説明

リチウムイオン二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム

【課題】初回の充放電時における不可逆容量の補填と初回以降の充放電時における高エネルギー密度の確保とを両立させて、充放電を繰り返しても高い電池容量を安定に得ることが可能なリチウムイオン二次電池を提供する。
【解決手段】正極21の正極活物質層21Bは、正極活物質として、第1および第2リチウム複合酸化物を含んでいる。第2リチウム複合酸化物は、Li1+a (Mnb Coc Ni1-b-c 1-a 2 (aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−b)である。ただし、1サイクル目の充放電時において、単位体積当たりの充電容量(対リチウム金属)は第1リチウム複合酸化物よりも第2リチウム複合酸化物において大きいと共に、放電電圧(対リチウム金属)は第1リチウム複合酸化物よりも第2リチウム複合酸化物において低い。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リチウムおよび遷移金属を構成元素として含む複合酸化物を含有する正極活物質、その正極活物質を用いた正極およびリチウムイオン二次電池、ならびにそのリチウムイオン二次電池を用いた電動工具、電動車両および電力貯蔵システムに関する。
【背景技術】
【0002】
近年、携帯用端末機器などに代表される小型の電子機器が広く普及しており、そのさらなる小型化、軽量化および長寿命化が強く求められている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、最近では、小型の電子機器に限らず、自動車などに代表される大型の電子機器への応用も検討されている。
【0003】
二次電池としては、さまざまな充放電原理を利用するものが広く提案されているが、中でも、リチウムイオンの吸蔵放出を利用するリチウムイオン二次電池が有望視されている。鉛電池およびニッケルカドミウム電池などよりも高いエネルギー密度が得られるからである。
【0004】
リチウムイオン二次電池は、正極および負極と共に電解液を備えており、その正極および負極は、それぞれリチウムイオンを吸蔵放出する正極活物質および負極活物質を含んでいる。正極活物質としては、高い電池容量を得るために、リチウムおよび遷移金属を構成元素として含む複合酸化物であるLiCoO2 またはLiNiO2 などが広く用いられている。ところが、最近では、電池容量だけでなく、サイクル特性などの各種電池性能を改善するために、LiCoO2 等に代えて他の組成を有する複合酸化物を用いたり、それらを併用することが検討されている。
【0005】
具体的には、Si系またはSn系の負極活物質の高容量特性を十分に活用するために、主成分である第1含Li遷移金属複合酸化物と、副成分である第2含Li遷移金属複合酸化物(Li(Lix Mn2xCo1-3x)O2 :0<x<1/3)とを併用することが提案されている(例えば、特許文献1参照。)。第1含Li遷移金属複合酸化物は、LoCoO2 またはLi(Coa Mnb Nic 2 :a、bおよびcはいずれも正数、a+b+c=1)などであり、第2含Li遷移金属複合酸化物は、Li(Li0.2 Mn0.4 Co0.4 )O2 などである。
【0006】
また、同様の目的のために、リチウムリッチの複合酸化物(Lih Mni Coj Nik 2 )を用いることが提案されている(例えば、特許文献2参照。)。ここで、h=[3(1+x)+4a]/3(1+a)、i=[3α(1+x)+2a]/3(1+a)、j=β(1−x)/(1+a)、k=γ(1−x)/(1+a)、0<a<1、α>0、β>0、γ>0、α+β+γ=1、0≦x<1/3である。この複合酸化物は、Li1+x (Mnα Coβ Niγ 1-x 2 ・aLi4/3 Mn2/3 2 で表される固溶体である。
【0007】
高電圧において優れた充放電特性を得るために、リチウムリッチのリチウム複合酸化物(Li1+a [Mnb Coc Ni1-b-c 1-a 2-d :0<a<0.25、0.5≦b<0.7、0≦c<1−b、−0.1≦d≦0.2)を用いることが提案されている(例えば、特許文献3参照。)。このリチウム複合酸化物は、Li1.05[Mn0.6 Co0.2 Ni0.2 0.952 などである。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2009−158320号公報
【特許文献2】特開2009−158415号公報
【特許文献3】特開2007−220630号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
充放電を繰り返しても高い電池容量を得るためには、初回(1サイクル目)の充放電時において負極で生じる不可逆容量を補填すると共に、初回以降(2サイクル目以降)の充放電時において高いエネルギー密度を安定に得る必要がある。しかしながら、従来のリチウムイオン二次電池では、初回の充放電時における不可逆容量の補填と初回以降の充放電時における高エネルギー密度の確保とを両立させることが困難である。
【0010】
本発明はかかる問題点に鑑みてなされたもので、その目的は、初回の充放電時における不可逆容量の補填と初回以降の充放電時における高エネルギー密度の確保とを両立させて、充放電を繰り返しても高い電池容量を安定に得ることが可能な正極活物質、正極、リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システムを提供することにある。
【課題を解決するための手段】
【0011】
本発明の正極活物質は、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含むものである。ただし、1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、第1リチウム複合酸化物よりも第2リチウム複合酸化物において大きくなっている。また、1サイクル目の充放電時における放電電圧(対リチウム金属)は、第1リチウム複合酸化物よりも第2リチウム複合酸化物において低くなっている。
【0012】
Li1+a [Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b≦0.7、cは0≦c<(1−b)である。)
【0013】
本発明の正極は、上記した正極活物質を含むものである。また、本発明のリチウムイオン二次電池は、正極および負極と共に電解液を備え、その正極が上記した正極活物質を含むものである。さらに、本発明の電動工具、電動車両および電力貯蔵システムは、上記したリチウムイオン二次電池を用いるものである。
【0014】
ここで、リチウム複合酸化物とは、リチウム(Li)と共に1種類または2種類以上の遷移金属を構成元素として含む複合酸化物であり、さらに遷移金属元素以外の他の元素を含んでいてもよい。
【0015】
1サイクル目の充放電時における第1リチウム複合酸化物の単位重体積当たりの充電容量(対リチウム金属)は、その第1リチウム複合酸化物に固有の充電能力の実力値であり、リチウム金属を対極とする試験用の二次電池を作製して求められる。具体的には、第1リチウム複合酸化物およびリチウム金属をそれぞれ試験極および対極とする試験用の二次電池を作製したのち、その二次電池を充電させて充電容量(mAh)を測定する。この充電容量を測定する場合の詳細な条件については、後述する実施例で説明している。測定した充電容量と第1リチウム複合酸化物の重量(g)および真密度(g/cm3 )とから、単位体積当たりの充電容量(mAh/cm3 )=[充電容量(mAh)/重量(g)]×真密度(g/cm3 )を算出する。なお、第2リチウム複合酸化物についても、同様の手順により、1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)を求める。
【0016】
また、1サイクル目の充放電時における第1リチウム複合酸化物の放電電圧(対リチウム金属)は、その第1リチウム複合酸化物に固有の放電能力の実力値であり、単位体積当たりの充電容量を求める場合と同様に試験用の二次電池を作製して求められる。具体的には、二次電池を充放電させて放電電圧(V)を測定する。この放電電圧を測定する場合の詳細な条件については、後述する実施例で説明している。なお、第2リチウム複合酸化物についても、同様の手順により、1サイクル目の充放電時における放電電圧を測定する。
【発明の効果】
【0017】
本発明の正極活物質、正極またはリチウムイオン二次電池によれば、第1リチウム複合酸化物と、式(1)に示した第2リチウム複合酸化物とを含んでいる。ただし、1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は第1リチウム複合酸化物よりも第2リチウム複合酸化物において大きくなっていると共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は第1リチウム複合酸化物よりも第2リチウム複合酸化物において低くなっている。この場合には、正極活物質を用いたリチウムイオン二次電池が充放電されると、初回の充放電時において第2リチウム複合酸化物が優先的に用いられるため、その第2リチウム複合酸化物により不可逆容量が補填される。また、初回以降の充放電時において第1リチウム複合酸化物が優先的に用いられるため、その高エネルギー密度の第1リチウム複合酸化物により高い電池容量が得られる。よって、初回の充放電時における不可逆容量の補填と初回以降の充放電時における高エネルギー密度の確保とが両立されるため、充放電を繰り返しても高い電池容量を安定に得ることができる。また、上記したリチウムイオン二次電池を用いた本発明の電動工具、電動車両および電力貯蔵システムにおいても、同様の効果を得ることができる。
【図面の簡単な説明】
【0018】
【図1】本発明の一実施形態の正極活物質を用いたリチウムイオン二次電池(円筒型)の構成を表す断面図である。
【図2】図1に示した巻回電極体の一部を拡大して表す断面図である。
【図3】本発明の一実施形態の正極活物質を用いた他のリチウムイオン二次電池(ラミネートフィルム型)の構成を表す斜視図である。
【図4】図3に示した巻回電極体のIV−IV線に沿った断面図である。
【図5】試験用の二次電池(コイン型)の構成を表す断面図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

1.正極活物質
2.正極活物質の適用例
2−1.正極およびリチウムイオン二次電池(円筒型)
2−2.正極およびリチウムイオン二次電池(ラミネートフィルム型)
3.リチウムイオン二次電池の用途
【0020】
<1.正極活物質>
[正極活物質の構成]
本発明の一実施形態の正極活物質は、例えば、リチウムイオン二次電池(以下、単に「二次電池」という。)の正極に用いられるものである。
【0021】
この正極活物質は、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含んでいる。ただし、1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、第1リチウム複合酸化物よりも第2リチウム複合酸化物において大きくなっている。また、1サイクル目の充放電時における放電電圧(対リチウム金属)は、第1リチウム複合酸化物よりも第2リチウム複合酸化物において低くなっている。
【0022】
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)
【0023】
第1リチウム複合酸化物は、リチウム(Li)と共に1種類または2種類以上の遷移金属等を構成元素として含むリチウム遷移金属複合酸化物である。この第1リチウム複合酸化物の種類は、1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)が第2リチウム複合酸化物よりも小さいと共に1サイクル目の充放電時における放電電圧(対リチウム金属)が第2リチウム複合酸化物よりも高い化合物であれば、特に限定されない。
【0024】
単位体積当たりの充電容量が相対的に小さい第1リチウム複合酸化物は、主に、二次電池の初回以降(2サイクル目以降)の充放電時において、正極活物質がリチウムイオンを吸蔵放出するために優先的に用いられるものである。
【0025】
中でも、第1リチウム複合酸化物は、下記の式(2)〜式(4)で表される化合物のうちの少なくとも1種であることが好ましい。二次電池の実質的な使用時である初回以降の充放電時において、高いエネルギー密度(電池容量)が得られると共に、サイクル特性も向上するからである。
【0026】
Lid Ni1-e-f Mne M1f 2-g h ・・・(2)
(M1は長周期型周期表における2族〜15族の元素(ニッケルおよびマンガンを除く))のうちの少なくとも1種であり、Xは16族および17族の元素(酸素(O)を除く)のうちの少なくとも1種である。dは0≦d≦1.5、eは0≦e≦1、fは0≦f≦1、gは−0.1≦g≦0.2、hは0≦h≦0.2である。)
【0027】
Lij Mn2-k M2k m n ・・・(3)
(M2はコバルト、ニッケル、マグネシウム(Mg)、アルミニウム(Al)、ホウ素、チタン、バナジウム(V)、クロム(Cr)、鉄、銅、亜鉛、モリブデン、スズ、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。jはj≧0.9、kは0≦k≦0.6、mは3.7≦m≦4.1、nは0≦n≦0.1である。)
【0028】
Lip M3q PO4 ・・・(4)
(M3は長周期型周期表における2族〜15族の元素のうちの少なくとも1種である。pは0≦p≦2、qは0.5≦q≦2である。)
【0029】
式(2)に示した化合物は、いわゆる層状型である。式(2)において、M1の種類は、長周期型周期表における2族〜15族の元素(ニッケルおよびマンガンを除く)のうちの少なくとも1種であれば特に限定されないが、例えば、コバルト、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム、ストロンチウムおよびタングステンのうちの少なくとも1種である。また、Xの種類は、16族および17族の元素(酸素を除く)のうちの少なくとも1種であれば特に限定されないが、例えば、フッ素(F)などのハロゲンである。式(2)に示した化合物の具体例は、LiNiO2 、LiCoO2 またはLiNi0.8 Co0.18Al0.022 などである。
【0030】
式(3)に示した化合物は、いわゆるスピネル型であり、例えば、LiMn2 4 などである。
【0031】
式(4)に示した化合物は、いわゆるオリビン型である。式(4)において、M3の種類は、長周期型周期表における2族〜15族の元素のうちの少なくとも1種であれば特に限定されないが、例えば、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムのうちの少なくとも1種である。式(4)に示した化合物の具体例は、LiFePO4 などである。
【0032】
第2リチウム複合酸化物は、リチウムと共に遷移金属であるマンガン、コバルトおよびニッケルを構成元素として有するリチウムリッチのリチウム遷移金属複合酸化物である。なお、式(1)においてbおよびcが取り得る値の範囲から明らかなように、マンガンは必ず第2リチウム複合酸化物に含まれるが、コバルトおよびニッケルは必ずしも第2リチウム複合酸化物に含まれるとは限らない。
【0033】
単位体積当たりの充電容量が相対的に大きい第2リチウム複合酸化物は、第1リチウム複合酸化物とは異なり、主に、二次電池の初回(1サイクル目)の充放電時において、正極活物質がリチウムイオンを吸蔵放出するために優先的に用いられるものである。二次電池の初回の充放電時には、負極の表面に安定な被膜(SEI膜など)が形成されるため、不可逆容量が生じることが知られている。これに伴い、初回の充放電時において第1リチウム複合酸化物から吸蔵放出されるリチウムイオンは、上記した被膜を形成する(不可逆容量を生じさせる)ために消費される。
【0034】
なお、負極の負極活物質がケイ素およびスズのうちの少なくとも一方を構成元素として含む金属系材料、またはその酸化物(例えばSiOなど)である場合には、そのことによっても不可逆容量が生じる場合もある。初回の充放電時において正極活物質から放出されたリチウムイオンがケイ素等または酸素と不可逆的に結合するからである。上記した金属系材料は、例えば、ケイ素の単体、合金および化合物、ならびにスズの単体、合金および化合物のうちの少なくとも1種などであり、その金属系材料の酸化物は、例えば、酸化ケイ素(SiOx :0.2<x<1.4)などである。
【0035】
ここで、正極活物質が第1および第2リチウム複合酸化物を含んでいるのは、上記した第1および第2リチウム複合酸化物の役割分担により、二次電池の実質的な使用時である初回以降の充放電時において、高い電池容量が安定に得られるからである。
【0036】
詳細には、正極活物質が第1リチウム複合酸化物だけであると、初回以降の充放電時において高いエネルギー密度を得るために十分な量の第1リチウム複合酸化物が必要であるにもかかわらず、初回の充放電時において負極の不可逆容量を生じさせるために第1リチウム複合酸化物の一部が意図せずに消費されすぎてしまう。これにより、初回以降の充放電時において使用可能な第1リチウム複合酸化物の絶対量が減少するため、十分な電池容量が得られない。一方、正極活物質が第2リチウム複合酸化物だけであると、第1リチウム複合酸化物と比較して十分なエネルギー密度が得られないと共に、初回の充電容量よりも初回以降の充電容量が極端に低下してしまうため、やはり初回以降の充放電時において十分な電池容量が得られない。
【0037】
これに対して、正極活物質が第1および第2リチウム複合酸化物を含んでいると、初回の充放電時において、不可逆容量を生じさせるために第2リチウム複合酸化物が優先的に消費され、第1リチウム複合酸化物はほとんど消費されずに維持される。すなわち、第2リチウム複合酸化物は、本来であれば不可逆容量を生じさせるために消費されるはずである第1リチウム複合酸化物を肩代わり(補填)する役割を果たす。これにより、初回以降の充放電時において使用可能な第1リチウム複合酸化物の絶対量が確保されるため、その初回以降の充放電時において高いエネルギー密度(電池容量)が安定に得られる。この場合には、初回の充放電時において第2リチウム複合酸化物が実質的に消費されるため、初回以降の充放電時において第2リチウム複合酸化物を用いずに第1リチウム複合酸化物だけを用いた場合と同等のサイクル特性も得られる。
【0038】
上記した利点は、特に、二次電池において負極の充放電効率が正極の充放電効率よりも低い場合において効果的である。すなわち、負極が負極活物質を含む場合において、充放電効率(1サイクル目の充放電時における単位体積当たりの放電容量(対リチウム金属)/1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属))は、負極活物質よりも第1リチウム複合酸化物において高いことが好ましい。
【0039】
詳細には、負極活物質として金属系材料を用いた場合には、充放電時において負極が激しく膨張収縮することを抑制するために、その負極の利用率を低くする(負極容量よりも正極容量を低くする)ことが好ましい。この場合には、負極の全充電容量に対してSEI膜の形成等に消費されるリチウムイオンの割合が多くなるため、負極の充放電効率が低下する。また、負極活物質として金属系材料の酸化物を用いた場合には、金属系材料を用いた場合よりも負極の膨張収縮が抑制されるため、その負極の利用率を高くできるが、初回の充放電時においてリチウムイオンの一部が酸素と不可逆的に結合するため、やはり負極の充放電効率が低下する。
【0040】
この点に関して、正極活物質が第1および第2リチウム複合酸化物を含んでいると、上記したように、初回の充放電時において消費される第1リチウム複合酸化物の絶対量が少なく抑えられると共に、初回以降の充放電時において電池容量を生じさせるために使用される第1リチウム複合酸化物の絶対量が確保される。よって、負極の充放電効率が低くても、できるだけ高い電池容量が得られる。これらのことから、第1および第2リチウム複合酸化物を含む正極活物質は、負極の充放電効率が正極の充放電効率よりも低い場合に有効である。
【0041】
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)が第1リチウム複合酸化物よりも第2リチウム複合酸化物において大きいのは、初回の充放電時において被膜を形成する(不可逆容量を生じさせる)ために第1リチウム複合酸化物よりも第2リチウム複合酸化物が優先的に消費されるため、その第2リチウム複合酸化物の消費量が少なくて済むからである。これにより、初回以降の充放電時において電池容量を得るために使用可能な第1リチウム複合酸化物の絶対量(正極活物質全体に占める割合)が確保されるため、電池容量が高くなる。
【0042】
1サイクル目の充放電時における放電電圧(対リチウム金属)が第1リチウム複合酸化物よりも第2リチウム複合酸化物において低いのは、初回の放電時においてリチウムイオンが第1リチウム複合酸化物に優先的に吸蔵されるため、その第1リチウム複合酸化物にリチウムイオンが十分に吸蔵された状態において、初回以降の充放電が行われるからである。これにより、初回以降の充放電時において、第2リチウム複合酸化物よりも高い第1リチウム複合酸化物の放電電圧を利用して高い電池容量が得られる。
【0043】
特に、第1および第2リチウム複合酸化物において、充電容量比(2サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属))/1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属))は、第2リチウム複合酸化物よりも第1リチウム複合酸化物において大きいことが好ましい。初回以降の充放電時において、第2リチウム複合酸化物により高い電池容量が得られるからである。
【0044】
上記した第1リチウム複合酸化物の特性値、すなわち単位体積当たりの充電容量(対リチウム金属)および放電電圧(対リチウム金属)は、上記したように、その第1リチウム複合酸化物に固有の充電能力および放電能力の実力値であるため、リチウム金属を対極とする試験用の二次電池を作製して求められる。なお、第2リチウム複合酸化物の特性値についても、同様の手順により求められる。
【0045】
単位体積当たりの充電容量を求める場合には、第1リチウム複合酸化物およびリチウム金属をそれぞれ試験極および対極とする試験用の二次電池を作製したのち、その二次電池を充電させて充電容量(mAh)を測定する。この充電容量と第1リチウム複合酸化物の重量(g)および真密度(g/cm3 )とに基づいて、単位体積当たりの充電容量(mAh/cm3 )=[充電容量(mAh)/重量(g)]×真密度(g/cm3 )を算出する。この充電容量(mAh)の測定条件については、後述する実施例で説明している。
【0046】
また、放電電圧(対リチウム金属)を求める場合には、単位体積当たりの充電容量を求める場合と同様に試験用の二次電池を作製したのち、その二次電池を充放電させて放電電圧(V)を測定する。この放電電圧の測定条件については、後述する実施例で説明している。
【0047】
なお、正極活物質が二次電池に組み込まれている場合には、後述するように、正極のうち、絶縁性の保護テープの存在に起因して充放電が行われない領域において、第1および第2リチウム複合酸化物の特性値を調べることが好ましい。この領域では充放電前の状態(未充放電状態)が維持されているため、充放電の有無に関係せずに第1および第2リチウム複合酸化物の特性値を調べることができるからである。
【0048】
第1および第2リチウム複合酸化物の混合比は、特に限定されないが、中でも、第1リチウム複合酸化物の割合は第2リチウム複合酸化物の割合よりも多いことが好ましい。初回の充放電時において、最低限の量の第2リチウム複合酸化物により不可逆容量を補填しつつ、初回以降の充放電時において、十分な量の第1リチウム複合酸化物により高い電池容量を安定に得る必要があるからである。
【0049】
より具体的には、初回の充放電時において負極で生じる不可逆容量がその負極の全充電容量(対正極)に対してZ%であるとき、第1および第2リチウム複合酸化物における第2リチウム複合酸化物の割合は、その第2リチウム複合酸化物の充電容量(対負極)が正極の全充電容量に対してZ%以下となるように設定されることが好ましい。一例を挙げると、不可逆容量が負極の全充電容量に対して30%であるとき、第2リチウム複合酸化物の割合は、その充電容量が正極の全充電容量に対して30%以下となるように設定されることが好ましい。
【0050】
[正極活物質の分析方法]
正極活物質が第1および第2リチウム複合酸化物を含んでいることを確認するためには、各種の元素分析法を用いて正極活物質を分析すればよい。この元素分析法は、例えば、X線回折(XRD:x-ray diffraction )法、高周波誘導結合プラズマ(ICP:inductively coupled plasma)発光分光分析法、ラマン分光分析法またはエネルギー分散X線分光法(EDX:energy dispersive x-ray spectrometry)などである。
【0051】
特に、XRD法を用いて第2リチウム複合酸化物を分析すると、Li2 MnO3 に起因するピークとLiMnO2 に起因するピークとが観察されるはずである。第2リチウム複合酸化物は、Li2 MnO3 とLiMnO2 との固溶体として存在しているからである。
【0052】
なお、二次電池において充放電が行われる領域(正極と負極とが対向している領域)では、充放電により第1および第2リチウム複合酸化物の結晶構造が変化するため、X線回折法などでは充放電後において第1および第2リチウム複合酸化物の結晶構造を確認できない可能性がある。しかしながら、正極に充放電が行われない領域(未充放電領域)が存在する場合には、その領域において元素分析することが好ましい。この未充放電領域では充放電前の結晶構造が維持されているため、充放電の有無に関係せずに正極活物質の組成を分析できるからである。この「未充放電領域」は、例えば、安全性確保のために正極(正極活物質層)の端部表面に絶縁性の保護テープが貼り付けられているため、その絶縁性の保護テープの存在に起因して正極と負極との間で充放電を行うことができない領域などである。
【0053】
[正極活物質の使用条件]
この正極活物質を用いた二次電池を充放電させる場合には、初回の充電時における充電電圧(正極電位:対リチウム金属標準電位)は4.5V以上であることが好ましい。初回の充放電時において、負極の不可逆容量を生じさせるためにリチウムリッチの第2リチウム複合酸化物が優先的かつ十分に消費されやすくなるからである。ただし、第2リチウム複合酸化物の分解反応を抑制するために、初回の充電時における充電電圧は4.6V以下であることが好ましい。
【0054】
なお、初回以降の充電時における充電電圧(正極電位:対リチウム金属標準電位)は、特に限定されないが、中でも、初回の充電時における充電電圧よりも低いことが好ましい。具体的には、例えば、4.3V前後である。第1リチウム複合酸化物により十分なエネルギー密度が得られると共に、電解液の分解反応およびセパレータの溶解反応などが抑制されるからである。
【0055】
[正極活物質の作用および効果]
この正極活物質によれば、第1リチウム複合酸化物と、式(1)に示した第2リチウム複合酸化物とを含んでいる。また、1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は第1リチウム複合酸化物よりも第2リチウム複合酸化物において大きくなっていると共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は第1リチウム複合酸化物よりも第2リチウム複合酸化物において低くなっている。この場合には、上記したように、正極活物質を用いたリチウムイオン二次電池において、初回の充電時の充電電圧(例えば4.6V)を初回以降の充電時の充電電圧(例えば4.35V)よりも高くすれば、初回の充放電時において第2リチウム複合酸化物により不可逆容量が補填されると共に、初回以降の充放電時において高エネルギー密度の第1リチウム複合酸化物により高い電池容量が得られる。よって、初回の充放電時における不可逆容量の補填と初回以降の充放電時における高エネルギー密度の確保とが両立されるため、充放電を繰り返しても高い電池容量を安定に得ることができる。
【0056】
特に、負極22の負極活物質として不可逆容量が大きくなる材料を用いた場合において、より高い効果を得ることができる。このような材料としては、ケイ素およびスズのうちの少なくとも一方を構成元素として含む材料(特に、酸化ケイ素(SiOx :0.2<x<1.4))や、炭素材料(低結晶性炭素または非晶質炭素)などが挙げられる。
【0057】
<2.正極活物質の適用例>
次に、上記した正極活物質の適用例について説明する。この正極活物質は、例えば、リチウムイオン二次電池の正極に用いられる。
【0058】
<2−1.正極およびリチウムイオン二次電池(円筒型)>
図1および図2は、円筒型の二次電池の断面構成を表しており、図2では、図1に示した巻回電極体20の一部を拡大している。
【0059】
[二次電池の全体構成]
この二次電池は、主に、ほぼ中空円柱状の電池缶11の内部に巻回電極体20および一対の絶縁板12,13が収納されたものである。この巻回電極体20は、セパレータ23を介して正極21と負極22とが積層および巻回された巻回積層体である。
【0060】
電池缶11は、一端部が閉鎖されると共に他端部が開放された中空構造を有していると共に、例えば、鉄、アルミニウムまたはそれらの合金などにより形成されている。なお、電池缶11が鉄製である場合には、その電池缶11の表面にニッケルなどが鍍金されていてもよい。一対の絶縁板12,13は、巻回電極体20を上下から挟み、その巻回周面に対して垂直に延在するように配置されている。
【0061】
電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16がガスケット17を介してかしめられている。これにより、電池缶11は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により形成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱などに起因して内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との間の電気的接続を切断するようになっている。熱感抵抗素子16は、温度上昇に応じた抵抗増加により、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により形成されており、その表面には、アスファルトが塗布されていてもよい。
【0062】
巻回電極体20の中心には、センターピン24が挿入されていてもよい。正極21には、アルミニウムなどの導電性材料により形成された正極リード25が接続されていると共に、負極22には、ニッケルなどの導電性材料により形成された負極リード26が接続されている。正極リード25は、安全弁機構15に溶接などされ、電池蓋14と電気的に接続されていると共に、負極リード26は、電池缶11に溶接などされ、それと電気的に接続されている。
【0063】
[正極]
正極21は、例えば、正極集電体21Aの片面または両面に正極活物質層21Bが設けられたものである。正極集電体21Aは、例えば、アルミニウム、ニッケルまたはステンレスなどの導電性材料により形成されている。正極活物質層21Bは、上記した正極活物質(第1および第2リチウム複合酸化物)を含んでおり、必要に応じて正極結着剤または正極導電剤などの他の材料を含んでいてもよい。
【0064】
正極結着剤は、例えば、合成ゴムまたは高分子材料などのいずれか1種類または2種類以上である。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデンまたはポリイミドなどである。
【0065】
正極導電剤は、例えば、炭素材料などのいずれか1種類または2種類以上である。炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックまたはケチェンブラックなどである。なお、正極導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などでもよい。
【0066】
[負極]
負極22は、例えば、負極集電体22Aの片面または両面に負極活物質層22Bが設けられたものである。
【0067】
負極集電体22Aは、例えば、銅、ニッケルまたはステンレスなどの導電性材料により形成されている。この負極集電体22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域において、負極集電体22Aの表面が粗面化されていればよい。粗面化の方法としては、例えば、電解処理で微粒子を形成する方法などが挙げられる。この電解処理とは、電解槽中で電解法により負極集電体22Aの表面に微粒子を形成して凹凸を設ける方法である。電解法で作製された銅箔は、一般に電解銅箔と呼ばれている。
【0068】
負極活物質層22Bは、負極活物質として、リチウムイオンを吸蔵放出可能な負極材料のいずれか1種類または2種類以上を含んでおり、必要に応じて負極結着剤または負極導電剤などの他の材料を含んでいてもよい。なお、負極結着剤および負極導電剤に関する詳細は、例えば、それぞれ正極結着剤および正極導電剤と同様である。この負極活物質層22Bでは、例えば、充放電時において意図せずにリチウム金属が析出することを防止するために、負極材料の充電可能な容量は正極21の放電容量よりも大きくなっていることが好ましい。
【0069】
負極材料は、例えば、炭素材料である。リチウムイオンの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度および優れたサイクル特性が得られるからである。また、負極導電剤としても機能するからである。この炭素材料は、例えば、易黒鉛化性炭素、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素、または(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭またはカーボンブラック類などである。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノールこの他、炭素材料は、約1000℃以下で熱処理された低結晶性炭素または非晶質炭素でもよい。樹脂またはフラン樹脂などを適当な温度で焼成して炭素化したものをいう。この他、炭素材料は、約1000℃以下で熱処理された低結晶性炭素または非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状または鱗片状のいずれでもよい。
【0070】
また、負極材料は、例えば、金属元素および半金属元素のいずれか1種類あるいは2種類以上を構成元素として含む材料(金属系材料)である。高いエネルギー密度が得られるからである。この金属系材料は、金属元素または半金属元素の単体、合金または化合物でもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に含むものでもよい。なお、本発明における合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。その組織には、固溶体、共晶(共融混合物)、金属間化合物、またはそれらの2種類以上の共存物などがある。
【0071】
上記した金属元素または半金属元素は、例えば、リチウムと合金を形成可能な金属元素あるいは半金属元素であり、具体的には、以下の元素の1種類または2種類以上である。マグネシウム、ホウ素、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム(Ge)、スズまたは鉛(Pb)である。ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウムイットリウム、パラジウム(Pd)または白金(Pt)である。中でも、ケイ素およびスズのうちの少なくとも一方が好ましい。リチウムイオンを吸蔵放出する能力が優れているため、高いエネルギー密度が得られるからである。
【0072】
ケイ素およびスズのうちの少なくとも一方を含む材料は、ケイ素またはスズの単体、合金または化合物でもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有するものでもよい。なお、単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)であり、必ずしも純度100%を意味しているわけではない。
【0073】
ケイ素の合金は、例えば、ケイ素以外の構成元素として以下の元素の1種類または2種類以上を含む材料である。スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムである。ケイ素の化合物としては、例えば、ケイ素以外の構成元素として酸素または炭素を含むものが挙げられる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金について説明した元素のいずれか1種類または2種類以上を含んでいてもよい。
【0074】
ケイ素の合金または化合物は、例えば、以下の材料などである。SiB4 、SiB6 、Mg2 Si、Ni2 Si、TiSi2 、MoSi2 、CoSi2 、NiSi2 、CaSi2 、CrSi2 、Cu5 Si、FeSi2 、MnSi2 、NbSi2 またはTaSi2 である。VSi2 、WSi2 、ZnSi2 、SiC、Si3 4 、Si2 2 O、SiOv (0<v≦2)またはLiSiOである。なお、SiOv におけるvは、0.2<v<1.4でもよい。
【0075】
スズの合金は、例えば、スズ以外の構成元素として以下の元素の1種類または2種類以上を含む材料などである。ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムである。スズの化合物としては、例えば、酸素または炭素を構成元素として含む材料などが挙げられる。なお、スズの化合物は、例えば、スズ以外の構成元素としてスズの合金について説明した元素のいずれか1種類または2種類以上を含んでいてもよい。スズの合金または化合物としては、例えば、SnOw (0<w≦2)、SnSiO3 、LiSnOまたはMg2 Snなどが挙げられる。
【0076】
また、スズを含む材料としては、例えば、スズを第1構成元素とし、それに加えて第2および第3構成元素を含む材料が好ましい。第2構成元素は、例えば、以下の元素の1種または2種以上である。コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウムまたはジルコニウムである。ニオブ、モリブデン、銀、インジウム、セリウム(Ce)、ハフニウム、タンタル、タングステン(W)、ビスマスまたはケイ素である。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンの1種類または2種類以上である。第2および第3構成元素を含むと、高い電池容量および優れたサイクル特性などが得られるからである。
【0077】
中でも、スズ、コバルトおよび炭素を含む材料(SnCoC含有材料)が好ましい。SnCoC含有材料の組成としては、例えば、炭素の含有量が9.9質量%〜29.7質量%であり、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%〜70質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。
【0078】
このSnCoC含有材料は、スズ、コバルトおよび炭素を含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応可能な反応相であり、その反応相の存在により優れた特性が得られる。この相のX線回折により得られる回折ピークの半値幅は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合に、回折角2θで1.0°以上であることが好ましい。リチウムイオンがより円滑に吸蔵放出されると共に、電解液との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部を含む相を含んでいる場合もある。
【0079】
X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応するものであるか否かは、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、リチウムとの電気化学的反応の前後で回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°〜50°の間に見られる。このような反応相は、例えば、上記した各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化しているものと考えられる。
【0080】
SnCoC含有材料では、構成元素である炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態については、例えば、X線光電子分光法(XPS:x-ray photoelectron spectroscopy)で確認できる。市販の装置では、例えば、軟X線としてAl−Kα線あるいはMg−Kα線などが用いられる。炭素の少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークは284.5eVよりも低い領域に現れる。なお、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面には表面汚染炭素が存在しているため、表面汚染炭素のC1sのピークを284.8eVとし、それをエネルギー基準とする。XPS測定では、C1sのピークの波形が表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られるため、例えば、市販のソフトウエアを用いて解析して、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
【0081】
なお、SnCoC含有材料は、必要に応じて、さらに他の構成元素を含んでいてもよい。このような他の構成元素としては、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスの1種類または2種類以上が挙げられる。
【0082】
このSnCoC含有材料の他、スズ、コバルト、鉄および炭素を含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意に設定可能である。例えば、鉄の含有量を少なめに設定する場合の組成は、以下の通りである。炭素の含有量は9.9質量%〜29.7質量%であり、鉄の含有量は0.3質量%〜5.9質量%であり、スズおよびコバルトの含有量の割合(Co/(Sn+Co))は30質量%〜70質量%である。また、例えば、鉄の含有量を多めに設定する場合の組成は、以下の通りである。炭素の含有量は11.9質量%〜29.7質量%である。また、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))は26.4質量%〜48.5質量%であり、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))は9.9質量%〜79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。このSnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料と同様である。
【0083】
また、他の負極材料は、例えば、金属酸化物または高分子化合物などである。金属酸化物は、例えば、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどである。
【0084】
負極活物質層22Bは、例えば、塗布法、気相法、液相法、溶射法または焼成法(焼結法)、あるいはそれらの2種類以上の方法により形成されている。塗布法とは、例えば、粒子状の負極活物質を結着剤などと混合したのち、有機溶剤などの溶媒に分散させて塗布する方法である。気相法としては、例えば、物理堆積法または化学堆積法などが挙げられる。具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD:chemical vapor deposition )法またはプラズマ化学気相成長法などである。液相法としては、例えば、電解鍍金法または無電解鍍金法などが挙げられる。溶射法とは、負極活物質を溶融状態または半溶融状態で吹き付ける方法である。焼成法とは、例えば、塗布法と同様の手順で塗布したのち、結着剤などの融点よりも高い温度で熱処理する方法である。焼成法については、公知の手法を用いることができる。一例としては、例えば、雰囲気焼成法、反応焼成法またはホットプレス焼成法などが挙げられる。
【0085】
[セパレータ]
セパレータ23は、正極21と負極22とを隔離して、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23には、液状の電解質(電解液)である電解液が含浸されている。セパレータ23は、例えば、合成樹脂またはセラミックからなる多孔質膜などにより構成されており、それらの2種類以上の多孔質膜が積層されたものでもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレンなどである。
【0086】
[電解液]
電解液は、溶媒と、それに溶解された電解質塩とを含んでいる。
【0087】
溶媒は、例えば、以下で説明する非水溶媒(有機溶媒)のいずれか1種類または2種類以上である。炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタンまたはテトラヒドロフランである。2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサンまたは1,4−ジオキサンである。酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルまたはトリメチル酢酸エチルである。アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリジノンまたはN−メチルオキサゾリジノンである。N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルまたはジメチルスルホキシドである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
【0088】
中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも1種が好ましい。より優れた特性が得られるからである。この場合には、炭酸エチレンまたは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルまたは炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
【0089】
特に、溶媒は、1または2以上の不飽和炭素結合を有する環状炭酸エステル(不飽和炭素結合環状炭酸エステル)でもよい。充放電時において負極22表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。不飽和炭素結合環状炭酸エステルは、例えば、炭酸ビニレンまたは炭酸ビニルエチレンなどである。なお、非水溶媒中における不飽和炭素結合環状炭酸エステルの含有量は、例えば、0.01重量%以上10重量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
【0090】
また、溶媒は、1または2以上のハロゲン基を有する鎖状炭酸エステル(ハロゲン化鎖状炭酸エステル)、および1または2以上のハロゲン基を有する環状炭酸エステル(ハロゲン化環状炭酸エステル)のうちの少なくとも1種でもよい。充放電時において負極22表面に安定な保護膜が形成されるため、電解液の分解反応が抑制されるからである。ハロゲン基の種類は、特に限定されないが、中でも、フッ素基、塩素基または臭素基が好ましく、フッ素基がより好ましい。高い効果が得られるからである。ただし、ハロゲン基の数は、1つよりも2つが好ましく、さらに3つ以上でもよい。より強固で安定な保護膜が形成されるため、電解液の分解反応がより抑制されるからである。ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)または炭酸ジフルオロメチルメチルなどである。ハロゲン化環状炭酸エステルは、4−フルオロ−1,3−ジオキソラン−2−オンまたは4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどである。なお、非水溶媒中におけるハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルの含有量は、例えば、0.01重量%以上50重量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
【0091】
また、溶媒は、スルトン(環状スルホン酸エステル)でもよい。電解液の化学的安定性が向上するからである。スルトンは、例えば、プロパンスルトンまたはプロペンスルトンなどである。なお、非水溶媒中におけるスルトンの含有量は、例えば、0.5重量%以上5重量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
【0092】
さらに、溶媒は、酸無水物でもよい。電解液の化学的安定性がより向上するからである。酸無水物は、例えば、例えば、ジカルボン酸無水物、ジスルホン酸無水物またはカルボン酸スルホン酸無水物などである。ジカルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸などである。なお、非水溶媒中における酸無水物の含有量は、例えば、0.5重量%以上5重量%以下である。電池容量を低下させすぎずに、電解液の分解反応が抑制されるからである。
【0093】
[電解質塩]
電解質塩は、例えば、以下で説明するリチウム塩のいずれか1種類または2種類以上である。ただし、電解質塩は、リチウム塩以外の他の塩(例えばリチウム塩以外の軽金属塩)でもよい。
【0094】
リチウム塩は、例えば、以下の化合物などである。六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、過塩素酸リチウム(LiClO4 )または六フッ化ヒ酸リチウム(LiAsF6 )である。テトラフェニルホウ酸リチウム(LiB(C6 5 4 )、メタンスルホン酸リチウム(LiCH3 SO3 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )またはテトラクロロアルミン酸リチウム(LiAlCl4 )である。六フッ化ケイ酸二リチウム(Li2 SiF6 )、塩化リチウム(LiCl)または臭化リチウム(LiBr)である。優れた電池容量、サイクル特性および保存特性などが得られるからである。
【0095】
中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちの少なくとも1種が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。
【0096】
電解質塩の含有量は、溶媒に対して0.3mol/kg以上3.0mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
【0097】
[二次電池の動作]
この二次電池では、例えば、充電時において、正極21から放出されたリチウムイオンが電解液を介して負極22に吸蔵される。また、例えば、放電時において、負極22から放出されたリチウムイオンが電解液を介して正極21に吸蔵される。この場合には、上記したように、第2リチウム複合酸化物により初回の充放電時において負極22で生じる不可逆容量を補填するために、初回の充電時の充電電圧(例えば、4.6V)を初回以降の充電時(4.35V)よりも高くすることが好ましい。
【0098】
[二次電池の製造方法]
この二次電池は、例えば、以下の手順により製造される。
【0099】
まず、正極21を作製する。最初に、正極活物質(第1および第2リチウム複合酸化物)と、必要に応じて正極結着剤および正極導電剤などとを混合して正極合剤としたのち、有機溶剤などに分散させてペースト状の正極合剤スラリーとする。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布してから乾燥させて、正極活物質層21Bを形成する。最後に、必要に応じて加熱しながら、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。
【0100】
次に、上記した正極21と同様の手順により、負極22を作製する。この場合には、負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合した負極合剤を有機溶剤などに分散させて、ペースト状の負極合剤スラリーとする。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布してから乾燥させて負極活物質層22Bを形成したのち、必要に応じて負極活物質層22Bを圧縮成型する。
【0101】
なお、正極21とは異なる手順により、負極22を作製してもよい。この場合には、例えば、蒸着法などの気相法を用いて負極集電体22Aの両面に負極材料を堆積させて、負極活物質層22Bを形成する。
【0102】
最後に、正極21および負極22を用いて二次電池を組み立てる。最初に、正極集電体21Aに正極リード25を溶接などして取り付けると共に、負極集電体22Aに負極リード26を溶接などして取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層および巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12,13で挟みながら、巻回電極体20を電池缶11の内部に収納する。この場合には、正極リード25の先端部を安全弁機構15に溶接などして取り付けると共に、負極リード26の先端部を電池缶11に溶接などして取り付ける。続いて、電池缶11の内部に電解液を注入してセパレータ23に含浸させる。最後に、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。これにより、図1および図2に示した二次電池が完成する。
【0103】
[二次電池の作用および効果]
この円筒型の二次電池によれば、正極21の正極活物質層21Bが上記した正極活物質(第1および第2リチウム複合酸化物)を含んでいる。これにより、上記したように、初回の充電時の充電電圧を初回以降の充電時の充電電圧よりも高くすれば、初回の充放電時における不可逆容量の補填と初回以降の充放電時における高エネルギー密度の確保とが両立される。よって、充放電を繰り返しても高い電池容量を安定に得ることができる。
【0104】
特に、負極22の負極活物質として不可逆容量が大きくなる材料を用いた場合において、より高い効果を得ることができる。このような材料としては、ケイ素およびスズのうちの少なくとも一方を構成元素として含む材料(特に、酸化ケイ素(SiOx :0.2<x<1.4))や、低結晶性の炭素材料などが挙げられる。
【0105】
<2−2.正極およびリチウムイオン二次電池(ラミネートフィルム型)>
図3は、ラミネートフィルム型のリチウムイオン二次電池の分解斜視構成を表しており、図4は、図3に示した巻回電極体30のIV−IV線に沿った断面を拡大して示している。以下では、既に説明した円筒型のリチウムイオン二次電池の構成要素を随時引用する。
【0106】
[二次電池の全体構成]
この二次電池は、主に、フィルム状の外装部材40の内部に巻回電極体30が収納されたものである。この巻回電極体30は、セパレータ35および電解質層36を介して正極33と負極34とが積層および巻回されたものである。正極33には正極リード31が取り付けられていると共に、負極34には負極リード32が取り付けられている。この巻回電極体30の最外周部は、保護テープ37により保護されている。
【0107】
正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウムなどの導電性材料により形成されていると共に、負極リード32は、例えば、銅、ニッケルまたはステンレスなどの導電性材料により形成されている。これらの材料は、例えば、薄板状または網目状になっている。
【0108】
外装部材40は、例えば、融着層、金属層および表面保護層がこの順に積層されたラミネートフィルムである。このラミネートフィルムでは、例えば、融着層が巻回電極体30と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、または接着剤などにより貼り合わされている。融着層は、例えば、ポリエチレンまたはポリプロピレンなどのフィルムである。金属層は、例えば、アルミニウム箔などである。表面保護層は、例えば、ナイロンまたはポリエチレンテレフタレートなどのフィルムである。
【0109】
中でも、外装部材40としては、ポリエチレンフィルム、アルミニウム箔およびナイロンフィルムがこの順に積層されたアルミラミネートフィルムが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルム、または金属フィルムでもよい。
【0110】
外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料により形成されている。このような材料は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂である。
【0111】
正極33は、例えば、正極集電体33Aの両面に正極活物質層33Bが設けられたものである。負極34は、例えば、負極集電体34Aの両面に負極活物質層34Bが設けられたものである。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bの構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bの構成と同様である。また、セパレータ35の構成は、セパレータ23の構成と同様である。
【0112】
電解質層36は、高分子化合物により電解液が保持されたものであり、必要に応じて添加剤などの他の材料を含んでいてもよい。この電解質層36は、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に電解液の漏液が防止されるので好ましい。
【0113】
高分子化合物は、例えば、以下の高分子材料などのいずれか1種類または2種類以上である。ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサンまたはポリフッ化ビニルである。ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンまたはポリカーボネートである。フッ化ビニリデンとヘキサフルオロピレンとの共重合体である。中でも、ポリフッ化ビニリデン、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましい。電気化学的に安定だからである。
【0114】
電解液の組成は、円筒型について説明した電解液の組成と同様である。ただし、ゲル状の電解質である電解質層36において、電解液の非水溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
【0115】
なお、ゲル状の電解質層36に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ35に含浸される。
【0116】
[二次電池の動作]
この二次電池では、例えば、充電時において、正極33から放出されたリチウムイオンが電解質層36を介して負極34に吸蔵される。また、例えば、放電時において、負極34から放出されたリチウムイオンが電解質層36を介して正極53に吸蔵される。
【0117】
[二次電池の製造方法]
このゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
【0118】
第1手順では、最初に、正極21および負極22と同様の作製手順により、正極33および負極34を作製する。この場合には、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製すると共に、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。続いて、電解液と、高分子化合物と、有機溶剤などの溶媒とを含む前駆溶液を調製したのち、その前駆溶液を正極33および負極34に塗布してゲル状の電解質層36を形成する。続いて、正極集電体33Aに正極リード31を溶接などして取り付けると共に、負極集電体34Aに負極リード32を溶接などして取り付ける。続いて、電解質層36が形成された正極33と負極34とをセパレータ35を介して積層および巻回させて巻回電極体30を作製したのち、その最外周部に保護テープ37を接着させる。最後に、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、外装部材40の外周縁部同士を熱融着などして接着させて、その外装部材40に巻回電極体30を封入する。この場合には、正極リード31および負極リード32と外装部材40との間に密着フィルム41を挿入する。
【0119】
第2手順では、最初に、正極33に正極リード31を取り付けると共に、負極34に負極リード52を取り付ける。続いて、セパレータ35を介して正極33および負極34を積層および巻回させて巻回電極体30の前駆体である巻回体を作製したのち、その最外周部に保護テープ37を接着させる。続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着などして接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、外装部材40の開口部を熱融着などして密封する。最後に、モノマーを熱重合させて高分子化合物とし、ゲル状の電解質層36を形成する。
【0120】
第3手順では、最初に、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材40の内部に収納する。このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体または多元共重合体など)が挙げられる。具体的には、ポリフッ化ビニリデン、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体、またはフッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を用いてもよい。続いて、電解液を調製して外装部材40の内部に注入したのち、熱融着法などで外装部材40の開口部を密封する。最後に、外装部材40に加重をかけながら加熱して、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、電解液が高分子化合物に含浸するため、その高分子化合物がゲル化して電解質層36が形成される。
【0121】
この第3手順では、第1手順よりも電池膨れが抑制される。また、第3手順では、第2手順よりも高分子化合物の原料であるモノマーまたは溶媒などが電解質層36中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35と電解質層36との間において十分な密着性が得られる。
【0122】
[二次電池の作用および効果]
このラミネートフィルム型の二次電池によれば、正極33の正極活物質層33Bが上記した正極活物質(第1および第2リチウム複合酸化物)を含んでいるので、充放電を繰り返しても高い電池容量を安定して得ることができる。これ以外の作用および効果は、円筒型と同様である。
【0123】
<3.リチウムイオン二次電池の用途>
次に、上記したリチウムイオン二次電池の適用例について説明する。
【0124】
この二次電池の用途は、それを駆動用の電源または電力蓄積用の電力貯蔵源などとして用いることが可能な機械、機器、器具、装置またはシステム(複数の機器などの集合体)などであれば、特に限定されない。二次電池が電源として用いられる場合、それは主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。この主電源の種類は、二次電池に限られない。
【0125】
二次電池の用途としては、例えば、以下の用途などが挙げられる。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノートパソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビまたは携帯用情報端末(PDA:Personal Digital Assistant)などの携帯用電子機器である。電気シェーバなどの生活用電気器具である。バックアップ電源またはメモリーカードなどの記憶用装置である。電動ドリルまたは電動のこぎりなどの電動工具である。ペースメーカーまたは補聴器などの医療用電子機器である。電動車両(ハイブリッド自動車を含む)である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。
【0126】
中でも、二次電池は、電動工具、電動車両または電力貯蔵システムなどに適用されることが有効である。二次電池について優れた特性が要求されるため、本発明の二次電池を用いることにより、有効に特性向上を図ることができるからである。なお、電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動するものである。電動車両は、二次電池を駆動用電源として作動(走行)するものであり、上記したように、二次電池以外の駆動源も併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されており、その二次電池に貯蔵された電力が必要に応じて消費されることにより、家庭用電気製品などの各種機器が使用可能になる。
【実施例】
【0127】
本発明の具体的な実施例について、詳細に説明する。
【0128】
(実験例1−1〜1−16)
[正極活物質の合成]
以下の手順により、正極活物質である第1および第2リチウム複合酸化物を得た。
【0129】
まず、表1に示した第1リチウム複合酸化物を合成した。この場合には、原料である炭酸リチウム(Li2 CO3 )および炭酸コバルト(CoCO3 )の粉末をLi:Co=1:1のモル比となるように混合したのち、大気中で900℃×5時間焼成して、LiCoO2 を得た。
【0130】
この他、さらに原料として酸化ニッケル(NiO)および酸化アルミニウム(Al2 3 )の粉末を用いて、表1に示したモル比となるように混合したことを除いて同様の手順により、LiNi0.8 Co0.18Al0.022 を合成した。
【0131】
次に、表2に示した第2リチウム複合酸化物を合成した。この場合には、原料である炭酸リチウム(Li2 CO3 )、炭酸マンガン(MnCO3 )、水酸化コバルト(Co(OH)2 )および水酸化ニッケル(Ni(OH)2 )のそれぞれの粉末をLi:Mn:Co:Ni=1.13:0.6:0.2:0.2のモル比となるように混合したのち、水を分散媒とするボールミルを用いて粉砕した。続いて、粉砕後の混合粉末を大気中で850℃×12時間焼成して、Li1.13(Mn0.6 Co0.2 Ni0.2 0.872 を合成した。この組成については、ICP発光分光分析法を用いて原子比を確認した。
【0132】
この他、Li、Mn、CoおよびNiが表2に示したモル比となるように原料の配合比を変更したことを除いて同様の手順により、Li1.13[Mn0.5 Co0.3 Ni0.2 0.872 等を合成した。この場合においても、ICP発光分光分析法を用いて組成(原子比)を確認した。
【0133】
これらの正極活物質(第1および第2リチウム複合酸化物)およびそれを用いたリチウムイオン二次電池の諸特性を調べたところ、表1〜表3に示した結果が得られた。
【0134】
[正極活物質の諸特性の測定]
第1リチウム複合酸化物の諸特性を調べるために、図5に示したコイン型のリチウムイオン二次電池を作製した。この二次電池は、正極活物質を用いた試験極51を外装缶52に収容すると共に、対極53を外装カップ54に貼り付けたのち、電解液が含浸されたセパレータ55を介して外装缶52と外装カップ54とを積層させてからガスケット56を介してかしめたものである。
【0135】
試験極51を作製する場合には、正極活物質(第1リチウム複合酸化物)96質量部と、正極結着剤(ポリフッ化ビニリデン:PVDF)3質量部と、正極導電剤(カーボンブラック)1質量部とを混合したのち、分量外のN−メチル−2−ピロリドン(NMP)と共に混練して正極合剤スラリーとした。続いて、正極集電体(アルミニウム箔:厚さ=15μm)の両面に正極合剤スラリーを塗布して乾燥させたのち、プレス機を用いて圧縮成型してからペレット状(直径=15mm)に打ち抜いた。対極53としては、リチウム金属板(直径=16mm)を用いた。電解液を調製する場合には、溶媒である炭酸エチレン(EC)および炭酸ジメチル(DMC)を混合したのち、電解質塩である六フッ化リン酸リチウム(LiPF6 )を溶解させた。この場合には、溶媒の組成(質量比)をEC:DMC=50:50、電解質塩の含有量を溶媒に対して1mol/dm3 (=1mol/l)とした。
【0136】
この二次電池を用いて、まず、1サイクル目の充放電時における単位体積当たりの充電容量C1(対リチウム金属:mAh/cm3 )を求めた。なお、充電時には、0.2mA/cm2 の電流密度に相当する電流で電池電圧が表3に示した値(1サイクル目充電電圧)に到達するまで定電流充電したのち、電流値が1/10に絞られるまで定電圧充電した。
【0137】
続いて、二次電池を放電させて、1サイクル目の充放電時における単位体積当たりの放電容量D1(対リチウム金属:mAh/cm3 )、放電電圧Eおよび充放電効率D1/C1を求めた。この場合には、充電後の二次電池を放電させて、1サイクル目の単位体積当たりの放電容量D1(mAh/cm3 )および放電電圧E(V)を測定した。また、1サイクル目充放電効率D1/C1(%)=(1サイクル目放電容量D1(mAh/cm3 )/1サイクル目充電容量C1(mAh/cm3 )×100を算出した。なお、放電時には、0.2mA/cm2 の電流密度に相当する電流で電池電圧が2.5Vに到達するまで定電流放電した。
【0138】
続いて、電池電圧を表3に示した値(2サイクル目充電電圧)に変更したことを除いて同様の手順により、2サイクル目の充放電時における単位体積当たりの充電容量C2(対リチウム金属:mAh/cm3 )を求めた。
【0139】
また、充電容量比C2/C1(%)=(2サイクル目の充電容量(mAh/cm3 )/1サイクル目の充電容量(mAh/cm3 )×100を算出した。
【0140】
なお、第2リチウム複合酸化物についても、第1リチウム複合酸化物と同様の手順により、諸特性を調べた。
【0141】
[放電容量の測定]
放電容量を求めるために、上記した正極活物質を用いて、図3および図4に示したラミネートフィルム型の二次電池を作製した。
【0142】
最初に、正極33を作製した。まず、正極活物質(第1および第2リチウム複合酸化物)90質量部と、正極導電剤(アモルファス性炭素粉であるケッチェンブラック)5質量部と、正極結着剤(PVDF)5質量部とを混合して正極合剤とした。第1および第2リチウム複合酸化物の混合比(重量比)は、表2に示した通りである。続いて、正極合剤を有機溶剤(NMP)に分散させて、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体33A(アルミニウム箔:厚さ=12μm)の両面に正極合剤スラリーを塗布してから乾燥させて正極活物質層33Bを形成したのち、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。この場合には、満充電時において負極34にリチウム金属が析出しないように、正極活物質層33Bの厚さを調整した。最後に、正極活物質層33Bが形成された正極集電体33Aを帯状(48mm×300mm)に切断した。
【0143】
次に、負極34を作製した。まず、表3に示した負極活物質と負極結着剤(ポリイミドの20重量%NMP溶液)とを7:2の質量比で混合して、負極合剤とした。続いて、バーコータ(ギャップ=35μm)を用いて負極集電体34A(銅箔:厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、80℃で乾燥させて負極活物質層34Bを形成した。最後に、ロールプレス機を用いて負極活物質層34Bを圧縮成型し、700℃×3時間焼成したのち、負極活物質層34Bが形成された負極集電体34Aを帯状(50mm×310mm)に切断した。なお、負極活物質について、正極活物質と同様の手順により充放電効率を求めたところ、表3に示した結果が得られた。
【0144】
次に、溶媒であるECおよび炭酸エチルメチル(EMC)に電解質塩であるLiPF6 を溶解させて電解液を調製した。この場合には、溶媒の組成(質量比)をEC:EMC=50:50、電解質塩の含有量を溶媒に対して1mol/dm3 とした。
【0145】
最後に、二次電池を組み立てた。最初に、正極集電体33Aの一端にアルミニウム製の正極リード51を溶接すると共に、負極集電体34Aの一端にニッケル製の負極リード52を溶接した。続いて、正極33、セパレータ35(微孔性ポリエチレンフィルム:厚さ=25μm)、負極34およびセパレータ35をこの順に積層してから長手方向に巻回させて、巻回電極体30の前駆体である巻回体を形成したのち、その巻き終わり部分を保護テープ57(粘着テープ)で固定した。続いて、外装部材60の間に巻回体を挟み込んだのち、一辺を除く外周縁部同士を熱融着して、袋状の外装部材60の内部に巻回体を収納した。この場合には、外装部材60として、外側からナイロンフィルム(厚さ=30μm)、アルミニウム箔(厚さ=40μm)および無延伸ポリプロピレンフィルム(厚さ=30μm)が積層されたアルミラミネートフィルムを用いた。続いて、外装部材60の開口部から電解液を注入し、セパレータ55に含浸させて巻回電極体50を作製した。最後に、真空雰囲気中で外装部材60の開口部を熱融着して封止した。
【0146】
放電容量を求めるために、ラミネートフィルム型の二次電池を2組準備した。1つ目の二次電池を用いて、23℃の環境中(以下同様)において100mAの電流で電池電圧が表3に示した値(1サイクル目充電電圧)に到達するまで定電流充電したのち、電流が1mAに到達するまで定電圧充電した。こののち、50mAの電流で電池電圧が2.5Vに到達するまで定電流放電した。続いて、表3に示した値(2サイクル目充電電圧)に到達するまで定電流充電したことを除いて同様の条件により、サイクル数の合計が300サイクルになるまで充放電を繰り返して、300サイクル目の放電容量(mAh)を測定した。この際、2つ目の二次電池を用いて、1サイクル目の充電後に二次電池を解体して正極33および負極34を取り出したのち、段差計を用いて正極活物質層33Bおよび負極活物質層34Bの厚さを測定して、充電後における正極活物質層33Bおよび負極活物質層34Bの総体積を算出した。最後に、放電容量(mAh/cm3 )=放電容量(mAh)/正極活物質層33Bおよび負極活物質層34Bの総体積(cm3 )を算出した。
【0147】
【表1】

【0148】
【表2】

【0149】
【表3】

【0150】
(実験例2−1〜2−7)
[正極活物質の合成]
比較のために、表4〜表6に示したように、第1および第2リチウム複合酸化物の有無等を変更したことを除いて実験例1−1〜1−16と同様の手順により、第1および第2リチウム複合酸化物ならびにリチウムイオン二次電池の諸特性を調べた。
【0151】
【表4】

【0152】
【表5】

【0153】
【表6】

【0154】
正極活物質が第1リチウム複合酸化物とそれよりも充電容量C1が大きいと共に放電電圧Eが低い第2リチウム複合酸化物とを含む場合には、その条件を満たさない場合と比較して、高い放電容量が得られた。
【0155】
詳細には、第1リチウム複合酸化物だけを用いた場合において、初回に高充電電圧の充放電を行うと、負極34の充放電効率が低いため、負極34から正極33に十分な量のリチウムイオンが戻ってこない状態において、初回以降の低充電電圧の充放電が行われる。このため、初回以降の充放電時において十分な電池容量が得られない。
【0156】
一方、第2リチウム複合酸化物だけを用いた場合において、初回に高充電電圧の充放電を行うと、第2リチウム複合酸化物の充電容量比C2/C1および放電電位が低いため、やはり十分な電池容量が得られない。
【0157】
これに対して、第1および第2リチウム複合酸化物を用いた場合において、初回に高充電電圧の充放電を行うと、第2リチウム複合酸化物が不可逆容量を補填するために優先的に消費されるため、第1リチウム複合酸化物がほとんど消費されずに維持される。しかも、初回の放電時において負極34から放出されるリチウムイオンは、高放電電位の第1リチウム複合酸化物に優先的に吸蔵されるため、負極34に十分な量のリチウムイオンが戻った状態において、初回以降における低充電電圧の充放電が行われる。これにより、初回以降の充放電時において高放電電位の第1リチウム複合酸化物が優先的に用いられるため、その第1リチウム複合酸化物により高い電池容量が得られる。
【0158】
また、負極活物質の種類に着目すると、非酸化物(ケイ素またはスズ)を用いた場合よりも、酸化物(酸化ケイ素)を用いた場合において、放電容量が減少する傾向を示した。この原因は、初回の充電時(負極34におけるリチウムイオンの吸蔵時)において、リチウムイオンの一部が酸化物中の酸素と不可逆的に結合するからであると考えられる。
【0159】
表1〜表6の結果から、正極活物質が第1リチウム複合酸化物とそれよりも1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)が大きいと共に放電電圧(対リチウム金属)が低い第2リチウム複合酸化物とを含んでいると、充放電を繰り返しても高い電池容量が得られた。
【0160】
以上、実施形態および実施例を挙げて本発明を説明したが、本発明は、実施形態および実施例で説明した態様に限定されず、種々の変形が可能である。例えば、本発明の正極活物質は、負極の容量がリチウムイオンの吸蔵放出による容量とリチウム金属の析出溶解に伴う容量とを含み、それらの容量の和により表されるリチウムイオン二次電池についても、同様に適用可能である。この場合には、負極材料の充電可能な容量が正極の放電容量よりも小さくなるように設定される。
【0161】
また、実施形態および実施例では、電池構造が円筒型、ラミネートフィルム型またはコイン型である場合、あるいは電池素子が巻回構造を有する場合を例に挙げて説明したが、これに限られない。本発明のリチウムイオン二次電池は、角型またはボタン型などの他の電池構造を有する場合、あるいは電池素子が積層構造などの他の構造を有する場合についても、同様に適用可能である。
【0162】
また、実施形態および実施例では、式(1)に示した第2リチウム複合酸化物の組成(a等の値)について、実施例の結果から導き出された適正範囲を説明している。しかしながら、その説明は、組成が上記した範囲外となる可能性を完全に否定するものではない。すなわち、上記した適正範囲は、あくまで本発明の効果を得る上で特に好ましい範囲であるため、本発明の効果が得られるのであれば、上記した範囲から組成が多少外れてもよい。このことは、式(2)〜(4)に示した第1リチウム複合酸化物の組成(d等の値)についても同様である。
【0163】
また、例えば、本発明の正極活物質または正極は、リチウムイオン二次電池に限らず、キャパシタなどの他のデバイスに適用されてもよい。
【符号の説明】
【0164】
11…電池缶、12,13…絶縁板、14…電池蓋、15…安全弁機構、15A…ディスク板、16…熱感抵抗素子、17…ガスケット、20,30…巻回電極体、21,33…正極、21A,33A…正極集電体、21B,33B…正極活物質層、22,34…負極、22A,34A…負極集電体、22B,34B…負極活物質層、23,35…セパレータ、24…センターピン、25,31…正極リード、26,32…負極リード、36…電解質、37…保護テープ、40…外装部材、41…密着フィルム。

【特許請求の範囲】
【請求項1】
正極および負極と共に電解液を備え、
前記正極は、正極活物質として、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含み、
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において大きいと共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において低い、
リチウムイオン二次電池。
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)
【請求項2】
前記第1リチウム複合酸化物は、下記の式(2)〜式(4)で表される化合物のうちの少なくとも1種である、請求項1記載のリチウムイオン二次電池。
Lid Ni1-e-f Mne M1f 2-gh ・・・(2)
(M1は長周期型周期表における2族〜15族の元素(ニッケルおよびマンガンを除く))のうちの少なくとも1種であり、Xは16族および17族の元素(酸素(O)を除く)のうちの少なくとも1種である。dは0≦d≦1.5、eは0≦e≦1、fは0≦f≦1、gは−0.1≦g≦0.2、hは0≦h≦0.2である。)
Lij Mn2-k M2k m n ・・・(3)
(M2はコバルト、ニッケル、マグネシウム(Mg)、アルミニウム(Al)、ホウ素、チタン、バナジウム(V)、クロム(Cr)、鉄、銅、亜鉛、モリブデン、スズ、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。jはj≧0.9、kは0≦k≦0.6、mは3.7≦m≦4.1、nは0≦n≦0.1である。)
Lip M3q PO4 ・・・(4)
(M3は長周期型周期表における2族〜15族の元素のうちの少なくとも1種である。pは0≦p≦2、qは0.5≦q≦2である。)
【請求項3】
前記式(2)において、前記M1はコバルト、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、ジルコニウム(Zr)、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンのうちの少なくとも1種であると共に、
前記式(4)において、前記M3はコバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ(Nb)、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムのうちの少なくとも1種である、
請求項2記載のリチウムイオン二次電池。
【請求項4】
充電容量比(2サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)/1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属))は、前記第2リチウム複合酸化物よりも前記第1リチウム複合酸化物において大きい、請求項1記載のリチウムイオン二次電池。
【請求項5】
前記負極は負極活物質を含み、充放電効率(1サイクル目の充放電時における単位体積当たりの放電容量(対リチウム金属)/1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属))は、前記負極活物質よりも前記第1リチウム複合酸化物において高い、請求項1記載のリチウムイオン二次電池。
【請求項6】
前記負極は、負極活物質として、ケイ素およびスズのうちの少なくとも一方を構成元素として含む材料を含有する、請求項1記載のリチウムイオン二次電池。
【請求項7】
前記負極活物質は酸化ケイ素(SiOx :0.2<x<1.4)である、請求項6記載のリチウムイオン二次電池。
【請求項8】
第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含み、
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において大きいと共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において低い、
正極活物質。
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)
【請求項9】
正極活物質として、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含み、
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において大きいと共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において低い、
正極。
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)
【請求項10】
正極および負極と共に電解液を備えたリチウムイオン二次電池を電源として可動し、
前記正極は、正極活物質として、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含み、
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において大きいと共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において低い、
電動工具。
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)
【請求項11】
正極および負極と共に電解液を備えたリチウムイオン二次電池を電源として作動し、
前記正極は、正極活物質として、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含み、
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において大きいと共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において低い、
電動車両。
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)
【請求項12】
正極および負極と共に電解液を備えたリチウムイオン二次電池を電力貯蔵源として用い、
前記正極は、正極活物質として、第1リチウム複合酸化物と、下記の式(1)で表される第2リチウム複合酸化物とを含み、
1サイクル目の充放電時における単位体積当たりの充電容量(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において大きいと共に、1サイクル目の充放電時における放電電圧(対リチウム金属)は、前記第1リチウム複合酸化物よりも前記第2リチウム複合酸化物において低い、
電力貯蔵システム。
Li1+a (Mnb Coc Ni1-b-c 1-a 2 ・・・(1)
(aは0<a≦0.25、bは0.5≦b<0.7、cは0≦c<1−bである。)

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−142157(P2012−142157A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2010−293270(P2010−293270)
【出願日】平成22年12月28日(2010.12.28)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】