説明

マイクロチャネルチップ

【課題】 複数のウェルに収容された液体同士を確実に混合させることができるマイクロチャネルチップを提供すること。
【解決手段】 本発明は、プレート10aを有し、プレート内部10aには、液体を収容する複数のウェル11〜13と、開口部14と、複数のウェル11〜13及び開口部14を接続するマイクロチャネル部11a〜13aが形成され、マイクロチャネル部11a〜13aが少なくとも1つの合流部15及び16を有し、合流部15及び16の上流側には液体を停止させるパッシブバルブ17a〜17dが少なくとも1つ設けられており、かつ開口部14から各ウェル11〜13までに設けられたパッシブバルブ17a〜17dの合計数がそれぞれ同一となっている、マイクロチャネルチップ10である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロチャネルチップに関する。
【背景技術】
【0002】
近年のナノテクノロジーやバイオテクノロジーの分野においては、微量の液体を用いた化学反応や検査等がよく行われており、このような化学反応や検査等を的確に行うためには、化学反応や検査等に使用する液体同士を確実に混合させる技術が必要となる。
【0003】
このような微量の液体を混合する装置として、マイクロチャネルチップが知られている。マイクロチャネルチップは一般に、プレートを有し、プレートには、液体を収容する複数のウェルと、1つの開口部と、複数のウェル及び開口部を接続するマイクロチャネルとが形成されている。またマイクロチャネルは、少なくとも1つの合流部を有し、この合流部に複数の流路が合流するようになっている。従って、開口部の圧力を低下させると、原理的には、ウェルと開口部との間に圧力差が生じ、複数のウェル内の液体がマイクロチャネルを経て開口部に導入される。ところが、マイクロチャネルチップにおいては、マイクロチャネルは閉じられた空間であり、液体同士の混合が必ずしもうまくいくとは限らない。例えば、複数の流路の合流部で当該流路を流れる液体同士を混合させようとすると、混合するタイミングによっては一の流路を流れる液体が先に合流部に流入され、他の流路内では気泡の噛み込みが発生し、最悪の場合には液体同士を混合させることができない。
【0004】
そこで、マイクロチャネルを通る液体の流れを制御して微量の液体を所望のタイミングで混合させる受動弁ないしは液体の停止手段(以下、「パッシブバルブ」という)を用いたマイクロチャネルチップが提案されている(下記特許文献1及び2参照)。また、同様にパッシブバルブに相当する撥水バルブを設けて、圧力制御により微量の液体をタイミングよく混合させる方法、装置が開示されている(例えば下記特許文献3参照)。
【特許文献1】特表2002−527250号公報
【特許文献2】米国特許第6601613号明細書
【特許文献3】特開2003−190751号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、前述した特許文献1〜3に記載のマイクロチャネルチップは以下に示す課題を有する。
【0006】
即ち、上記特許文献1〜3に記載のマイクロチャネルチップが特に3つ以上のウェルを有している場合、マイクロチャネルに気泡の噛込みが発生し、複数のウェルに収容された液体同士を全て混合し、開口部に導入することが困難となる。
【0007】
そこで、本発明は、上記事情に鑑みてなされたものであり、複数のウェルに収容された液体同士を確実に混合させることができるマイクロチャネルチップを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決するため鋭意検討した結果、上記のように気泡の噛み込みを防止するためには、混合させる液体が開口部に達するまでに、同一回数のパッシブバルブを通過するように配置すればよいのではないかと考えた。そして、本発明者らは鋭意研究を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。
【0009】
即ち本発明のマイクロチャネルチップは、プレートを有し、プレート内部には、液体を収容する複数のウェルと、開口部と、前記複数のウェル及び前記開口部を接続するマイクロチャネルが形成され、マイクロチャネルが少なくとも1つの合流部を有し、合流部の上流側には液体を停止させるパッシブバルブが少なくとも1つ設けられており、かつ開口部から各ウェルまでに設けられたパッシブバルブの合計数がそれぞれ同一となっていることを特徴とする。ここで、本発明において用いるパッシブバルブとは、上流側と下流側の圧力差がパッシブバルブによる圧力障壁未満の場合、上流から流れてきた液体の先頭を停止させることができ、また、上流側と下流側の圧力差がパッシブバルブによる圧力障壁以上の場合、上流から流れてきた液体の先頭を通過させることができるバルブをいう。
【0010】
このマイクロチャネルチップによれば、開口部の圧力をP1、各ウェルの圧力をP2、パッシブバルブの圧力障壁をP3としたとき、P1、P2及びP3が下記式:
0<(P2−P1)<P3
を満たすような値とすると、各ウェル内に収容された液体は、マイクロチャネルに流入され、直近のパッシブバルブで停止する。そして、この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブで停止していた液体は、パッシブバルブを通過して、さらに下流のパッシブバルブで停止するか、又は合流部で他のウェルに収容されていた液体とタイミングよく合流し、さらに下流のパッシブバルブで停止する。すなわち、合流部での気泡の噛み込みを防止することができる。この状態からまた瞬間的に
P3<(P2−P1)
を満たすような値とすると、パッシブバルブで停止していた液体は、パッシブバルブを通過して、さらに下流のパッシブバルブで停止する。このような操作を繰り返すと、各ウェル内に収容された液体の混合物が開口部に到達する。
【0011】
上記マイクロチャネルチップは、下記式:
Tx・Rx=Ty・Ry
(上記式中、Txは、前記合流部から、該合流部の上流側で且つ直近に設けられた一のパッシブバルブまでの間のマイクロチャネルの体積を、Rxは、合流部から、一のパッシブバルブの上流側にあるすべてのウェルまでの間のマイクロチャネルの流路抵抗を、Tyは、合流部から、該合流部の上流側で且つ直近に設けられた他のパッシブバルブまでの間のマイクロチャネルの体積を、Ryは、合流部から、他のパッシブバルブの上流側にあるすべてのウェルまでの間のマイクロチャネルの流路抵抗を表す。)
を満たすことが好ましい。
【0012】
ここで、「合流部から合流部の上流側で且つ直近に設けられたパッシブバルブの上流側にあるすべてのウェルまでの間のマイクロチャネルの流路抵抗」とは、パッシブバルブの上流側に複数のウェルが存在する場合には、合流部からパッシブバルブの上流側にある各ウェルまでの間のマイクロチャネルの流路抵抗の合成抵抗をいう。ここで、流路抵抗の合成抵抗は、マイクロチャネルを導線とし、合流部を一の端子とし、当該合流部の上流側で且つ直近に設けられた一のパッシブバルブの上流側の各ウェルを共通の他の端子とした場合に求められる一の端子と他の端子との間の合成電気抵抗と同様にして求められる。
【0013】
この場合、複数の液体を混合させる際に、より気泡の噛み込みが生じることを防止することができる。すなわち、マイクロチャネル内を流通する液体同士がよりタイミングよく合流部に到達する。
【発明の効果】
【0014】
本発明によれば、複数のウェルに収容された液体同士を確実に混合させることができるマイクロチャネルチップを提供することができる。
【発明を実施するための最良の形態】
【0015】
以下、図面を参照して本発明に係るマイクロチャネルチップの好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
【0016】
[第1実施形態]
まず、本発明のマイクロチャネルチップの第1実施形態について説明する。図1は、本発明のマイクロチャネルチップの第1実施形態を示す平面図である。
【0017】
図1に示すように、本実施形態のマイクロチャネルチップ10は、矩形平板状のプレートを有している。プレートは透光性材料で構成されており、液体を収容する複数のウェル11,12,13と、開口部14と、ウェル11〜13及び開口部14を接続するマイクロチャネルとを有している。具体的には、マイクロチャネル17は、ウェル11と開口部14とを接続する第1チャネル部11aを有しており、第1チャネル部11a上には合流部15,16がウェル11側から順次設けられている。またマイクロチャネル17は、合流部15に接続される第2チャネル部12aと、合流部16に接続される第3チャネル部13aとを有している。言い換えると、第2チャネル部12aは、第1チャネル部11aの合流部15に合流しており、第3チャネル部13aは、第1チャネル部11aの合流部16に合流している。
【0018】
ウェル11,12及び13には、それぞれ液体が収容されている。またプレートには、ウェル11,12,13にそれぞれ通じる通気口(図示せず)が形成されている。このため、ウェル11〜13内の圧力は、大気圧となっている。また、図示しないが、開口部14は、例えばシリンジポンプにより減圧可能となっている。
【0019】
そして、第1チャネル部11aの合流部15の上流側には、パッシブバルブ17aが設けられ、第2チャネル部12aには、第1チャネル部11aの合流部15の上流側にパッシブバルブ17bが設けられており、合流部15,16間には、合流部16側にパッシブバルブ17cが設けられている。また第3チャネル部13aには、合流部16側からウェル13側に向かって順次パッシブバルブ17d,17eが設けられている。パッシブバルブ17a〜17eは、チャネル部を経て導入される液体の先頭を停止させるものであり、液体にかかる圧力を高めることで液体の先頭を通過させるものである。
【0020】
ここで、ウェル11から開口部14までの第1チャネル部11a上のパッシブバルブの合計数は2であり、ウェル12から開口部14までの第2チャネル部12a及び第1チャネル部11a上のパッシブバルブの合計数は2であり、ウェル13から開口部14までの第3チャネル部13a及び第1チャネル部11a上のパッシブバルブの合計数も2である。つまり、各ウェル11〜13から開口部14までのパッシブバルブの合計数は同一となっている。
【0021】
このマイクロチャネルチップ10によれば、開口部14の圧力をP1、各ウェル11〜13の圧力をP2、パッシブバルブ10の圧力障壁をP3としたとき、P1、P2及びP3が下記式:
0<(P2−P1)<P3
を満たすような値とすると、ウェル11内に収容された液体は、第1チャネル部11aに流入され、ウェル11の直近のパッシブバルブ17aで停止する。このとき、ウェル12内に収容された液体は、第2チャネル部12aに流入され、ウェル12の直近のパッシブバルブ17bで停止する。またウェル13内に収容された液体は、第3チャネル部13aに流入され、ウェル13の直近のパッシブバルブ17eで停止する。
【0022】
そして、この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ17aで停止していた液体は、パッシブバルブ17aを通過して合流部15に到達する。一方、パッシブバルブ17bで停止していた液体は、パッシブバルブ17bを通過して合流部15に到達する。この場合には、異なるウェル11,12内に収容された液体同士がタイミングよく混合され、混合液は、パッシブバルブ17cで停止する。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。なお、このとき、パッシブバルブ17eで停止していた液体は、パッシブバルブ17eを通過してパッシブバルブ17dで停止する。
【0023】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ17cで停止している液体は、パッシブバルブ17cを通過して合流部16に到達する。一方、パッシブバルブ17dで停止していた液体は、パッシブバルブ17dを通過して合流部16に到達する。この場合には、異なるウェル11,12内に収容された液体の混合物と、ウェル13内に収容された液体とがタイミングよく混合される。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。このため、最終的に、すべてのウェル11〜13内に収容された液体の混合物が、開口部14の直近の合流部16を経て開口部14に到達することになる。
【0024】
このように本実施形態のマイクロチャネルチップ10を用いると、マイクロチャネル17がプレート内に形成されて気泡の噛込みが発生しやすい場合であっても、気泡の噛込みが十分に防止され、ウェル11〜13内に収容された液体の混合物を開口部14において確実に得ることができる。従って、ウェル11〜13内に収容される液体が、互いに化学反応又は生物反応するものである場合には、化学反応や生物反応を確実に行うことができる。
【0025】
図2は、マイクロチャネル10における流路抵抗を説明するための平面図である。図2に示すマイクロチャネルチップ10は、下記式:
・R=T・R
(上記式中、Tは、合流部15から、該合流部15の上流側で且つ直近に設けられたパッシブバルブ17aまでの間の第1チャネル部11aの体積、Rは、合流部15から、パッシブバルブ17aの上流側にあるウェル11までの間の第1チャネル部11aの流路抵抗、Tは、合流部15から合流部15の上流側で且つ直近に設けられたパッシブバルブ17bまでの間の第2チャネル12aの体積、Rは、合流部15からパッシブバルブ17bの上流側にあるウェル12までの間の第2チャネル部12aの流路抵抗を表す。)を満たすことが好ましい。
【0026】
図3は、チャネル部を示す図である。図3に示すように、チャネル部の断面形状を円形とし、チャネル部の長さをL(単位:m)とし、チャネル部の断面半径をrとし、チャネル部を流通する液体の密度をρ(単位:kg/m)とし、かつ動粘性係数をν(単位:m/sec)とした場合、チャネル部の流路抵抗Rは、具体的には、下記式:
R=(8Lνρ)/(πr
で表すことができる。また、流路抵抗Rは液体の流量Q(単位:m/sec)及び液体にかかる圧力P(単位:Pa)と以下の関係にある。
Q=P/R
【0027】
また、図2に示すマイクロチャネルチップ10は、下記式:
・R=T・R
(上記式中、Tは、合流部16から、該合流部16の上流側で且つ直近に設けられたパッシブバルブ17cまでの間の第1チャネル部11aの体積、Rは、合流部16から、パッシブバルブ17cの上流側にあるウェル11及びウェル12までの間の第1チャネル部11a及び第2チャネル部12aの流路抵抗の合成抵抗、Tは、合流部16から、合流部16の上流側で且つ直近に設けられたパッシブバルブ17dまでの間の第3チャネル13aの体積、Rは、合流部16から、パッシブバルブ17dの上流側にあるウェル13までの間の第3チャネル部13aの流路抵抗を表す。)
を満たすことが好ましい。
【0028】
ここで、上記Rは、第1及び第2チャネル部を導線とし、合流部16を一の端子とし、合流部16の上流側で且つ直近に設けられたパッシブバルブ17cの上流側のウェル11及び12を共通の他の端子とした場合に求められる一の端子と他の端子との間の合成電気抵抗と同様にして求められる。
【0029】
すなわち、上記Rは、合流部16から合流部15までの流路抵抗をRとした場合に、下記式;
=R・R/(R+R)+R
で求められる。
【0030】
この場合、複数の液体を混合させる際に、より気泡の噛み込みが生じることを防止することができる。すなわち、マイクロチャネル17内を流通する液体同士がよりタイミングよく合流部15,16に到達する。
【0031】
[マイクロチャネル]
次にマイクロチャネルについて詳細に説明する。
【0032】
図4の(a)、(b)及び(c)は、本実施形態に係るマイクロチャネルチップ10のプレート10aの厚さ方向に沿った部分断面図である。図4の(a)、(b)及び(c)において、チャネル部21a、21b及び21cの断面形状は四角形であり、チャネル部21a、21b及び21cのチャネル幅dは、1mm以下である。なお、「チャネル幅」とは、チャネル部の延び方向に対して直交する方向の長さをいう。チャネル部の断面形状が四角形の場合は横の長さをいい、台形や三角形の場合はチャネル部の幅方向に対して最も長い長さをいう。また、円形や半円形の場合は直径の長さ、楕円形の場合はチャネルの幅方向に対して最も長い径の長さをいう。
【0033】
チャネル幅が上記の範囲であるため、このチャネル部21a、21b及び21c内で液体同士が合流した場合には、一方の液体に含まれる物質が短時間で他方の液体内へと拡散することができる。すなわち、液体をかき混ぜるような混合手段を用いなくても、液体に含まれる物質同士を短時間で混合することができる。チャネル幅は、更に好ましくは10μm〜300μmである。
【0034】
図4の(a)に示す態様のチャネル部21aは、二つの基材を積層して形成されるものである。すなわち、一方の基材23aの一面と、他方の基材23bの一面とにそれぞれ溝を設け、溝同士が向かい合うように貼り合わせることによってチャネル部21aが形成される。図4の(b)に示す態様のチャネル部21bは、三つの基材を積層して形成されるものである。すなわち、中間層である基材24bに貫通溝を設け、この基材24bを挟持するように基材24a及び24cを積層してチャネル部21bが形成される。図4の(c)に示す態様のチャネル部21cは、基材25aにカバー部材26を積層して形成されるものである。すなわち、基材25aに溝を設け、その上部に、カバー部材26を貼り合わせることによってチャネル部21cが形成される。なお、チャネル部21a、チャネル部21b及びチャネル部21cはそれぞれ図1に示す第1チャネル部11a,第2チャネル部12a,第3チャネル部13aに相当するものである。またプレートの構成は、図4の(a)〜(c)に示す態様のいずれであってもよい。
【0035】
なお、上記基材23a,23b,24a〜24c及び25aは任意に定めることができ、石英ガラス又はパイレックス(登録商標)ガラス等のガラス、PDMS、ポリカーボネート又はポリイミド等のポリマー、鉄、ステンレス、アルミニウム、ニッケル又は銅等のメタル、又はシリコン等を使用することができ、積層する場合のそれぞれの基材は、同一の種類であっても異なる種類であってもよい。
【0036】
また、上記基材23a,23b,24a〜24c及び25a及びカバー部材26は、透光性であることが好ましい。この場合、各ウェル11〜13内の液体が各チャネル部11a〜13aに導入されかどうか、ひいては液体同士の混合状態を目視で確認することができ、便利である。
【0037】
[パッシブバルブ]
次にパッシブバルブについて説明する。
【0038】
図5の(a)及び(b)は、本実施形態に係るパッシブバルブのプレート10aの厚さ方向に沿った部分断面図である。図5の(a)に示すように、本実施形態に用いられるパッシブバルブは、例えばマイクロチャネルの幅dよりも狭い幅dsを有する狭窄部で構成される。パッシブバルブにおける液体の停止場所は、液体の種類、マイクロチャネルの材質により異なる。例えば液体が水でマイクロチャネルが疎水性材質の場合は図5の(a)に示すように、マイクロチャネルの幅が狭くなる部分、即ち液体の進行方向に対しパッシブバルブの手前側で停止し、液体が水でマイクロチャネルが親水性材質の場合は図5の(b)に示すように、マイクロチャネルの幅が広くなる部分の手前側、即ちパッシブバルブの内部で停止する。
【0039】
また、パッシブバルブの圧力障壁の設定方法について説明する。
【0040】
例えば液体の種類を純水、マイクロチャネルの材質をポリジメチルシロキサン(PDMS)、マイクロチャネルの幅dを300μmとしたときのパッシブバルブのバルブ幅(狭窄部の幅)dsとパッシブバルブの圧力障壁ΔP(kPa)との関係を図6に示す。図6において、曲線で示すものが計算値であり、「◆」で示すものが実測値である。図6に示す結果より、実測値と計算値は略一致しており、バルブ幅dsとパッシブバルブの圧力障壁ΔPとが一対一で対応している。このため、バルブ幅dsとパッシブバルブの圧力障壁ΔPとの相関関係が予め算出されていれば、パッシブバルブのバルブ幅dsを決定することにより、パッシブバルブの圧力障壁ΔPを所望の値に設定することができる。なお、パッシブバルブは液体と気体の界面、すなわち液体の先頭を停止するもので、完全に液体に濡れた後、すなわち液体の先頭が通過した後に停止力は発生しない。
【0041】
[製造方法]
次に、本実施形態に係るマイクロチャネルチップ10の製造方法について説明する。本実施形態に係るマイクロチャネルチップの製造方法は、特に限定されないが、例えば、以下の方法で製造することができる。即ち、シリコンウェハ上にレジストを塗布し、マイクロチャネル17、ウェル11〜13及び開口部14に対応した形状にパターニングしたのち、現像し、露光したシリコンウェハの表面部分をエッチングする。こうしてシリコン表面にマイクロチャネル17、ウェル11〜13及び開口部14に対応した凸部が形成される。
【0042】
次に、当該レジストを除去し、そこに未硬化のポリジメチルシロキサン(以下「PDMS−1」という。)を塗布する。そして、当該PDMS−1を硬化(130℃、30分)させ、PDMS−1を剥離することにより、ウェルやチャネルの形状を有するPDMS−1硬化物が得られる。また、PDMS−1硬化物は、その後、使用しやすいように更に加工することも可能である。
【0043】
次に、ガラスウェハ上に別の未硬化のポリジメチルシロキサン(以下「PDMS−2」という。)を塗布し、仮硬化(50℃、10分)させる。そして、その上に、上記PDMS−1硬化物を貼り合わせ、最後にPDMS−2を硬化(130℃、30分)させる。こうして、本実施形態に係るマイクロチャネルチップ10が得られる。
【0044】
[第2実施形態]
次に、本発明のマイクロチャネルチップの第2実施形態について図7を参照して説明する。図7は、本発明のマイクロチャネルチップの第2実施形態を示す平面図である。図7に示すように、本実施形態のマイクロチャネルチップ20は、各ウェル11〜13の配置、各チャネル部11a〜13aの配置及び形状が異なること以外は、第1実施形態のマイクロチャネルチップ10と同様の構成を有する。
【0045】
具体的には、第1チャネル部11aは、合流部15と合流部16との間で蛇行しており、開口部14と合流部16との間でも蛇行している点で第1実施形態の第1チャネル部11aと相違する。
【0046】
また第2チャネル部12a及び第3チャネル部13aは途中で折れ曲がっている点で第1実施形態と相違する。
【0047】
[第3実施形態]
次に、本発明のマイクロチャネルチップの第3実施形態について図8を参照して説明する。図8は、本発明のマイクロチャネルチップの第3実施形態を示す概略図である。
【0048】
図8に示すように、本実施形態のマイクロチャネルチップ30は、ウェル31と開口部14とをプレート(図示せず)中に有しており、ウェル31及び開口部14はチャネル部31aによって接続されている。また、チャネル部31a上には合流部35,36,37がウェル31側から順次設けられている。またマイクロチャネル17は、合流部35に接続されるチャネル部32aと、合流部36に接続されるチャネル部33a、合流部37に接続されるチャネル部34aとを有している。言い換えると、チャネル部32aは、チャネル部31aの合流部35に合流しており、チャネル部33aは、チャネル部31aの合流部36に合流しており、チャネル部34aは、チャネル部31aの合流部37に合流している。
【0049】
ウェル31,32,33及び34には、それぞれ液体が収容されている。またプレート(図示せず)には、ウェル31〜34にそれぞれ通じる通気口(図示せず)が形成されている。このため、ウェル31〜34内の圧力は、大気圧となっている。また図示しないが、開口部14は、例えばシリンジポンプにより減圧可能となっている。
【0050】
そして、チャネル部31aの合流部35の上流側には、パッシブバルブ37aが設けられており、チャネル部32aには、チャネル部31aの合流部15の上流側にパッシブバルブ37bが設けられている。合流部35,36間には、合流部36側にパッシブバルブ37cが設けられており、チャネル部33aには、合流部36側からウェル33側に向かって順次パッシブバルブ37d,37eが設けられている。また、合流部36,37間には、合流部37側にパッシブバルブ37fが設けられており、チャネル部34aには、合流部37側からウェル34側に向かって順次パッシブバルブ37g,37h,37iが設けられている。37a〜37iは、チャネル部を経て導入される液体の先頭を停止させるものであり、液体にかかる圧力を高めることで液体の先頭を通過させるものである。
【0051】
ここで、ウェル31から開口部14までのチャネル部31a上のパッシブバルブの合計数は3であり、ウェル32から開口部14までのチャネル部32a及びチャネル部31a上のパッシブバルブの合計数は3であり、ウェル33から開口部14までのチャネル部33a及びチャネル部31a上のパッシブバルブの合計数は3であり、ウェル34から開口部14までのチャネル部34a及びチャネル部31a上のパッシブバルブの合計数も3である。つまり、各ウェル31〜34から開口部14までのパッシブバルブの合計数は同一となっている。
【0052】
このマイクロチャネルチップ30によれば、開口部14の圧力をP1、各ウェル31〜34の圧力をP2、パッシブバルブの圧力障壁をP3としたとき、P1、P2及びP3が下記式:
0<(P2−P1)<P3
を満たすような値とすると、ウェル31内に収容された液体は、チャネル部31aに流入され、ウェル31の直近のパッシブバルブ37aで停止する。このとき、ウェル32内に収容された液体は、チャネル部32aに流入され、ウェル32の直近のパッシブバルブ37bで停止する。またウェル33内に収容された液体は、チャネル部33aに流入され、ウェル33の直近のパッシブバルブ37eで停止する。さらにウェル34内に収容された液体は、チャネル部34aに流入され、ウェル34の直近のパッシブバルブ37iで停止する。
【0053】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ37aで停止していた液体は、パッシブバルブ37aを通過して合流部35に到達する。一方、パッシブバルブ37bで停止していた液体は、パッシブバルブ37bを通過して合流部35に到達する。この場合には、異なるウェル31,32内に収容された液体同士がタイミングよく混合され、混合液は、パッシブバルブ37cで停止する。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。なお、このとき、パッシブバルブ37eで停止していた液体は、パッシブバルブ37eを通過してパッシブバルブ37dで停止し、パッシブバルブ37iで停止していた液体は、パッシブバルブ37iを通過してパッシブバルブ37hで停止する。
【0054】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ37cで停止している液体は、パッシブバルブ37cを通過して合流部36に到達する。一方、パッシブバルブ37dで停止していた液体は、パッシブバルブ37dを通過して合流部36に到達する。この場合には、異なるウェル31,32内に収容された液体の混合物と、ウェル33内に収容された液体とがタイミングよく混合され、混合液は、パッシブバルブ37fで停止する。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。なお、このとき、パッシブバルブ37hで停止していた液体は、パッシブバルブ37hを通過してパッシブバルブ37gで停止する。
【0055】
この状態から更に瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ37fで停止している液体は、パッシブバルブ37fを通過して合流部37に到達する。一方、パッシブバルブ37gで停止していた液体は、パッシブバルブ37gを通過して合流部37に到達する。この場合には、ウェル31〜33内に収容された液体の混合物と、ウェル34内に収容された液体とがタイミングよく混合される。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。このため、最終的に、すべてのウェル31〜34内に収容された液体の混合物が、開口部14の直近の合流部37を経て開口部14に到達することになる。
【0056】
このように本実施形態のマイクロチャネルチップ30を用いると、マイクロチャネル17がプレート内に形成されて気泡の噛込みが発生しやすい場合であっても、気泡の噛込みが十分に防止され、ウェル31〜34内に収容された液体の混合物を開口部14において確実に得ることができる。従って、ウェル31〜34内に収容される液体が、互いに化学反応又は生物反応するものである場合には、化学反応や生物反応を確実に行うことができる。
【0057】
なお、本実施形態に係るマイクロチャネル、ウェル、パッシブバルブ、及び開口部については、第1実施形態において説明したものを利用できる。
【0058】
[第4実施形態]
次に、本発明のマイクロチャネルチップの第4実施形態について説明する。図9は、本発明のマイクロチャネルチップの第4実施形態を示す概略図である。
【0059】
図9に示すように、本実施形態のマイクロチャネルチップ40は、ウェル41と開口部14とをプレート(図示せず)中に有しており、ウェル41及び開口部14はチャネル部41aによって接続されている。また、チャネル部41a上には合流部45,46がウェル41側から順次設けられている。また、マイクロチャネル17は、合流部45に接続されるチャネル部42aと、合流部46に接続されるチャネル部43aとを有している。さらに、チャネル部43a上には合流部47が設けられており、マイクロチャネル17は、合流部47に接続されるチャネル部44aも有している。言い換えると、チャネル部42aは、チャネル部41aの合流部45に合流しており、チャネル部43aは、チャネル部41aの合流部46に合流しており、チャネル部44aは、チャネル部43aの合流部47に合流している。
【0060】
ウェル41〜44には、それぞれ液体が収容されている。またプレート(図示せず)には、ウェル41〜44にそれぞれ通じる通気口(図示せず)が形成されている。このため、ウェル41〜44内の圧力は、大気圧となっている。また図示しないが、開口部14は、例えばシリンジポンプにより減圧可能となっている。
【0061】
そして、チャネル部41aの合流部45の上流側には、パッシブバルブ47aが設けられており、チャネル部42aには、チャネル部41aの合流部45の上流側にパッシブバルブ47bが設けられている。合流部45,46間には、合流部46側にパッシブバルブ47cが設けられており、チャネル部43aには、合流部46側からウェル43側に向かって順次パッシブバルブ47d,47eが設けられており、チャネル部44aには、合流部47の上流側にパッシブバルブ47fが設けられている。47a〜47fは、チャネル部を経て導入される液体の先頭を停止させるものであり、液体にかかる圧力を高めることで液体の先頭を通過させるものである。
【0062】
ここで、ウェル41から開口部14までのチャネル部41a上のパッシブバルブの合計数は2であり、ウェル42から開口部14までのチャネル部42a及びチャネル部41a上のパッシブバルブの合計数は2であり、ウェル43から開口部14までのチャネル部43a及びチャネル部41a上のパッシブバルブの合計数は2であり、ウェル44から開口部14までのチャネル部44a及びチャネル部42a及びチャネル部41a上のパッシブバルブの合計数も2である。つまり、各ウェル41〜44から開口部14までのパッシブバルブの合計数は同一となっている。
【0063】
このマイクロチャネルチップ40によれば、開口部14の圧力をP1、各ウェル41〜44の圧力をP2、パッシブバルブの圧力障壁をP3としたとき、P1、P2及びP3が下記式:
0<(P2−P1)<P3
を満たすような値とすると、ウェル41内に収容された液体は、チャネル部41aに流入され、ウェル41の直近のパッシブバルブ47aで停止する。このとき、ウェル42内に収容された液体は、チャネル部42aに流入され、ウェル42の直近のパッシブバルブ47bで停止する。またウェル43内に収容された液体は、チャネル部43aに流入され、ウェル43の直近のパッシブバルブ47eで停止する。さらにウェル44内に収容された液体は、チャネル部44aに流入され、ウェル44の直近のパッシブバルブ47fで停止する。
【0064】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ47aで停止していた液体は、パッシブバルブ47aを通過して合流部45に到達する。一方、パッシブバルブ47bで停止していた液体は、パッシブバルブ47bを通過して合流部45に到達する。この場合には、異なるウェル41,42内に収容された液体同士がタイミングよく混合され、混合液は、パッシブバルブ47cで停止する。また、パッシブバルブ47eで停止していた液体は、パッシブバルブ47eを通過して合流部47に到達する。一方、パッシブバルブ47fで停止していた液体は、パッシブバルブ47fを通過して合流部47に到達する。この場合には、異なるウェル43,44内に収容された液体同士がタイミングよく混合され、混合液は、パッシブバルブ47dで停止する。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。
【0065】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ47cで停止している液体は、パッシブバルブ47cを通過して合流部46に到達する。一方、パッシブバルブ47dで停止していた液体は、パッシブバルブ47dを通過して合流部46に到達する。この場合には、異なるウェル41,42内に収容された液体の混合物と、ウェル43,44内に収容された液体の混合物とがタイミングよく混合される。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。このため、最終的に、すべてのウェル41〜44内に収容された液体の混合物が、開口部14の直近の合流部46を経て開口部14に到達することになる。
【0066】
このように本実施形態のマイクロチャネルチップ40を用いると、マイクロチャネル17がプレート内に形成されて気泡の噛込みが発生しやすい場合であっても、気泡の噛込みが十分に防止され、ウェル41〜44内に収容された液体の混合物を開口部14において確実に得ることができる。従って、ウェル41〜44内に収容される液体が、互いに化学反応又は生物反応するものである場合には、化学反応や生物反応を確実に行うことができる。
【0067】
なお、本実施形態に係るマイクロチャネル、ウェル、パッシブバルブ、及び開口部については、第1実施形態において説明したものを利用できる。
【0068】
[第5実施形態]
次に、本発明のマイクロチャネルチップの第5実施形態について説明する。図10は、本発明のマイクロチャネルチップの第5実施形態を示す概略図である。
【0069】
図10に示すように、本実施形態のマイクロチャネルチップ50は、ウェル51,61と開口部14とをプレート(図示せず)中に有しており、ウェル51及び開口部14はチャネル部51aによって接続されており、ウェル61及び開口部14はチャネル部61aによって接続されている。また、チャネル部51a上には合流部55,56,57がウェル51側から順次設けられており、チャネル部61a上には合流部65,66がウェル61側から順次設けられている。またマイクロチャネル17は、合流部57に接続されるチャネル部51aとチャネル部61aとを有しており、さらに合流部55に接続されるチャネル部52aと、合流部56に接続されるチャネル部53aと、合流部65に接続されるチャネル部62aと、合流部66に接続されるチャネル部63aとを有している。言い換えると、チャネル部61aは、チャネル部51aの合流部57に合流しており、チャネル部52aは、チャネル部51aの合流部55に合流しており、チャネル部53aは、チャネル部51aの合流部56に合流しており、チャネル部62aは、チャネル部61aの合流部65に合流しており、チャネル部63aは、チャネル部61aの合流部66に合流している。
【0070】
ウェル51,52,53,61,62及び63には、それぞれ液体が収容されている。またプレート(図示せず)には、ウェル51〜53,61〜63にそれぞれ通じる通気口(図示せず)が形成されている。このため、ウェル51〜53,61〜63内の圧力は、大気圧となっている。また図示しないが、開口部14は、例えばシリンジポンプにより減圧可能となっている。
【0071】
そして、チャネル部51aの合流部55の上流側には、パッシブバルブ57aが設けられており、チャネル部52aには、チャネル部51aの合流部55の上流側にパッシブバルブ57bが設けられている。合流部55,56間には、合流部56側にパッシブバルブ57cが設けられており、チャネル部53aには、合流部56側からウェル53側に向かって順次パッシブバルブ57d,57eが設けられている。合流部56,57間には、合流部57側にパッシブバルブ57fが設けられている。また、チャネル部61aの合流部65の上流側には、パッシブバルブ67aが設けられており、チャネル部62aには、チャネル部61aの合流部65の上流側にパッシブバルブ67bが設けられている。合流部65,66間には、合流部66側にパッシブバルブ67cが設けられており、チャネル部63aには、合流部66側からウェル63側に向かって順次パッシブバルブ67d,67eが設けられている。合流部66,67間には、合流部67側にパッシブバルブ67fが設けられている。57a〜57f,67a〜67fは、チャネル部を経て導入される液体の先頭を停止させるものであり、液体にかかる圧力を高めることで液体の先頭を通過させるものである。
【0072】
ここで、ウェル51から開口部14までのチャネル部51a上のパッシブバルブの合計数は3であり、ウェル52から開口部14までのチャネル部52a及びチャネル部51a上のパッシブバルブの合計数は3であり、ウェル53から開口部14までのチャネル部53a及びチャネル部51a上のパッシブバルブの合計数は3である。また、ウェル61から開口部14までのチャネル部61a上のパッシブバルブの合計数は3であり、ウェル62から開口部14までのチャネル部62a及びチャネル部61a上のパッシブバルブの合計数は3であり、ウェル63から開口部14までのチャネル部63a及びチャネル部61a上のパッシブバルブの合計数は3である。つまり、各ウェル51〜53,61〜63から開口部14までのパッシブバルブの合計数は同一となっている。
【0073】
このマイクロチャネルチップ50によれば、開口部14の圧力をP1、各ウェル51〜53、61〜63の圧力をP2、パッシブバルブの圧力障壁をP3としたとき、P1、P2及びP3が下記式:
0<(P2−P1)<P3
を満たすような値とすると、ウェル51内に収容された液体は、チャネル部51aに流入され、ウェル51の直近のパッシブバルブ57aで停止する。このとき、ウェル52内に収容された液体は、チャネル部52aに流入され、ウェル52の直近のパッシブバルブ57bで停止する。ウェル53内に収容された液体は、チャネル部53aに流入され、ウェル53の直近のパッシブバルブ57eで停止する。また、ウェル61内に収容された液体は、チャネル部61aに流入され、ウェル61の直近のパッシブバルブ67aで停止する。ウェル62内に収容された液体は、チャネル部62aに流入され、ウェル62の直近のパッシブバルブ67bで停止する。ウェル63内に収容された液体は、チャネル部63aに流入され、ウェル63の直近のパッシブバルブ67eで停止する。
【0074】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ57aで停止していた液体は、パッシブバルブ57aを通過して合流部55に到達する。一方、パッシブバルブ57bで停止していた液体は、パッシブバルブ57bを通過して合流部55に到達する。この場合には、異なるウェル51,52内に収容された液体同士がタイミングよく混合され、混合液は、パッシブバルブ57cで停止する。また、パッシブバルブ67aで停止していた液体は、パッシブバルブ67aを通過して合流部65に到達する。一方、パッシブバルブ67bで停止していた液体は、パッシブバルブ67bを通過して合流部65に到達する。この場合には、異なるウェル61,62内に収容された液体同士がタイミングよく混合され、混合液は、パッシブバルブ67cで停止する。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。なお、このとき、パッシブバルブ57eで停止していた液体は、パッシブバルブ57eを通過してパッシブバルブ57dで停止し、パッシブバルブ67eで停止していた液体は、パッシブバルブ67eを通過してパッシブバルブ67dで停止する。
【0075】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ57cで停止している液体は、パッシブバルブ57cを通過して合流部56に到達する。一方、パッシブバルブ57dで停止していた液体は、パッシブバルブ57dを通過して合流部56に到達する。この場合には、異なるウェル51,52内に収容された液体の混合物と、ウェル53内に収容された液体とがタイミングよく混合され、混合液は、パッシブバルブ57fで停止する。また、パッシブバルブ67cで停止している液体は、パッシブバルブ67cを通過して合流部66に到達する。一方、パッシブバルブ67dで停止していた液体は、パッシブバルブ67dを通過して合流部66に到達する。この場合には、異なるウェル61,62内に収容された液体の混合物と、ウェル63内に収容された液体とがタイミングよく混合され、混合液は、パッシブバルブ67fで停止する。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。
【0076】
この状態から瞬間的にP1、P2及びP3が下記式:
P3<(P2−P1)
を満たすような値とすると、パッシブバルブ57fで停止している液体は、パッシブバルブ57fを通過して合流部57に到達する。一方、パッシブバルブ67fで停止していた液体は、パッシブバルブ67fを通過して合流部57に到達する。この場合には、ウェル51〜53内に収容された液体の混合物と、ウェル61〜63内に収容された液体とがタイミングよく混合される。つまり、液体の混合時における気泡の噛込みを十分に防止することができる。このため、最終的に、すべてのウェル51〜53,61〜63内に収容された液体の混合物が、開口部14の直近の合流部57を経て開口部14に到達することになる。
【0077】
このように本実施形態のマイクロチャネルチップ50を用いると、マイクロチャネル17がプレート内に形成されて気泡の噛込みが発生しやすい場合であっても、気泡の噛込みが十分に防止され、ウェル51〜53,61〜63内に収容された液体の混合物を開口部14において確実に得ることができる。従って、ウェル51〜53,61〜63内に収容される液体が、互いに化学反応又は生物反応するものである場合には、化学反応や生物反応を確実に行うことができる。
【0078】
なお、本実施形態に係るマイクロチャネル、ウェル、パッシブバルブ、及び開口部については、第1実施形態において説明したものを利用できる。
【0079】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【0080】
例えば、図4に示すマイクロチャネルの断面形状は矩形であるが、特に限定されず、円形であってもよく、台形、楕円形等の形状であってもよい。
【0081】
また、図5の(a)及び(b)に示すパッシブバルブは、マイクロチャネルの内壁部に断面が矩形状の凸部を有しているが、この凸部の断面形状は特に限定されず、三角状であってもよく、台形状であってもよい。
【0082】
また、本発明において用いる液体は流動性があれば特に限定されず用いることができる。なお、常温において流動性がない液体であっても、加熱時に流動性があれば、本発明のマイクロチャネルチップを加熱することにより用いることができる。
【0083】
また、本実施形態においては、液体がパッシブバルブを通過するために、開口部を各ウェルよりも減圧しているが、開口部を大気圧とし、各ウェルに設けられた通気口から加圧することによっても、液体がパッシブバルブを通過することができる。
【0084】
上述した開口部14若しくは上述した通気口は、上述したカバー部材に設けることも可能である。この場合、本実施形態に係るマイクロチャネルチップの基材をカバー部材で覆うだけで用いることが可能となる。
【0085】
また、開口部を各ウェルよりも減圧する場合、当該開口部から減圧する圧力制御手段としては、特に限定されないが、例えば、ポンプを使うことができる。このポンプとしては、ダイアフラムポンプ、シリンジポンプ等を用いることができる。これらは、開口部に接続して用いられる。この中でもダイアフラムポンプを用いることが好ましい。ダイアフラムポンプを用いると、圧力制御を簡便に行うことができ、さらにコスト、サイズの面で有用である。
【0086】
なお、上記圧力制御手段は開口部を減圧するのみならず、開口部を大気圧とし、各ウェルに設けられた通気口から加圧することも可能である。この場合、シリンジポンプを用いることが好ましい。また、マイクロチャネル中で混合を行う場合、気泡の噛み込みが生じることをより防止することができる。
【実施例】
【0087】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0088】
図7に示すマイクロチャネルチップを用いて細菌の検出試験を行った。ウェル11には、下記に示す検体溶液を、ウェル12には溶菌溶液を、ウェル13には発光溶液を収容し、合流部16から開口部14までの蛇行したチャネル部11aの上下面に、反射板と光検出装置を配置した。
【0089】
(検体液)
10cells/ml(E.coli JM109、PBS buffer)
(溶菌溶液)
10mg/mL(Lysozyme(fromChicken Egg White):シグマ社製)、0.8wt%(TritonX-100:シグマ社製)、4wt%(Sucroce、10mM EDTA、50mM Tris−HCl(pH8.0))
(発光溶液)
1mg/ml(ルシフェラーゼ:和光純薬社製)、2.5mM(D(−)−ルシフェリン:和光純薬社製)
【0090】
上記各液体を各ウェル11〜13それぞれに接続されたチャネル部11a、12a及び13aに流通させ、検体溶液をパッシブバルブ17aに、溶菌溶液をパッシブバルブ17bに、発光溶液をパッシブバルブ17eに停止させた。
【0091】
そして、開口部14に接続したダイアフラムポンプで、減圧することにより、各液体が各パッシブバルブを通過し、検体溶液と溶菌溶液とを混合させた。この混合により細菌内ATPが抽出され、細菌内ATPを含む混合液はさらに蛇行したチャネル部11aを流通し、パッシブバルブ17cに停止した。一方、パッシブバルブ17eを通過した発光溶液は、チャネル部13aを流通し、パッシブバルブ17dにて停止した。
【0092】
そして再び、開口部14に接続したダイアフラムポンプで、減圧することにより、各液体が各パッシブバルブを通過し、細菌内ATPを含む混合液と発光溶液とを混合させた。この混合により、発光溶液に含まれるルシフェラーゼが細菌内ATPと反応し、合流部16から開口部14までの蛇行したチャネル部11aを流通する過程において発光した。
【0093】
この発光による発光量を上記反射板で増加させ、更に上記検出装置にて光を検出することができた。
【0094】
以上より、通常、微量の発光量である細菌の生物発光反応において、的確に光を検出し、細菌を十分に検出することができたことから、本発明のマイクロチャネルチップによれば、検体液と、溶菌溶液と、発光溶液とが確実に混合していることがわかった。
【0095】
したがって、本発明のマイクロチャネルチップは、複数のウェルに収容された液体同士を確実に混合させることができることが確認された。
【図面の簡単な説明】
【0096】
【図1】図1は、本発明のマイクロチャネルチップの第1実施形態を示す平面図である。
【図2】図2は、マイクロチャネル10における流路抵抗を説明するための平面図である。
【図3】図3は、チャネル部を示す図である。
【図4】図4は、プレートの厚さ方向に沿った第1実施形態で用いられるチャネルの部分断面図である。
【図5】図5は、プレートの厚さ方向に沿った第1実施形態で用いられるパッシブバルブの部分断面図である。
【図6】図6は、パッシブバルブのバルブ幅とパッシブバルブ圧力障壁との関係を示すグラフである。
【図7】図7は、本発明のマイクロチャネルチップの第2実施形態を示す平面図である。
【図8】図8は、本発明のマイクロチャネルチップの第3実施形態を示す概略図である。
【図9】図9は、本発明のマイクロチャネルチップの第4実施形態を示す概略図である。
【図10】図10は、本発明のマイクロチャネルチップの第5実施形態を示す概略図である。
【符号の説明】
【0097】
10,20…マイクロチャネルチップ、10a,20a…プレート、11〜13,31〜34,41〜44,51〜53,61〜63…ウェル、11a〜13a,31a〜34a,41a〜44a,51a〜53a,61a〜63a,21a,21b,21c…チャネル部、14…開口部、15,16,35〜37,45〜47,55〜57,65,66…合流部、17…マイクロチャネル、17a〜17e,37a〜37i,47a〜47f,57a〜57f,67a〜67f…パッシブバルブ、23a,23b,24a〜24c,25a,26…基材、d…チャネル幅。

【特許請求の範囲】
【請求項1】
プレートを有し、
前記プレート内部には、液体を収容する複数のウェルと、開口部と、前記複数のウェル及び前記開口部を接続するマイクロチャネルとが形成され、
前記マイクロチャネルが少なくとも1つの合流部を有し、
前記合流部の上流側には前記液体を停止させるパッシブバルブが少なくとも1つ設けられており、かつ
前記開口部から各ウェルまでに設けられた前記パッシブバルブの合計数がそれぞれ同一となっている、マイクロチャネルチップ。
【請求項2】
前記ウェルの数が3つ以上である、請求項1記載のマイクロチャネルチップ。
【請求項3】
下記式:
Tx・Rx=Ty・Ry
(上記式中、Txは、前記合流部から、該合流部の上流側で且つ直近に設けられた一の前記パッシブバルブまでの間の前記マイクロチャネルの体積を、Rxは、前記合流部から、前記一のパッシブバルブの上流側にあるすべてのウェルまでの間のマイクロチャネルの流路抵抗を、Tyは、前記合流部から該合流部の上流側で且つ直近に設けられた他の前記パッシブバルブまでの間の前記マイクロチャネルの体積を、Ryは、前記合流部から、前記他のパッシブバルブの上流側にあるすべてのウェルまでの間のマイクロチャネルの流路抵抗を表す。)
を満たすことを特徴とする、請求項1又は2に記載のマイクロチャネルチップ。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2006−247533(P2006−247533A)
【公開日】平成18年9月21日(2006.9.21)
【国際特許分類】
【出願番号】特願2005−67996(P2005−67996)
【出願日】平成17年3月10日(2005.3.10)
【出願人】(502205145)株式会社物産ナノテク研究所 (101)
【Fターム(参考)】