説明

中性子線量測定装置

【課題】エネルギー特性の良い携帯型の中性子線量測定装置を提供する。
【解決手段】検出部100は、減速材ブロック120内に人体側検出器110Aと入射側検出器110Bを埋設した構成である。各検出器110A,110Bは熱中性子と核反応物質112との核反応生成物を検出する。各検出器110A,110Bの検出信号は計数器130A,130Bでそれぞれ計数される。エネルギー特性テーブル150には、入射中性子のエネルギーと2つの検出器110A,110Bの計数率の比との関係を示す情報が登録される。演算部140は、計数器130Aと130Bの計数率の比から、エネルギー特性テーブル150を参照して入射中性子のエネルギーを推定し、このエネルギーに対応する線量換算係数を線量換算テーブル160から求め、この係数と計数器130Aの計数率を用いて中性子線量を計算する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、人体に装着される携帯型の中性子線量測定装置に関する。
【背景技術】
【0002】
周知のように、中性子検出は、中性子に発熱的な核反応を引き起こさせ、その電離生成物、例えばα粒子、陽子、γ線等を検出することにより、あるいは中性子の照射による放射化を利用することにより行われる。ただし、このような検出器でも、透過力の高い中・高速の中性子の検出は困難であるため、ポリエチレン等の減速部材を用いて中性子を測定可能なエネルギー(熱中性子レベル)まで減速させ、これを検出器で検出している。
【0003】
特許文献1に示される従来の中性子測定装置は、中性子を減速する減速部材の前面、中心部分、及び後面のそれぞれに検出器を設けたものである。前面側(中性子飛来側)の検出器は熱中性子に感度が高く、後面側の検出器は高エネルギーの中性子に感度が高く、中央部分の検出器はそれら両者の中間の感度特性を有する。この装置は、これら複数の検出器の検出信号の計数結果の比に基づき入射中性子の平均エネルギーを求め、この平均エネルギーと計数結果等を表示する。
【0004】
この装置は、専ら減速部材により中性子を減速するため、高速中性子に対して良好な感度を得ようとすれば、減速部材の中性子飛来方向の厚みを大きいものとする必要があり、装置の大型化を招くため、携帯型には適さない。
【0005】
これに対し、携帯型の中性子測定装置として、特許文献2に示されるものが知られている。この装置は、熱中性子を検出する検出器を中性子遮蔽部材で覆い、その遮蔽部材のうち人体側に穴を設けたものである。中・高速の中性子が外界から人体に入射した場合、その一部が人体内で反射されて熱中性子となり、穴を通って遮蔽部材内の検出器に達し、検出される。中・高速の中性子を検出可能な熱中性子まで減速するには大きな減速部材が必要であるが、この従来装置では、人体を減速部材として利用することで、検出装置自体の小型化を実現している。
【0006】
【特許文献1】特許第2552414号明細書
【特許文献2】特許第2500886号明細書
【発明の開示】
【発明が解決しようとする課題】
【0007】
特許文献2の装置は、中・高速の中性子は人体からの反射により検出することができるが、外界から人体の方向へと入射する熱中性子については、中性子遮蔽部材で遮られるため検出感度が低い。したがって、熱中性子から熱外の中・高速中性子にわたる広いエネルギー範囲についての測定には適さなかった。また、高エネルギーの中性子は人体への影響が大きいので、線量に換算するに当たってはその影響を大きく見積もる必要がある。このため、入射した中性子のエネルギーを求め、これに応じた適切な換算係数を求める必要があったが、特許文献2にはそのための仕組みは示されていない。
【課題を解決するための手段】
【0008】
本発明に係る中性子線量測定装置は、中性子線量を求める測定部を内蔵した本体と、該本体を人体に装着するための装着具と、を備え、前記測定部は、前記装着具により人体に装着されたときに人体側に位置する第1の熱中性子検出器及び人体から遠い側に位置する第2の熱中性子検出器と、前記第1の熱中性子検出器と前記第2の熱中性子検出器との間に設けられた中性子減速材層と、前記第1の熱中性子検出器の検出信号を計数する第1の計数器と、前記第2の熱中性子検出器の検出信号を計数する第2の計数器と、前記第1又は第2の計数器の計数出力から求められる測定値を線量に換算する換算係数と、中性子のエネルギーとの関係を示す情報を記憶した換算情報記憶手段と、前記第1の計数器の計数出力と前記第2の計数器の計数出力との比に基づき中性子のエネルギーを推定し、該エネルギーにおける換算係数を前記換算情報記憶手段から求め、求めた換算情報と、前記第1及び第2の計数器の各計数出力のうちの少なくとも一方とに基づき、中性子線量を算出する線量算出手段と、を備える。
【0009】
この構成では、人体側に位置する第1の熱中性子検出器と人体から遠い側に位置する第2の熱中性子検出器との間には中性子減速材層が存在する。外部から人体の方向へと入射する中性子のうち高エネルギーのものは測定部を通過し、減速能力の高い人体で減速され熱中性子となって反射される。人体側に位置する第1の熱中性子検出器と人体から遠い側に位置する第2の熱中性子検出器とでは、人体からの距離の違いと、両者間に存在する中性子減速材層とにより、中性子に対する感度のエネルギー特性(エネルギー依存性)が異なる。このような相違から、第1の熱中性子検出器と第2の熱中性子検出器との感度比は、中性子のエネルギーによって変化し、特に高エネルギーの範囲では単調に変化する。線量算出手段は、このような原理を利用して、第1の熱中性子検出器と第2の熱中性子検出器の計数出力同士の比から、入射した中性子のエネルギーを推定することができる。エネルギーが推定できれば、そのエネルギーに対応する換算係数を求めることができ、この換算係数を用いることで中性子線量を適切に計算することができる。
【0010】
望ましくは、前記本体は、前面、後面、右側面及び左側面を有し、前記測定部を収容するケースと、前記ケースに収容されたバッテリ部と、を含み、前記ケースの後面は、前記ケースの右側面及び左側面の間にわたって凹状に湾曲した装着面を構成し、凸状に湾曲した対象物表面に前記凹状に湾曲した装着面が接合された状態で、前記装着具によって当該中性子線量測定装置が対象物に固定されると共に、前記第1の熱中性子検出器と前記第2の熱中性子検出器とは、前記ケースの前面と後面とを結ぶ方向の直線に沿って配列される。
【発明の効果】
【0011】
本発明によれば、広いエネルギー範囲にわたって良好なエネルギー特性を実現することができる。
【発明を実施するための最良の形態】
【0012】
以下、図面を参照して、本発明を実施するための最良の形態(以下「実施形態」と呼ぶ)について説明する。
【0013】
図1は、本実施形態に係る中性子線量測定装置の構成を示す機能ブロック図である。この中性子線量測定装置は個人被曝管理用のものであり、人体200に対して装着されることを想定している(ただしファントムなど、人体以外の構造物などに装着することも可能である)。原理上は、装置全体が人体200に装着されなくてもよいが、中性子を検出するための検出部100は少なくとも人体200に装着される。なお本装置が装着される人体200の部位は、例えば腰、ふともも、腕などである。
【0014】
検出部100は、減速材ブロック120と、そのブロック中に埋設された2つの中性子検出器、すなわち人体側検出器110A及び入射側検出器110Bとを有している。減速材ブロック120は、水素原子を豊富に含んだ樹脂(例えばポリエチレンなど)のような中性子を減速させやすい均一な材質からなり、例えば縦4cm×横4cm×高さ5cmの正四角柱形状をなしている。検出する中性子(中・高速中性子)の入射方向(図中矢印X)は、検出部100の底面が当接された人体200表面にほぼ垂直な方向であり、この方向がブロック120の高さ方向である。
【0015】
検出部100を人体に対して正しい装着状態で装着したとき、人体側検出器110Aと入射側検出器110Bとは、それぞれ有感面を中性子入射方向Xと直角方向に向け、中性子入射方向Xに沿ってほぼ一直線に並ぶ。この状態で、人体側検出器110Aは相対的に人体200の側、入射側検出器110Bは相対的に人体200から遠い側に位置する。人体側検出器110Aは、できるだけ人体200に近い位置に配置することが望ましい。図示例では、入射側検出器110Bと、減速材ブロック120の入射方向側端面との間には、幾分の減速材の厚みがあるが、この厚みは0にしてもよい。
【0016】
各検出器110A,110Bは、熱中性子(エネルギーが0.025eV程度)を検出するものであり、熱中性子と核反応を起こして粒子を放出する核反応物質112A,112Bの層又は板状部材を有する。ここで用いられる核反応物質は、6Liを含む物質(例えばLiF)や10Bを含む物質、ウランなど、熱中性子と反応して荷電粒子その他の粒子を発する物質であればなんでもよい。また検出器110A,110Bは、核反応物質112A,112Bから発せられた粒子を検出する半導体検出器114A,114Bを備える。半導体検出器114A,114Bは樹脂パッケージで覆われていない,いわゆる「ベア」の半導体検出器である。図示例では、半導体検出器114A,114Bは、それぞれ対応する核反応物質112A,112Bよりも人体200に近い側に位置する。
【0017】
入射側検出器110Bは、検出部100に入射する中性子のうち、入射時から熱中性子であったもの、及び、入射時には熱中性子ではなかったが減速材ブロック120内で減速され熱中性子となって跳ね返されたものを検出する。これに対し、人体側検出器110Aは、減速材ブロック120内で減速され熱中性子となったもの、及び、検出部100を通過して人体200内で熱中性子となって跳ね返されたものを検出する。
【0018】
ここで、減速材ブロック120は人体200に比べてサイズが小さく(上述の例では4×4×5cm)、この程度のサイズの減速材では入射した中・高速中性子のうち熱中性子まで減速されるのはその一部でしかない。これに対し、人体200自体は水素原子を多く含み、サイズも大きいので、大部分の中性子を減速し熱中性子として反射する。したがって、高速すなわち高エネルギーの中性子が入射した場合、そのうちのかなりの部分が人体200内から熱中性子として反射され、人体側検出器110Aで多く検出される。これに対し、熱中性子が入射した場合、それは入射側検出器110Bでは良く捉えられるが、減速材の層を通過して人体側検出器110Aで検出される割合は少なくなる。そもそも人体側検出器110Aも入射側検出器110Bも熱中性子を検出するものなので、低エネルギーの中性子に対する感度の方が高エネルギーに対する感度よりもおおむね高いという一般的な傾向があるが、人体側検出器110Aは、上述のような理由から、高エネルギー側の感度の低下の程度が入射側検出器110Bよりも相対的に低くなる。
【0019】
このことを図2のグラフで説明する。図2に示した4つのグラフのうち、三角印の点で示したのが入射側検出器110Bの感度(入力された中性子束密度に対する検出された中性子束密度の割合)ε1のエネルギー特性であり、×印の点で示したのが人体側検出器110Aの感度ε2のエネルギー特性である。横軸が入射中性子のエネルギー(平均エネルギー)、縦軸がレスポンス(感度)である。これらのグラフは、図1に示す構造を有する実際の検出部100を用いた実験や、コンピュータ・シミュレーションから求めることができる。この例では、人体側検出器110Aの感度は全エネルギーに渡って入射側検出器110Bのレスポンスよりも低いが、高エネルギー側でのレスポンス低下は人体側検出器110Aの方が程度が軽い。図2には、両検出器のレスポンスの比ε1/ε2(すなわち入射側/人体側)のエネルギー特性のグラフを*印の点群で示しているが、このグラフでは、入射中性子がエネルギーが10eV(10-5MeV)以上の範囲では、エネルギーが大きくなるにつれて比ε1/ε2の値は単調減少している。このことは、入射中性子のエネルギーが高くなるほど、入射側検出器110Bのレスポンスが人体側検出器110Aに比べて相対的に下がっていくということである。10eV以上のエネルギー範囲では単調減少なので、この範囲では、入射側検出器110Bと人体側検出器110Aのレスポンスの比が分かれば、入射中性子のエネルギーを推定することができる。両検出器110A,110Bは実質的に同じ入射中性子群を検出しているので、両者のレスポンスの比は両者の計数率(又はこれから導かれる中性子束密度などの測定値)同士の比と実質的に等しい。このようなことから、本実施形態では、10eV以上のエネルギー範囲では両検出器110A,110Bの検出信号の計数率等の測定値を求め、これら両者の比から入射中性子のエネルギー推定を行う。
【0020】
なお、良好なエネルギー推定を実現するには、人体側検出器110Aと入射側検出器110Bのレスポンス比がエネルギーに応じて大きく変わる(すなわち単調増加又は単調減少の変化率が大きい)方が好ましい。したがって、人体側検出器110Aと入射側検出器110Bとの間隔(すなわち両者間に存在する減速材の厚み)は携帯可能という制限内でできるだけ大きい方が望ましい。したがって、人体側検出器110Aは減速材ブロック120の人体側の端面近傍に、入射側検出器110Bは入射側の端面近傍に配置することが好適である。
【0021】
よく知られるように、1つの中性子が人体に与える影響を示す中性子線量はその中性子が持つエネルギーに依存するので、計数率や中性子束密度などといった測定値から線量を求める際には、測定値に対しエネルギーに応じた換算係数を乗じる。この換算係数を乗じる操作は、エネルギー補正とも呼ばれる。図2には、中性子のエネルギーと換算係数C(E)(Eは中性子のエネルギー)との関係を示すグラフも表示している。上述の方法で入射中性子のエネルギー推定ができると、このグラフから、そのエネルギーに応じた換算係数を特定することができる。図2に示した換算係数のグラフは、人体側検出器110Aから求められる中性子束密度を中性子線量に換算するための係数のグラフである。なお、中性子束密度(cm-2)は、計数率をレスポンスで除することで求めることができる。
【0022】
10eV以下の範囲では、両検出器110A,110Bの測定値の比はエネルギー値と一対一の関係とならずエネルギー推定に曖昧性が出てくる。したがって、比の値が10eV以下のエネルギー範囲に該当する範囲となった場合は、エネルギー推定に基づく換算係数決定は行わず、例えばあらかじめ実験等で求めた一定の換算係数を用いる。
【0023】
図3に、このようなエネルギー補正の結果(菱形の点で示す)と理想的な換算係数のエネルギー特性(四角の点で示す)のグラフを示す。図3から分かるように、エネルギー補正結果は、10eV以下の領域では一定の換算係数としたために理想の換算係数のプロファイルから少しずれているが、10eV以上の領域では理想のプロファイルに極めて近いものとなっている。
【0024】
再び図1を参照すると、以上のような測定方法を実現するため、本実施形態では、人体側検出器110Aの半導体検出器114Aの検出信号を計数器130Aで、入射側検出器110Bの半導体検出器114Bの検出信号を計数器130Bで、それぞれ計数する。各計数器130A,130Bの計数結果(例えば計数率)は演算部140に入力される。演算部140は、エネルギー特性テーブル150と線量換算テーブル160を用いて、それら両計数器130A,130Bの計数結果から入射中性子の線量を計算する。エネルギー特性テーブル150には、図2に例示したような、(1)各検出器110A、110Bのレスポンスε1,ε2のエネルギー特性を示す情報、及び(2)中性子エネルギーと両検出器110A,110Bのレスポンスの比との関係のグラフを示す情報、が登録されている。ただし、前者については、検出器110A及び110Bの両方についての特性を持つ必要はなく、いずれか一方があればよい(一方の特性と比の特性からもう一方の特性は求められる)。演算部140は、両計数器130A,130Bの計数結果の比(これはレスポンスの比ε1/ε2に等しい)を求め、エネルギー特性テーブル150からその比に対応するエネルギーEを求めることができる。
【0025】
一方、線量換算テーブル160には、図2に例示したエネルギーと線量換算係数との関係のグラフを示す情報が保持されている。演算部140は、計数結果の比から求めたエネルギーEに対応する換算係数C(E)をこのテーブル160から読み出し、この換算係数に、その換算係数に対応する検出器(例えば人体側検出器110A)の中性子束を乗じることで、入射中性子の線量D(E)を計算する。人体側検出器110Aについての計数率をK2、当該エネルギーEにおける人体側検出器110Aのレスポンスをε2(E)とすると、中性子束密度(cm-2)はK2/ε2(E)で計算できるので、中性子線量D(E)(Sv)は、次式で計算できる。
【0026】
D(E)=(K2/ε2(E))×C(E)
計算された線量は表示部170に表示される。
【0027】
なお演算部140は、上述した線量、中性子束密度の他に、各検出器110A,110Bの計数率から他の指標値を求め、これを表示部170に表示することもできる。
【0028】
本実施形態では、携帯用とするために小型の減速材ブロック120を用いた。例示したサイズ程度の減速材ブロック120では、高エネルギーの中性子の減速が少ないため、それだけでは高エネルギーの中性子は検出されにくく、したがって感度が低下する。しかし、本実施形態では、人体200内での散乱・反射を利用することで、高エネルギー側の感度を向上させている。そして、2つの検出器110A,110Bの計数の比から入射エネルギーを推定し、このエネルギー推定結果に応じた換算係数を用いて線量を求めることで、広いエネルギー範囲にわたって良好なエネルギー特性を実現することができる。
【0029】
以上、本実施形態の機能的な構成について説明した。次に、本実施形態の中性子線量測定装置の外観的、機械的側面を説明する。
【0030】
図4に示すように、中性子線量測定装置10は本体12及び装着具14を有する。装着具14は図4に示す例において2つのバンド14A,14Bで構成されている。この装着具14を利用して人体の腕、足、腰などの丸みをもった部位に中性子線量測定装置10を着脱自在に装着することができる。
【0031】
本体12におけるケース16は全体として箱型の形態を有しているが、後に説明するように、その後面は左右方向(図においてX方向)にかけて湾曲した湾曲面を構成している。ケース16の上部はやや肥大したヘッド16Aを構成している。ヘッド16A内には位置検出器としてのGPSモジュールが収容される。中性子線量測定装置10は、GPSモジュールで求めた位置データと、測定した中性子の線量データと相互に関連付けて記録することで、地理上のどの位置においてどの程度被曝したのかをデータとして管理することが可能となる。
【0032】
ケース16の前面16Bは本実施形態において操作面として機能し、その前面16Bはその主要部分が平坦に構成されている。LCD(液晶ディスプレイ)20には測定結果や他の情報が表示される。スイッチ22は中性子線量測定装置10の動作を指令するための入力部を構成する。各スイッチ22における操作面は前面16Bの表面レベルよりも奥側に引っ込んだ位置に設定されており、これによって前面16Bが他の部材と接触した場合におけるスイッチ誤操作が防止されている。LCD20の表示面も前面16Bの表面レベルよりも奥側に引っ込んだ位置に設定されており、表示面の物理的な保護が図られている。LCD20及び複数のスイッチ22は前面16Bに設けられている。
【0033】
ケース16における左側面及び右側面16Cは後に説明するように円筒面状に形成されており、湾曲した後面から滑らかにつながった円筒面が構成されている。更にその各側面16Cは前面16Bに滑らかに連絡している。従って中性子線量測定装置10をZ方向から観察した場合、中性子線量測定装置10はまゆ型のような形態を有している。また中性子線量測定装置10の全体形状を捉えた場合、それは飯盒のような形態を有し、あるいは尻ポケットに収容されるウイスキーボトルのような形態を有する。但し、本実施形態では位置検出器を構成するGPSモジュールのサイズが比較的大きいため、ケース16においてやや肥大したヘッド16Aが存在している。ただしヘッド16Aの突出部分は前面16B側において存在し、後面側においてヘッド16Aは突出していない。
【0034】
2つの側面16Cにはそれぞれ一対の取付部26が設けられている。それぞれの取付部26はバンド14A,14Bを挿通させるスリットを有しており、各バンド14A,14Bは左側面及び右側面16Cにそれぞれ設けられた取付部26に係合する。本実施形態において、バンド14A,14Bはそれ自体伸縮性のないフレキシブルな部材によって構成されており、そこには図示されていない長さ調節機能が設けられている。すなわち、対象物(例えば腕)に対して中性子線量測定装置10の後面を密着させた状態において、それらの両者を取り囲むバンド14A,14Bの長さを調整することにより、それらのバンド14A,14Bによって中性子線量測定装置10を確実にかつ安定して対象物に固定することが可能である。
【0035】
本実施形態においては装着具14として一対のバンド14A,14Bが設けられていたが、もちろん幅広の一つのバンドを利用してもよく、あるいは他の部材を利用してもよい。本実施形態においては、各バンド14A,14Bが中性子線量測定装置10における前面16B側を回り込んでいるため、前面16B側から中性子線量測定装置10を対象物側へ押しつけてそれを固定することが可能であるという利点がある。但し、バンドの一方端を中性子線量測定装置10の左側面に取付け、バンドの他方端を中性子線量測定装置10の右側面に取付け、その上でバンドの長さを調整することによって中性子線量測定装置10を対象物へ固定するようにしてもよいし、また他の機構を利用してその装着を行えるようにしてもよい。いずれにしても、装着具14を用いて中性子線量測定装置10を装着した場合において、装着具14によってLCD20やスイッチ22が隠れないようにするのが望ましく、また装着具14によってできる限り放射線センサが覆われないように構成するのが望ましい。
【0036】
図5には、中性子線量測定装置10を人体200に取り付けた状態が示されている。図5は、中性子を検出する検出部100の中央部を通る、XY平面(座標系は図4参照)に平行な面で中性子線量測定装置10を切断した場合の断面を模式的に示している。人体200は例えば腕や足などであって、その表面は凸状に湾曲している。一方、中性子線量測定装置10の後面16Dは、図示されるように凹状に湾曲した湾曲面であって、その後面16Dが人体表面に密着した状態で中性子線量測定装置10が人体200に対して装着される。そのような装着状態においてケース内に収容されている検出部100により矢印27に示すように正面方向から入射する中性子の検出が行われる。検出部100は、図1でも説明したように、人体側検出器110Aと入射側検出器110Bを減速材ブロック120に内蔵したものであり、人体側検出器110Aが後面16D側に、入射側検出器110Bが前面16B側に来るような姿勢で、本体12内に取り付けられている。前述のように検出部100は4×4×5cm程度の比較的小さいサイズなので、携帯型の中性子線量測定装置10に内蔵することができる。
【0037】
後面16Dの曲率は左右方向に沿って一定であってもよいし、変化していてもよい。ちなみに、図に示されるように、後面16Dが凹状の湾曲面を構成し、それに連なる2つの側面が略円筒面の形状を有しているため、中性子線量測定装置10のケース内には左右端部に円筒形状の空間が生じる。本実施形態においては、そのような円筒形状の空間に、バッテリー(電池34)が収容される。例えば、右側及び左側の円筒状空間にそれぞれ単2乃至単1の電池を2個ずつ、合計4つの電池を収容する。
【0038】
各バッテリは比較的重い部材であり、それらが左右に均等に配置されていることから、中性子線量測定装置10の装着状態において重量バランスを適正化でき、安定的な装着を確保することができる。なおバッテリとしては各種の電池を利用することができ、本実施形態においては円筒形状をもった電池が用いられているが、これ以外にもボタン型あるいは箱型の電池を利用することができる。
【0039】
なお、中性子線量測定装置10に、γ線やβ線、α線など、中性子以外の放射線を検出する検出器と、その検出器の検出信号を処理して線量等の指標値を計算する手段を内蔵し、その指標値を表示するようにすることももちろん可能である。
【0040】
以上説明したように、本実施形態の中性子線量測定装置によれば、その後面が湾曲面を構成しているため、例えば人体の腕や足などの丸みを帯びた部位に対して後面を密着させた状態で中性子線量測定装置を固定することができるので、良好な装着状態を得られるという利点がある。例えば、施設内外において活発に活動する者の被曝管理を行う場合、その者の胸部に個人中性子線量測定装置を装着すると活動や作業の妨げとなる場合もある。これに対し、本実施形態においてはそのような作業の邪魔にならない部位、例えば腕の外側などに中性子線量測定装置を装着することができ、あるいは、ヘルメットなどに中性子線量測定装置を装着することができ、適正な被曝管理と作業性の確保とを同時に達成できるという利点がある。ちなみに、実際に装着する部位に応じて検出結果の補正あるいは校正を行うことにより、胸部等の所定位置において測定を行った場合と同等の測定結果を得ることも可能である。
【0041】
上記の実施形態においては中性子線量測定装置を人体に装着する場合についての説明を行ったが、本実施形態に係る中性子線量測定装置は例えば円柱状の柱やパイプなどの表面に装着することも可能である。その場合においては固定手段として紐部材を用いることも可能であるし、粘着テープなどを用いるようにしてもよい。個人中性子線量測定装置の装着面には例えばギザギザの加工を施したり、ラバーなどを装着したりして、より装着状態が良好となるようにしてもよい。またそこにウレタンなどの弾力性をもった部材を配置し、人体からの振動を緩和するようにしてもよい。なお本実施形態の中性子線量測定装置は測定時における姿勢あるいは向きに格別制約はなく、様々な向き及び姿勢をもって人体等に装着することが可能である。ただし、一般にはGPSモジュールが上方となるように個人中性子線量測定装置の配置を行うのが望ましい。
【図面の簡単な説明】
【0042】
【図1】本実施形態の中性子線量測定装置の構成を示す機能ブロック図である。
【図2】検出部のレスポンス及び中性子束密度から線量への換算係数のエネルギー特性のグラフを示す図である。
【図3】エネルギー特性の理想曲線と本実施形態の装置での実際の曲線とを示す図である。
【図4】本実施形態の中性子線量測定装置の斜視図である。
【図5】本実施形態の中性子線量測定装置の要部断面を模式的に示す図である。
【符号の説明】
【0043】
100 検出部、110A 人体側検出器、110B 入射側検出器、112A,112B 核反応物質、114A,114B 半導体検出器、120 減速材ブロック、130A,130B 計数器、140 演算部、150 エネルギー特性テーブル、160 線量換算テーブル、170 表示部。

【特許請求の範囲】
【請求項1】
中性子線量を求める測定部を内蔵した本体と、
該本体を人体に装着するための装着具と、
を備え、
前記測定部は、
前記装着具により人体に装着されたときに人体側に位置する第1の熱中性子検出器及び人体から遠い側に位置する第2の熱中性子検出器と、
前記第1の熱中性子検出器と前記第2の熱中性子検出器との間に設けられた中性子減速材層と、
前記第1の熱中性子検出器の検出信号を計数する第1の計数器と、
前記第2の熱中性子検出器の検出信号を計数する第2の計数器と、
前記第1又は第2の計数器の計数出力から求められる測定値を線量に換算する換算係数と中性子のエネルギーとの関係を示す情報を記憶した換算情報記憶手段と、
前記第1の計数器の計数出力と前記第2の計数器の計数出力との比に基づき中性子のエネルギーを推定し、該エネルギーにおける換算係数を前記換算情報記憶手段から求め、求めた換算情報と、前記第1及び第2の計数器の各計数出力のうちの少なくとも一方とに基づき、中性子線量を算出する線量算出手段と、
を備える中性子線量測定装置。
【請求項2】
前記本体は、
前面、後面、右側面及び左側面を有し、前記測定部を収容するケースと、
前記ケースに収容されたバッテリ部と、
を含み、
前記ケースの後面は、前記ケースの右側面及び左側面の間にわたって凹状に湾曲した装着面を構成し、
凸状に湾曲した対象物表面に前記凹状に湾曲した装着面が接合された状態で、前記装着具によって当該中性子線量測定装置が対象物に固定されると共に、
前記第1の熱中性子検出器と前記第2の熱中性子検出器とは、前記ケースの前面と後面とを結ぶ方向の直線に沿って配列されることを特徴とする中性子線量測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−329793(P2006−329793A)
【公開日】平成18年12月7日(2006.12.7)
【国際特許分類】
【出願番号】特願2005−153239(P2005−153239)
【出願日】平成17年5月26日(2005.5.26)
【出願人】(390029791)アロカ株式会社 (899)
【Fターム(参考)】