波路に分岐し、前記流路を通過した前記光を受け取る受光用光導波路とを有し、
前記流路は、前記第一投光用光導波路と前記第一受光用光導波路の間、および、前記第二投光用光導波路と前記第二受光用光導波路の間を通るように形成され、前記第一投光用光導波路から前記流路に導入された第一の光は前記第一受光用光導波路に入射し、前記第二投光用光導波路から前記流路に導入された第二の光は前記第二受光用光導波路に入射し、前記第一の光と前記第二の光は前記受光用光導波路で合成される
マイクロチップ。
【請求項17】
請求の範囲1において、
前記光導波路は、
前記流路に光を導入する投光用光導波路と、
前記流路を通過した前記光を、受け取り、出力する受光用光導波路と、
前記投光用光導波路より前記流路の上流側に形成された加温用光導波路とを有し、
前記加温用光導波路は、前記流路と境界面を持つように形成され、前記境界面は着色されている
マイクロチップ。
【請求項18】
請求の範囲1において、
先端が前記流路内部に達する近接場プローブを更に具備し、
前記光導波路は、前記流路に沿うように形成され、前記近接場プローブの前記先端に対向する領域において、前記流路に露出する
マイクロチップ。
【請求項19】
請求の範囲18において、
前記光導波路の表面が、前記試料中の分子を吸着するように処理された マイクロチップ。
【請求項20】
請求の範囲1において、
前記光導波路は、
前記流路に沿い、前記流路に露出する面を持つ第一光導波路と、
前記流路に沿い、前記流路に露出する面を持つ第二光導波路とを有し、
前記流路は、前記第一光導波路と前記第二光導波路に挟まれて形成されており、前記流路の幅は、前記試料中の分子のサイズ程度である
マイクロチップ。
【請求項21】
請求の範囲20において、
前記流路の幅が、50nm以下である
マイクロチップ。
【請求項22】
請求の範囲1乃至21のいずれかにおいて、
前記光導波路は、前記流路と光学的に作用しない端部において、光ファイバと接続可能に形成された
マイクロチップ。
【請求項23】
請求の範囲22において、
前記光導波路の前記端部は、斜面状に形成された
マイクロチップ。
【請求項24】
請求の範囲1乃至23のいずれかにおいて、
前記流路は、前記クラッド層に形成された溝状の構造である
マイクロチップ。
【請求項25】
(a)下地基板に、下部クラッド層を、形成するステップと、
(b)前記下部クラッド層に、少なくとも一つ溝を、形成するステップと、
(c)前記溝内に、前記下部クラッド層よりも屈折率の高い光導波路を、形成するステップと、
(d)前記光導波路を覆うように、前記下部クラッド層の上に、前記光導波路よりも屈折率の低い上部クラッド層を、形成するステップと、
(e)前記光導波路と光学的に作用するように、流路を、形成するステップと、
を具備するマイクロチップの製造方法。
【請求項26】
請求の範囲25において、
前記形成するステップ(e)は、前記光導波路と交差するように前記流路を形成することを含む
マイクロチップの製造方法。
【請求項27】
請求の範囲25において、
前記形成するステップ(e)は、前記光導波路を分割するように前記流路を形成することを含む
マイクロチップの製造方法。
【請求項28】
請求の範囲25において、
前記形成するステップ(e)は、前記光導波路と接するように前記流路を形成することを含む
マイクロチップの製造方法。
【請求項29】
請求の範囲25乃至28のいずれかにおいて、
前記形成するステップ(b)は、斜面を有するように前記溝の端部を形成することを含む
マイクロチップの製造方法。
【請求項30】
請求の範囲25乃至29のいずれかにおいて、
前記形成するステップ(b)は、前記溝の表面に反射層を形成することを含む
マイクロチップの製造方法。
【請求項31】
請求の範囲25乃至30のいずれかにおいて、
前記形成するステップ(d)は、前記下部クラッド層と実質的に屈折率が等しくなるように前記上部クラッド層を形成することを含む
マイクロチップの製造方法。
【請求項32】
流路を備えるクラッド層と、前記流路と交差するように前記クラッド層内に形成された複数の投光用光導波路及び複数の受光用光導波路とを含むマイクロチップにおいて、
(A)前記流路に、試料を、流すステップと、
(B)前記複数の投光用光導波路を介して、前記流路の複数の位置に略同時に、光を、入射するステップと、
(C)前記光を、前記複数の位置のそれぞれにおける前記試料の中を、通過させるステップと、
(D)前記複数の位置のそれぞれを通過した前記光を、前記複数の受光用光導波路を介して、取り出すステップと、
(E)取り出された前記光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。
【請求項33】
請求の範囲32において、
前記分析するステップ(E)は、前記複数の位置における前記資料を略同時に分析することを含む
成分検出方法。
【請求項34】
請求の範囲32及び33のいずれかにおいて、
前記入射するステップ(B)と、前記取り出すステップ(D)とが、所定の時間間隔で複数回繰り返され、前記分析するステップ(E)において、前記複数の位置と前記所定の時間間隔に基づいて、前記流路を通る前記試料の移動速度が検出される
成分検出方法。
【請求項35】
流路を備えるクラッド層と、前記流路と交差するように前記クラッド層内に形成された複数の投光用光導波路と、前記流路に沿うように前記クラッド層中に形成された受光用光導波路とを含むマイクロチップにおいて、
(F)前記流路に、試料を、流すステップと、
(G)前記複数の投光用光導波路を用い、前記流路の複数の位置に、順次、光を、入射するステップと、
(H)前記光を、前記複数の位置のそれぞれにおける前記試料の中を、通過させるステップと、
(I)前記複数の位置のそれぞれを通過した前記光を、前記受光用光導波路を介して、順次、取り出すステップと、
(J)取り出された前記光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。
【請求項36】
請求の範囲35において、
前記入射するステップ(G)は、前記試料が前記流路を流れる速度よりも充分速く、前記光を、走査することを含む
成分検出方法。
【請求項37】
請求の範囲35及び36のいずれかにおいて、
前記入射するステップ(G)と、前記取り出すステップ(I)とが、所定の時間間隔で複数回繰り返され、前記分析するステップ(J)において、前記複数の位置と前記所定の時間間隔に基づいて、前記流路を通る前記試料の移動速度が検出される
成分検出方法。
【請求項38】
請求の範囲34及び37のいずれかにおいて、
前記試料の前記移動速度に基づいて、前記試料の回収タイミングを予見する
成分検出方法。
【請求項39】
流路を備えるクラッド層と、前記流路と接するように前記クラッド層内に形成された光導波路とを含むマイクロチップにおいて、
(K)前記流路に、試料を、流すステップと、
(L)前記光導波路の一方側から、光を、入射するステップと、
(M)前記流路と前記光導波路が接する領域において、前記光のエバネッセント波と前記試料との相互作用が発生するステップと、
(N)前記光導波路の他方側から、前記光を、取り出すステップと、
(O)取り出された前記光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。
【請求項40】
流路を備えるクラッド層と、前記クラッド層内に形成され、前記流路に交差する第一投光用光導波路と第二投光用光導波路に分岐する投光用光導波路と、前記クラッド層内に形成され、前記流路に交差する第一受光用光導波路と第二受光用光導波路に分岐する受光用光導波路を含むマイクロチップにおいて、
(P)前記流路に、試料を、流すステップと、
(Q)前記投光用光導波路から導入された光を、前記第一投光用光導波路を伝播する第一の光と、前記第二投光用光導波路を伝播する第二の光とに、分岐させるステップと、
(R)前記第一の光を、前記第一投光用光導波路を介して、前記流路に、導入するステップと、
(S)前記第二の光を、前記第二投光用光導波路を介して、前記流路に、導入するステップと、
(T)前記流路を通過した前記第一の光を、前記第一受光用光導波路により、受け取るステップと、
(U)前記流路を通過した前記第二の光を、前記第二受光用光導波路により、受け取るステップと、
(V)前記第一の光と前記第二の光とを、前記受光用光導波路において合成するステップと、
(W)合成された光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。
【請求項41】
流路を備えるクラッド層と、前記流路に交差するように前記クラッド層内に形成された投光用光導波路及び受光用光導波路と、前記流路と境界面を有する加温用光導波路とを含み、前記加温用導波路は前記投光用光導波路より前記流路の上流側に形成され、前記境界面は着色されているマイクロチップにおいて、
(AA)前記流路に、試料を、流すステップと、
(BB)前記加温用光導波路に、加温用光を、導入するステップと、
(CC)前記加温用光によって、前記加温用光導波路と前記流路の前記境界面を、温めるステップと、
(DD)温められた前記境界面に接触する前記試料を、温めるステップと、
(EE)前記投光用光導波路に導入された光を、温められた前記試料の中を、通過させるステップと、
(FF)前記光を、前記受光用光導波路を介して、取り出すステップと、
(GG)取り出された前記光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。
【請求項42】
流路を備えるクラッド層と、前記流路に沿うように前記クラッド層内に形成された光導波路と、先端が前記流路内部に達する近接場プローブとを含み、前記光導波路は、前記近接場プローブの前記先端に対向する領域で、前記流路に露出するマイクロチップにおいて、
(HH)前記流路に、試料を、流すステップと、
(II)前記近接場プローブに、光を、導入するステップと、
(JJ)前記近接場プローブの前記先端近傍に、近接場を、発生させるステップと、
(KK)前記近接場と前記試料との相互作用により、散乱光を、発生させるステップと、
(LL)前記散乱光を、前記光導波路により、受け取るステップと、
(MM)受けとった前記散乱光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。
【請求項43】
流路を備えるクラッド層と、前記流路に沿うように前記クラッド層内に形成され、前記流路に露出する面を持つ第一光導波路と、第二光導波路とを含むマイクロチップにおいて、
(NN)前記流路に、試料を、流すステップと、
(OO)前記第一光導波路に、光を、導入するステップと、
(PP)前記第一光導波路の、前記流路に露出する前記面の近傍に、近接場を、発生させるステップと、
(QQ)前記近接場と前記試料の相互作用により、散乱光を、発生させるステップと、
(RR)前記散乱光を、前記第二光導波路により、受け取るステップと、
(SS)受けとった前記散乱光の特性に基づき、前記流路を流れる前記試料を、分析するステップと
を具備する成分検出方法。

【国際公開番号】WO2004/013616
【国際公開日】平成16年2月12日(2004.2.12)
【発行日】平成18年9月21日(2006.9.21)
【国際特許分類】
【出願番号】特願2004−525803(P2004−525803)
【国際出願番号】PCT/JP2003/009720
【国際出願日】平成15年7月31日(2003.7.31)
【出願人】(000004237)日本電気株式会社 (19,353)
【Fターム(参考)】