説明

光ジャイロセンサ及びその製造方法

【課題】光導波路と光増幅器を半導体基板上に高精度に集積化できる光ジャイロセンサ及びその製造方法を提供する。
【解決手段】半導体基板1と、半導体基板1上に配置され、出力面11及び出力面12をそれぞれ有する光増幅器10と、出力面11及び出力面12にそれぞれ密接する端面を有して光増幅器10と共にリング状の光路を構成するように半導体基板1上に配置され、出力面11から出力される第1レーザ光L1及び出力面12から出力される第2レーザ光L2が互いに異なる周回方向に伝搬する光導波路20と、半導体基板1上に配置され、第1レーザ光L1及び第2レーザ光L2のそれぞれ一部が光導波路20から移行する検出路30と、検出路30に移行した第1レーザ光L1及び第2レーザ光L2のそれぞれ一部が合波して生じるビート信号を検出する信号検出器40とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ジャイロセンサに係り、特に光増幅器と光導波路が同一半導体基板上に配置された光ジャイロセンサ及びその製造方法に関する。
【背景技術】
【0002】
回転する物体の角速度を検出する角速度検出装置(ジャイロセンサ)には、動作原理や構造、駆動方式等によって様々な種類がある。例えば、リング状に配置された光導波路を互いに逆方向に進む2つのレーザ光の周波数差を用いて角速度を検出する光ジャイロセンサが開発されている。
【0003】
光ジャイロセンサの低消費電力化及び小型化、低価格化の要求に伴い、半導体基板上に光増幅器、リング状に配置された光導波路、及び光導波路を伝搬するレーザ光を引き出してビート信号を観測する光結合器を集積化する方法が提案されている(例えば、特許文献1参照。)。
【特許文献1】特開2008−2954号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に記載された光ジャイロセンサは、光導波路が半導体基板上に形成された後、光導波路にレーザ光を出力する光増幅器が半導体基板にマウントされて集積化される。このため、光導波路に対する位置を高精度に合わせて光増幅器を実装することが困難であり、光増幅器と光導波路の間に隙間ができたり、光増幅器のモードフィールドの中心と光導波路の中心とが一致しなかったりするという問題があった。
【0005】
上記問題点を鑑み、本発明は、光導波路と光増幅器を半導体基板上に高精度に集積化できる光ジャイロセンサ及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一態様によれば、(イ)半導体基板と、(ロ)半導体基板上に配置され、第1及び第2の出力面をそれぞれ有する光増幅器と、(ハ)第1及び第2の出力面にそれぞれ密接する端面を有して光増幅器と共にリング状の光路を構成するように半導体基板上に配置され、第1の出力面から出力される第1レーザ光及び第2の出力面から出力される第2レーザ光が互いに異なる周回方向に伝搬する光導波路と、(ニ)半導体基板上に配置され、第1及び第2レーザ光のそれぞれ一部が光導波路から移行する検出路と、(ホ)検出路に移行した第1及び第2レーザ光のそれぞれ一部が合波して生じるビート信号を検出する信号検出器とを備える光ジャイロセンサが提供される。
【0007】
本発明の他の態様によれば、(イ)半導体基板上に、第1及び第2の出力面を有する光増幅器を配置するステップと、(ロ)第1及び第2の出力面にそれぞれ密接する端面を有して光増幅器と共にリング状の光路を構成するように半導体基板上に配置され、第1の出力面から出力される第1レーザ光及び第2の出力面から出力される第2レーザ光が互いに異なる周回方向に伝搬する光導波路を形成するステップと、(ハ)第1及び第2レーザ光のそれぞれ一部が伝搬する検出路を、光導波路との間隔が第1及び第2レーザ光のそれぞれ一部が光導波路から移行する距離で半導体基板上に形成するステップとを含むことを特徴とする光ジャイロセンサの製造方法。が提供される。
【発明の効果】
【0008】
本発明によれば、光導波路と光増幅器を半導体基板上に高精度に集積化できる光ジャイロセンサ及びその製造方法を提供できる。
【発明を実施するための最良の形態】
【0009】
次に、図面を参照して、本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
【0010】
又、以下に示す第1及び第2の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
【0011】
(第1の実施の形態)
本発明の第1の実施の形態に係る光ジャイロセンサは、図1に示すように、半導体基板1と、半導体基板1上に配置され、出力面11及び出力面12をそれぞれ有する光増幅器10と、出力面11及び出力面12にそれぞれ密接する端面を有して光増幅器10と共にリング状の光路を構成するように半導体基板1上に配置され、出力面11から出力される第1レーザ光L1及び出力面12から出力される第2レーザ光L2が互いに異なる周回方向に伝搬する光導波路20と、半導体基板1上に配置され、第1レーザ光L1及び第2レーザ光L2のそれぞれ一部が光導波路20から移行する検出路30と、検出路30に移行した第1レーザ光L1及び第2レーザ光L2のそれぞれ一部が合波して生じるビート信号を検出する信号検出器40とを備える。
【0012】
図1に示した光ジャイロセンサでは、光増幅器10と光導波路20とがリング状の光路を構成する。具体的には、光導波路20の一方の端面が光増幅器10の出力面11に密接し、光導波路20の他方の端面が光増幅器10の出力面12に密接する。そして、光増幅器10の出力面11から出力された第1レーザ光L1は、光導波路20を伝搬して出力面12から光増幅器10に入力する。光増幅器10の出力面12から出力された第2レーザ光L2は、光導波路20を伝搬して出力面11から光増幅器10に入力する。後述するように、光増幅器10に入力した第1レーザ光L1及び第2レーザ光L2は光増幅器10で増幅された後、光導波路20に出力される。以下では、第1レーザ光L1が光導波路20を時計方向に伝搬し、第2レーザ光L2が光導波路20を反時計方向に伝搬する場合を例示的に説明する。
【0013】
図1に示した光取り出し領域Aにおいて、光導波路20から第1レーザ光L1及び第2レーザ光L2のそれぞれ一部が、検出路30の光取り出し部301に移行する。第1レーザ光L1及び第2レーザ光L2の一部を移行させるために、光取り出し部301と光導波路20は、第1レーザ光L1及び第2レーザ光L2のそれぞれ一部が移行する距離(以下において、「光取り出し距離」という。)で、一定の長さ(以下において、「光取り出し長」という。)にわたって平行に配置される。光導波路20及び検出路30の第1レーザ光L1及び第2レーザ光L2が伝搬する領域の屈折率、第1レーザ光L1及び第2レーザ光L2の波長等に応じて光取り出し長及び光取り出し距離を設定することにより、例えば第1レーザ光L1及び第2レーザ光L2のそれぞれ1%〜10%程度が光導波路20から検出路30に移行する。
【0014】
第1レーザ光L1の一部が光導波路20から検出路30に移行した第1検出レーザ光L1aは、光取り出し領域Aから反時計方向に検出路30を伝搬する。一方、第2レーザ光L2の一部が光導波路20から検出路30に移行した第2検出レーザ光L2aは、光取り出し領域Aから時計方向に検出路30を伝搬する。
【0015】
検出路30の第1検出レーザ光L1aが伝搬する領域と第2検出レーザ光L2aが伝搬する領域とは、信号検出領域Bにおいて距離wの間隔で隣接して平行に配置される。信号検出領域Bにおいて、第1検出レーザ光L1aと第2検出レーザ光L2aは同じ方向に伝播する。
【0016】
信号検出領域Bにおける検出路30間の距離wは、第1検出レーザ光L1aと第2検出レーザ光L2aのそれぞれ一部(例えば約50%)が、隣接する検出路30に移行する距離に設定される。距離wは、例えば第1検出レーザ光L1aや第2検出レーザ光L2aの波長の数倍程度か、或いはそれ以下に設定される。つまり、信号検出領域Bにおける検出路30は光結合器として機能する。
【0017】
その結果、信号検出領域Bにおいて第1検出レーザ光L1aと第2検出レーザ光L2aが合波する。そして、第1検出レーザ光L1aの周波数と第2検出レーザ光L2aの周波数との間に周波数差が存在する場合には、信号検出領域Bに含まれる検出路30の検出部302において、第1検出レーザ光L1aと第2検出レーザ光L2aとが重ね合わさったビート信号が生じる。
【0018】
検出部302に生じたビート信号は、検出部302から第2検出レーザ光L2aの進行方向、即ち検出路30の端部に配置された信号検出器40によって検出される。信号検出器40には、例えばフォトダイオードやフォトトランジスタ等の受光素子等が採用可能である。
【0019】
光導波路20の周回方向に時計回り或いは反時計周りに半導体基板1が回転している場合には、サニャック効果によって、光導波路20の光路長が第1レーザ光L1と第2レーザ光L2とで異なってみえ、このみかけ上の光路長の違いが第1レーザ光L1と第2レーザ光L2との周波数差を生じさせる。この周波数差が第1検出レーザ光L1aと第2検出レーザ光L2aとのビート信号の光強度として観測される。したがって、検出部302で生じるビート信号の光強度の変化を用いて、半導体基板1の角速度を算出できる。
【0020】
図1に示した光ジャイロセンサでは、信号検出器40により検出されたビート信号は、電気信号として信号検出器40から角速度算出回路50に出力される。角速度算出回路50はビート信号の光強度を用いて半導体基板1の角速度を算出する。
【0021】
図1に信号検出器40及び角速度算出回路50を半導体基板1の外部に配置する場合を示したが、信号検出器40及び角速度算出回路50を半導体基板1上に形成してもよい。つまり、図1に示す光ジャイロセンサを1チップ化することにより、光ジャイロセンサを小型化できる。
【0022】
なお、図1では、光増幅器10を駆動するために半導体基板1に配置される電極端子、及び電極端子と光増幅器10とを接続する配線は図示を省略している。
【0023】
図1に示す光増幅器10には、光導波路20と共にリング状の光路を構成し、光導波路20を周回して光増幅器10に戻る第1レーザ光L1及び第2レーザ光L2を増幅する機能を有する素子であれば、種々の素子を使用できる。例えば、半導体光増幅器(SOA)等が光増幅器10に採用可能である。
【0024】
光増幅器10にSOAを採用した例を図2に示す。図2は、図1のI−I方向に沿った断面図である。図2に示したSOAは、下部電極101と上部電極105間に、半導体基板1の一部である下部クラッド層102、活性層103及び上部クラッド層104が積層された構造である。下部電極101と上部電極105間に電流を流すことにより、SOAは反転分布状態になる。光増幅器10の出力面11及び出力面12から光導波路20にそれぞれ出力された第1レーザ光L1及び第2レーザ光L2は、光導波路20を周回した後、それぞれ出力面12及び出力面11から光増幅器10に入力する。反転分布状態のSOAに第1レーザ光L1及び第2レーザ光L2が入力すると、活性層103内で電子と正孔が再結合して誘電放出が起こる。この結果、入力した第1レーザ光L1及び第2レーザ光L2が増幅され、それぞれ出力面11及び出力面12から出力される。なお、図2に示した例では、電流経路の狭窄化のために、絶縁膜110を上部クラッド層104と上部電極105間の一部に配置して上部クラッド層104と上部電極105との接触面積を制限している。
【0025】
活性層103には、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等のIII族元素と窒素(N)、リン(P)、砒素(As)等のV族元素からなるIII−V族化合物半導体等が採用可能である。下部クラッド層102及び上部クラッド層104は、活性層103で発生した第1レーザ光L1及び第2レーザ光L2を活性層103内に閉じ込めるための層である。このため、下部クラッド層102及び上部クラッド層104には、活性層103よりバンドギャップが大きい材料が選択される。
【0026】
下部電極101から電子、上部電極105から正孔がそれぞれ注入されるSOAである場合、即ち、下部クラッド層102がn型クラッド層、上部クラッド層104がp型クラッド層である場合には、例えば以下のように、下部クラッド層102、活性層103及び上部クラッド層104は構成される。
【0027】
即ち、下部クラッド層102には、シリコン(Si)等のn型不純物が1×1018cm-3程度のキャリア濃度でドープされた膜厚100nm程度のGaAs膜と、Siが8×1017cm-3程度のキャリア濃度でドープされた膜厚2500nm程度のAl0.3Ga0.7As膜との積層体等が採用可能である。n型不純物には、Si以外にもセレン(Se)やテルル(Te)等が採用可能である。
【0028】
また、活性層103には、ガイド層として膜厚60nm程度のGaAs膜、ウェル(well)層として膜厚4.5nm程度のIn0.2Ga0.8As膜、バリア層として膜厚6nm程度のGaAs層、及びガイド層として膜厚60nm程度のGaAs膜を順に積層した積層体が採用可能である。
【0029】
そして、上部クラッド層104には、亜鉛(Zn)等のp型不純物が8×1017cm-3程度のキャリア濃度でドープされた膜厚1700nm程度のAl0.3Ga0.7As膜と、Znが3.5×1019cm-3程度のキャリア濃度でドープされた膜厚250nm程度のGaAs膜との積層体等が採用可能である。なお、ZnがドープされたGaAs膜は、上部クラッド層104と上部電極105間の電気抵抗を低減するためのコンタクト層として配置される。p型不純物には、Zn以外にもベリリウム(Be)やマグネシウム(Mg)、炭素(C)等が採用可能である。
【0030】
光導波路20と光増幅器10でリング状の光路を構成するために、出力面11、12での第1レーザ光L1及び第2レーザ光L2の反射が少ないことが好ましい。そのためには、図2に示すように、光増幅器10の出力面11、12を反射防止(AR)膜120で覆うことが効果的である。AR膜120は、互いに屈折率の異なる複数の誘電体膜の積層体等が採用可能である。AR膜120の材料や膜厚は、第1レーザ光L1及び第2レーザ光L2の波長や活性層103の屈折率等に応じて選択される。
【0031】
図2に示した例では半導体基板1の一部が光増幅器10の下部クラッド層102である。このため、半導体基板1は、光増幅器10を構成する材料に応じて選択される。例えば、半導体基板1には、ガリウム砒素(GaAs)基板、インジウムリン(InP)基板等が採用可能である。なお、下部電極101と上部電極105に外部から電圧を印加するための引き出し電極が半導体基板1に配置されるが、この引き出し電極は図1、図2において図示を省略している。
【0032】
光導波路20には、図2に示すように、コア層201、及びそのコア層201の周囲を囲むクラッド層202からなる積層構造を採用可能である。この場合、光導波路20のコア層201に第1レーザ光L1及び第2レーザ光L2を閉じ込めるために、クラッド層202にはコア層201より屈折率が小さい材料が選択される。例えば、クラッド層202とコア層201との比屈折率の差は1.5%程度に設定する。なお、第1レーザ光L1及び第2レーザ光L2の波長、コア層201とクラッド層202の屈折率等に応じて、コア層201の幅及び厚さ、クラッド層202の厚さ等は設定される。
【0033】
図2に示すように、光導波路20は、コア層201が光増幅器10の出力面11に密着して配置され、コア層201の上部の一部は出力面11を含む光増幅器10の端部の上面を覆っている。図示を省略しているが、出力面11に対向する光増幅器10の出力面12も、同様にコア層201と密着している。つまり、光導波路20と光増幅器10との間に隙間は存在しない。
【0034】
光が伝搬する導波路を形成する物質であれば光導波路20の材料に制限は無いが、ポリマー、樹脂、ガラス、半導体等が光導波路20に採用可能である。特に、重合した高分子の有機化合物に代表されるポリマーは、焼成温度が一定以上で耐熱性がよい材料を選択することにより、光導波路20形成後の後工程での熱処理によるダメージを抑制できるため、光導波路20の材料に好適である。
【0035】
また、後述するように、光増幅器10を半導体基板1上に配置した後に、光導波路20が形成される。このため、光導波路20を形成するプロセスでの熱処理によって光増幅器10がダメージを受けないように、光導波路20の材料が選択される。例えば、焼成温度が350℃程度のポリマーを光導波路20に採用することにより、光増幅器10にIII−V族化合物半導体を積層したSOAを採用した場合であっても、光導波路20形成プロセスにおける熱処理による光増幅器10のダメージを抑制できる。具体的には、ポリイミド等が光導波路20に採用可能である。
【0036】
また、光導波路20を第1レーザ光L1及び第2レーザ光L2の吸収が少ない材料で形成することが好ましい。これにより、第1レーザ光L1及び第2レーザ光L2が伝搬する光導波路20をSOAの活性層103と同じ材料で形成した光ジャイロセンサに比べて、図1に示した光ジャイロセンサを低い電力で駆動できる。
【0037】
光増幅器10と光導波路20は、光増幅器10のモードフィールドの中心と光導波路20のコア層201の中心とが一致するように半導体基板1上に配置される。ただし、活性層103とコア層201の界面における第1レーザ光L1及び第2レーザ光L2の反射が光ジャイロセンサの性能に与える影響を抑制するように、光増幅器10と光導波路20を配置する必要がある。例えば、活性層103の光伝搬方向の中心軸と光導波路20の光伝搬方向の中心軸とが一致しないように、互いの光伝搬方向の中心軸が数度の角度をなして配置されることが好ましい。
【0038】
検出路30は、光導波路20と同様に、コア層201と、コア層201の周囲に配置されたクラッド層202からなる積層構造が採用可能である。このため、検出路30と光導波路20は同一プロセスで半導体基板1上に同時に形成可能である。例えば、光導波路20と検出路30のコア層201を同一層に形成できる。
【0039】
以下に、光増幅器10、光導波路20及び検出路30が配置された半導体基板1の製造方法を説明する。以下に述べる製造方法は一例であり、この変形例を含めて、これ以外の種々の製造方法により実現可能であることは勿論である。
【0040】
先ず、図3〜図21を参照して、図2に示した光増幅器10の製造方法の例を説明する。なお、図3〜図21のそれぞれにおいて、図(a)は図1のII−II方向に沿った工程断面図、図(b)は図1のI−I方向に沿った工程断面図である。
【0041】
(イ)下部クラッド層102となる半導体基板1を用意する。そして、半導体基板1上に、活性層103及び上部クラッド層104を順に積層する。その後、例えば酸化シリコン(SiO2)膜等の絶縁膜501を形成する。そして、図3に示すように、光増幅器10を形成する領域以外の絶縁膜501を除去する。
【0042】
(ロ)絶縁膜501をマスクにして、上部クラッド層104の上部の一部をエッチング除去する。具体的には、図4に示すように、ドライエッチングにより上部クラッド層104の上部を1500nm程度エッチングした後、ウェットエッチングにより上部クラッド層104の上部を更に500nm程度エッチングする。その結果、図5に示すように、上部クラッド層104の上部に、第1レーザ光L1及び第2レーザ光L2が伝搬する方向に沿ったリッジ形状のストライプ部104Aが形成される。
【0043】
(ハ)絶縁膜501を除去した後、図6に示すように、上部クラッド層104上の全面に、新たにSiO2膜等からなる絶縁膜110を形成する。次いで、図7に示すように、絶縁膜110上にレジスト膜502を塗布する。
【0044】
(ニ)図8に示すように、絶縁膜110の凸部の上面が露出するまでレジスト膜502をエッチングする。その後、図9に示すように、レジスト膜502をマスクにして絶縁膜110の凸部の上部をエッチングし、上部クラッド層104のストライプ部104Aの上面を露出させる。上部クラッド層104のストライプ部104Aの側面は絶縁膜110で覆われる。
【0045】
(ホ)レジスト膜502を除去した後、新たなレジスト膜503を全面に塗布し、フォトリソグラフィ技術を用いて、図10に示すように、光増幅器10の上部電極105を形成する領域以外のレジスト膜503を除去する。その後、図11に示すように、レジスト膜503上及びレジスト膜503を除去した領域上に上部電極105となる金属膜105Aを蒸着する。金属膜105Aには、例えばチタン(Ti)/金(Au)膜等が採用可能である。
【0046】
(ヘ)図12に示すように、レジスト膜503を除去して、リフトオフ法により上部電極105を形成する。その後、図13に示すように、半導体基板1の裏面に下部電極101を形成する。下部電極101には、例えばAu/ゲルマニウム(Ge)膜等が採用可能である。
【0047】
(ト)レジスト膜504を全面に塗布した後、フォトリソグラフィ技術を用いてパターニングして、図14に示すように、光増幅器10を形成する領域上のレジスト膜504のみを残す。このレジスト膜504をマスクにして、図15に示すように絶縁膜110をエッチング除去する。
【0048】
(チ)図16に示すようにレジスト膜504を除去した後、絶縁膜110と上部電極105をマスクにして、上部クラッド層104、活性層103、及び半導体基板1の上部の一部をエッチングする。図17に示すように、半導体基板1のエッチングされなかった領域が、下部クラッド層102となる。
【0049】
(リ)図18に示すように、AR膜120となる誘電体膜120Aを全面に形成する。誘電体膜120Aには、例えば酸化タンタル(Ta25)とSiO2の積層体等が採用可能である。
【0050】
(ヌ)次いで、レジスト膜505を誘電体膜120Aの全面に塗布した後、図19に示すように、フォトリソグラフィ技術を用いて光増幅器10の上面のレジスト膜505を除去する。このレジスト膜505をマスクにして、図20に示すように光増幅器10の上面の誘電体膜120Aをエッチング除去して、AR膜120を形成する。その後、レジスト膜505を除去して、図21に示すように光増幅器10が完成する。
【0051】
次に、図22〜図31を参照して、光増幅器10の形成後に光導波路20を形成する方法の例を説明する。図22〜図31のそれぞれにおいて、図(a)は図1のI−I方向に沿った工程断面図、図(b)は工程上面図である。
【0052】
(ル)図22に示すように、図21に示した光増幅器10が形成された半導体基板1上の全面にクラッド層202の下側領域となるポリマー膜202Aを膜厚5〜7μm程度で形成する。図22に示すように、ポリマー膜202Aの上面の位置が活性層103より下になるようにポリマー膜202Aの膜厚は設定される。
【0053】
(ヲ)レジスト膜506をポリマー膜202A上の全面に塗布した後、図23に示すように、フォトリソグラフィ技術を用いて光増幅器10及び光増幅器10周辺領域の上方のレジスト膜506を除去する。このレジスト膜506をマスクにして、光増幅器10の上面及び出力面に接するポリマー膜202Aをエッチング除去して、光導波路20及び検出路30のクラッド層202の下側領域を形成する。このとき、図24に示すように、光増幅器10の出力面に接するクラッド層202の下側領域の一部が残るようにポリマー膜202Aをエッチングする。
【0054】
(ワ)レジスト膜506を除去した後、図25に示すように、クラッド層202の下側領域と光増幅器10の上面に、コア層201となるポリマー膜201Aを、例えば膜厚1μm程度で形成する。ポリマー膜201Aには、ポリマー膜202Aより屈折率が大きい材料が選択される。
【0055】
(カ)レジスト膜507をポリマー膜201Aの全面に塗布した後、フォトリソグラフィ技術を用いてコア層201を形成する領域以外の領域のポリマー膜201A上のレジスト膜507を除去する。コア層201の幅は例えば3μm程度に設定される。このとき、図26に示すように、AR膜120及び上部電極105の外縁部上のレジスト膜507を残すようにパターニングされる。そして、このレジスト膜507をマスクにしてポリマー膜201Aをエッチング除去して、図27に示すように光導波路20及び検出路30のコア層201を形成する。このため、光増幅器10の外縁部上にコア層201が形成される。その後、レジスト膜507を除去する。
【0056】
(ヨ)図28に示すように、コア層201、クラッド層202の下側領域、及び露出した上部電極105上の全面にクラッド層202の上側領域となるポリマー膜202Aと同じ材料のポリマー膜202Bを膜厚5〜7μm程度で形成する。レジスト膜508をポリマー膜202B上の全面に塗布した後、図29に示すように、フォトリソグラフィ技術を用いて光増幅器10の上面のレジスト膜508を除去する。このとき、図29に示すように、上部電極105の外縁部上方にレジスト膜508が残ってレジスト膜508が上部電極105の端部105aを覆うようにレジスト膜508をパターニングする。コア層201の端面の位置とレジスト膜508の端面508Aの位置が一致するようにレジスト膜508をパターニングされる。
【0057】
(タ)図30に示すように、レジスト膜508をマスクにしてポリマー膜202Bをエッチング除去して、光導波路20及び検出路30のクラッド層202の上側領域を形成する。その後、図31に示すように、レジスト膜508を除去して、図1に示す半導体基板1が完成する。
【0058】
なお、信号検出器40を半導体基板1上に配置するには、例えば以下のように行う。図32(a)に示すように、先ず信号検出器40を配置する検出路30の端部のクラッド層202及びコア層201をエッチング除去して空洞401を形成する。図32(b)は図32(a)のIII−III方向に沿った断面図である。このとき、半導体基板1の上部の一部をエッチング除去してもよい。半導体基板1に到達するまでエッチングした方が、信号検出器40の放熱性の点でより好ましい。また、コア層201の光導波路の端面、即ち空洞401に露出する端面は、光導波路の中心軸に対して数度だけ斜めに傾いていることが好ましい。また、この端面における反射を低減するために、この端面にARコーティングを施してもよい。
【0059】
その後、クラッド層202及びコア層201をエッチング除去して形成された空洞401に、信号検出器40をマウントする。信号検出器40にフォトダイオードを採用する場合には、フォトダイオードの受光領域が検出路30のコア層201と光学的に結合するように、フォトダイオードが半導体基板1にマウントされる。なお、必要に応じて、図33(a)、図33(b)に示すように、信号検出器40に電圧を印加する引き出し用電極405を半導体基板1に形成された空洞401に形成した後に、信号検出器40を半導体基板1にマウントする。図33(b)は図33(a)のIII−III方向に沿った断面図である。引き出し用電極405はリフトオフ法等によって形成される。引き出し用電極405には、例えば半導体基板1側から順にTi層/Pt層/Au層を積層した積層体が採用可能である。
【0060】
上記の各プロセスにおけるパターニングには、半導体プロセスで一般的に使用されるフォトリソグラフィ技術やレジスト膜をマスクにしたエッチング法等が適用可能である。
【0061】
上記の製造方法では、上部クラッド層104の上部の一部がエッチング除去されて、第1レーザ光L1及び第2レーザ光L2が伝搬する方向に沿ったストライプ部104Aが形成される。このストライプ部104Aをリッジ形状(メサ型)にし、上部電極105と接するストライプ部104Aの上面以外を絶縁膜110で覆うことにより、横方向からの光の閉じ込めを穏やかにできるので、光増幅器10の動作を制御しやすくなる。絶縁膜110には、屈折率が1よりも大きい材料、例えばジルコニア(ZrO2)やSiO2等が好ましい。上記構造を採用することにより、下部電極101と上部電極105間の電流経路の狭窄化を行って電流注入効率を向上できる。また、側面からのリーク電流を防ぐことができる。
【0062】
光導波路20を半導体基板1上に形成した後に光増幅器10を半導体基板1にマウントする製造方法では、光導波路20の端面と光増幅器10の出力面11、12とを密着させることが困難であり、光経路に空間が含まれる可能性が高い。更に、光導波路20と光増幅器10との位置合わせ後に光増幅器10を半田等で半導体基板1に固定する際に、光増幅器10の位置が変化する場合がある。このため、光増幅器10のモードフィールドの中心と光導波路20のコア層201の中心とが一致しない等の問題が生じる。その結果、光増幅器10と光導波路20の結合効率が低下する。
【0063】
しかし、本発明の第1の実施の形態に係る光ジャイロセンサでは、光増幅器10を半導体基板1上に配置した後、フォトリソグラフィ技術を用いて、コア層201の端面が光増幅器10の出力面11、12に接するように光導波路20が半導体基板1上に形成される。このため、光増幅器10の出力面11、12とコア層201の周回方向に垂直な端面とを容易に、且つ確実に接触させることができる。更に、フォトリソグラフィ技術を用いて位置合わせを行うため、光増幅器10のモードフィールドの中心と光導波路20のコア層201の中心とを高精度に一致させることができる。その結果、光増幅器10と光導波路20の結合効率が向上する。
【0064】
また、既に述べたように、例えば光導波路20を焼成温度が350℃程度のポリマーで構成すること等により光導波路20の製造工程の熱処理温度を一定値以下にすることによって、光増幅器10の熱ダメージを抑制できる。なお、光導波路20に採用する材料の耐熱性を考慮して、光導波路20形成後の光ジャイロセンサの製造工程の熱処理温度を光導波路20の耐熱温度より低く規定すべきである。
【0065】
以上に説明したように、本発明の第1の実施の形態に係る光ジャイロセンサ及びその製造方法によれば、光導波路20と光増幅器10を半導体基板1上に高精度に集積化できる光ジャイロセンサ及びその製造方法を提供できる。このように集積化することにより、光ジャイロセンサが小型化され、高価な光学部品が削減されて、安価に製造することができるため、デジタルビデオカメラやカーナビゲーションシステム等の民生機器に用途が広がる。
【0066】
(第2の実施の形態)
本発明の第2の実施の形態に係る光ジャイロセンサは、図34に示すように、下部電極101、下部クラッド層102、活性層103、上部クラッド層104及び上部電極105が積層され、レーザ光の出力面にAR膜120を配置した光増幅器10が、半田601によって半導体基板1に接続されている点が、図1に示した光ジャイロセンサと異なる。その他の構成については、図1に示す第1の実施の形態と同様である。図34は図1のI−I方向に沿った断面図である。図34に示すように、半導体基板1の外部への引き出し用電極602が半導体基板1に形成され、光増幅器10は引き出し用電極602上に半田601によって接続されている。半導体基板1の材料は光増幅器10の材料に依存せずに選択可能であり、例えば、シリコン基板、サファイア基板、GaAs基板、窒化ガリウム(GaN)基板等が採用可能である。
【0067】
図34に示すように、光導波路20は、光増幅器10の出力面11に接して形成されている。図示を省略しているが、出力面11に対向する光増幅器10の他の出力面12にも接して光導波路20は形成される。
【0068】
以下に、図35〜図45を参照して、本発明の第2の実施の形態に係る半導体基板1の製造方法を説明する。なお、以下に述べる製造方法は一例であり、この変形例を含めて、これ以外の種々の製造方法により実現可能であることは勿論である。また、図35〜図45は図1のII−II方向に沿った工程断面図である。
【0069】
(イ)光増幅器10と、光増幅器10を配置する半導体基板1が用意される。図35に示すように、光増幅器10は下部電極101、下部クラッド層102、活性層103、上部クラッド層104及び上部電極105が積層され、レーザ光の出力面にAR膜120が配置された構造である。また、半導体基板1の光増幅器10を配置する領域は凹部形状にエッチングされ、凹部に引き出し用電極602が配置されている。
【0070】
(ロ)図36に示すように、光増幅器10の下部電極101と引き出し用電極602が半田601によって接続され、光増幅器10が半導体基板1に配置される。
【0071】
(ハ)光増幅器10が配置された半導体基板1上の全面にクラッド層202の下側領域となるポリマー膜202Aを膜厚5〜7μm程度で形成する。図37に示すように、半導体基板1の段差部と光増幅器10との間の隙間はポリマー膜202Aによって埋め込まれる。なお、ポリマー膜202Aの上面の位置が活性層103より下になるようにポリマー膜202Aの膜厚は設定される。
【0072】
(ニ)レジスト膜701をポリマー膜202A上の全面に塗布した後、図38に示すように、フォトリソグラフィ技術を用いて光増幅器10及び光増幅器10周辺の上方のレジスト膜701を除去する。このレジスト膜701をマスクにして、光増幅器10の上面及び側面のポリマー膜202Aをエッチング除去して、光導波路20及び検出路30のクラッド層202の下側領域を形成する。このとき、図39に示すように、光増幅器10の出力面に接するクラッド層202の下側領域の一部が残るようにポリマー膜202Aをエッチングする。
【0073】
(ホ)レジスト膜701を除去した後、図40に示すように、クラッド層202の下側領域と光増幅器10の上面に、コア層201となるポリマー膜201Aを形成する。
【0074】
(ヘ)レジスト膜702をポリマー膜201Aの全面に塗布した後、フォトリソグラフィ技術を用いてコア層201を形成する領域以外の領域のポリマー膜201A上のレジスト膜702を除去する。このとき、図41に示すように、光増幅器10の外縁部上のレジスト膜702を残すようにパターニングされる。そして、このレジスト膜702をマスクにしてポリマー膜201Aをエッチング除去して、図42に示すように光導波路20及び検出路30のコア層201を形成する。このため、光増幅器10の外縁部上にコア層201が形成される。
【0075】
(ト)図43に示すように、コア層201、クラッド層202の下側領域、及び光増幅器10の全面にクラッド層202の上側領域となるポリマー膜202Bを形成する。レジスト膜703をポリマー膜202B上の全面に塗布した後、図44に示すように、フォトリソグラフィ技術を用いて光増幅器10の上面のレジスト膜703を除去する。このとき、図44に示すように、光増幅器10の外縁部のレジスト膜703を残し、コア層201の端面の位置とレジスト膜703の端面の位置が一致するようにレジスト膜703をパターニングする。
【0076】
(チ)図45に示すように、レジスト膜703をマスクにしてポリマー膜202Bをエッチング除去して、光導波路20及び検出路30のクラッド層202の上側領域を形成する。その後、レジスト膜703を除去して、図34に示す半導体基板1が完成する。
【0077】
以上に説明したように、図34に示した光ジャイロセンサでは、完成されたSOAを半導体基板1に実装する。このため、図1に示した光ジャイロセンサに比べて、光増幅器10を形成する部分での歩留り低下が抑制される。また、予めAR膜120がコートされた光増幅器10を使用するため、半導体基板1にAR膜120を成膜する方法に比べて、AR膜120の反射率を低減できる。更に、光増幅器10と光導波路20とを同一の半導体基板1上に形成する場合に比べて、半導体基板1の材料やサイズの自由度が増大する。
【0078】
上記のように、図34に示した光ジャイロセンサでは、光増幅器10を半導体基板1上に配置した後、フォトリソグラフィ技術等の半導体製造方法を用いて、コア層201の端面が光増幅器10の出力面11、12に接するように光導波路20が半導体基板1上に形成される。このため、光増幅器10の出力面11、12とコア層201の端面とを容易に接触させることができ、且つ、光増幅器10のモードフィールドの中心と光導波路20のコア層201の中心とを高精度に一致させることができる。その結果、本発明の第2の実施の形態に係る光ジャイロセンサ及びその製造方法によれば、光導波路20と光増幅器10を半導体基板1上に高精度に集積化できる光ジャイロセンサ及びその製造方法を提供できる。他は、第1の実施の形態と実質的に同様であり、重複した記載を省略する。
【0079】
(その他の実施の形態)
上記のように、本発明は第1及び第2の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0080】
既に述べた第1及び第2の実施の形態の説明においては、検出路30の備える光取り出し部301が1箇所であったが、光取り出し部301を2箇所備え、第1レーザ光L1と第2レーザ光L2の取り出しを異なる光取り出し部301で行ってもよい。
【0081】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【図面の簡単な説明】
【0082】
【図1】本発明の第1の実施の形態に係る光ジャイロセンサの構成を示す模式図である。
【図2】図1のI−I方向に沿った断面図である。
【図3】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その1)。
【図4】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その2)。
【図5】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その3)。
【図6】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その4)。
【図7】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その5)。
【図8】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その6)。
【図9】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その7)。
【図10】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その8)。
【図11】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その9)。
【図12】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その10)。
【図13】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その11)。
【図14】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その12)。
【図15】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その13)。
【図16】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その14)。
【図17】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その15)。
【図18】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その16)。
【図19】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その17)。
【図20】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その18)。
【図21】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その19)。
【図22】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その20)。
【図23】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その21)。
【図24】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その22)。
【図25】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その23)。
【図26】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その24)。
【図27】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その25)。
【図28】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その26)。
【図29】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その27)。
【図30】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その28)。
【図31】本発明の第1の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その29)。
【図32】本発明の第1の実施の形態の変形例に係る光ジャイロセンサの製造方法を説明するための工程図である(その1)。
【図33】本発明の第1の実施の形態の変形例に係る光ジャイロセンサの製造方法を説明するための工程図である(その2)。
【図34】本発明の第2の実施の形態に係る光ジャイロセンサの構成を示す模式図である。
【図35】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その1)。
【図36】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その2)。
【図37】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その3)。
【図38】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その4)。
【図39】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その5)。
【図40】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その6)。
【図41】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その7)。
【図42】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その8)。
【図43】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その9)。
【図44】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その10)。
【図45】本発明の第2の実施の形態に係る光ジャイロセンサの製造方法を説明するための工程断面図である(その11)。
【符号の説明】
【0083】
1…半導体基板
10…光増幅器
11、12…出力面
20…光導波路
30…検出路
40…信号検出器
50…角速度算出回路
101…下部電極
102…下部クラッド層
103…活性層
104…上部クラッド層
105…上部電極
110…絶縁膜
120…AR膜
201…コア層
202…クラッド層
301…光取り出し部
302…検出部
A…光取り出し領域
B…信号検出領域
L1…第1レーザ光
L1a…第1検出レーザ光
L2…第2レーザ光
L2a…第2検出レーザ光

【特許請求の範囲】
【請求項1】
半導体基板と、
前記半導体基板上に配置され、第1及び第2の出力面を有する光増幅器と、
前記第1及び第2の出力面にそれぞれ密接する端面を有して前記光増幅器と共にリング状の光路を構成するように前記半導体基板上に配置され、前記第1の出力面から出力される第1レーザ光及び前記第2の出力面から出力される第2レーザ光が互いに異なる周回方向に伝搬する光導波路と、
前記半導体基板上に配置され、前記第1及び第2レーザ光のそれぞれ一部が前記光導波路から移行する検出路と、
前記検出路に移行した前記第1及び第2レーザ光のそれぞれ一部が合波して生じるビート信号を検出する信号検出器と
を備えることを特徴とする光ジャイロセンサ。
【請求項2】
前記光増幅器が半導体光増幅器であることを特徴とする請求項1に記載の光ジャイロセンサ。
【請求項3】
前記光導波路がポリマーからなることを特徴とする請求項1又は2に記載の光ジャイロセンサ。
【請求項4】
前記光導波路が、前記半導体基板上に積層されたコア層と該コア層の周囲を囲むクラッド層からなる積層構造を有することを特徴とする請求項1乃至3のいずれか1項に記載の光ジャイロセンサ。
【請求項5】
半導体基板上に、第1及び第2の出力面を有する光増幅器を配置するステップと、
前記第1及び第2の出力面にそれぞれ密接する端面を有して前記光増幅器と共にリング状の光路を構成するように前記半導体基板上に配置され、前記第1の出力面から出力される第1レーザ光及び前記第2の出力面から出力される第2レーザ光が互いに異なる周回方向に伝搬する光導波路を形成するステップと、
前記第1及び第2レーザ光のそれぞれ一部が伝搬する検出路を、前記光導波路との間隔が前記第1及び第2レーザ光のそれぞれ一部が前記光導波路から移行する距離で前記半導体基板上に形成するステップと
を含むことを特徴とする光ジャイロセンサの製造方法。
【請求項6】
前記半導体基板上に半導体層を積層して前記光増幅器を配置することを特徴とする請求項5に記載の光ジャイロセンサの製造方法。
【請求項7】
前記光導波路がポリマーからなることを特徴とする請求項5又は6に記載の光ジャイロセンサの製造方法。
【請求項8】
前記第1及び第2レーザ光のそれぞれ一部が合波して前記検出路に生じるビート信号を検出する信号検出器を前記半導体基板上に配置するステップを更に含むことを特徴とする請求項5乃至7のいずれか1項に記載の光ジャイロセンサの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate


【公開番号】特開2010−14495(P2010−14495A)
【公開日】平成22年1月21日(2010.1.21)
【国際特許分類】
【出願番号】特願2008−173781(P2008−173781)
【出願日】平成20年7月2日(2008.7.2)
【出願人】(000116024)ローム株式会社 (3,539)
【出願人】(393031586)株式会社国際電気通信基礎技術研究所 (905)
【出願人】(000005290)古河電気工業株式会社 (4,457)
【出願人】(000231073)日本航空電子工業株式会社 (1,081)
【Fターム(参考)】