説明

光ファイバ特性測定装置及び方法

【課題】測定精度の悪化や安定性・再現性の悪化を招くことなく、空間分解能の向上及びコストの低減を図ることができる光ファイバ特性測定装置及び方法を提供する。
【解決手段】光ファイバ特性測定装置1は、所定の変調周波数で変調したレーザ光を射出する光源11と、光源11からのレーザ光をプローブ光L1及びポンプ光L2として光ファイバ14の一端及び他端からそれぞれ入射させる入射手段(光分岐器12、光変調器13、パルス変調器15、方向性結合器16)と、光ファイバ14から射出される光を検出する光検出器17と、光検出器17から出力される検出信号D1のうち、光ファイバ14に設定された測定点近傍の光を検出して得られた検出信号を通過させることによって切り出しを行うタイミング調整器18aと、タイミング調整器18aを通過した検出信号D2を同期検波するロックインアンプ18bとを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバ特性測定装置及び方法に関する。
【背景技術】
【0002】
光ファイバ特性測定装置は、周知の通り、連続光又はパルス光を光ファイバに入射させ、光ファイバ内において生ずる散乱光又は反射光を受光して光ファイバの長手方向における温度分布、歪み分布、その他の特性を測定する装置である。この光ファイバ特性測定装置では、受光される散乱光又は反射光が光ファイバに影響を及ぼす物理量(例えば、温度や応力)に応じて変化するため、光ファイバそのものがセンサとして用いられる。
【0003】
以下の特許文献1には、周波数変調した連続光(ポンプ光及びプローブ光)を光ファイバの両端からそれぞれ入射させてポンプ光とプローブ光との周期的な相関ピークを光ファイバに沿って形成し、プローブ光が相関ピークの位置のみで誘導ブリルアン散乱現象により増幅される性質を利用して光ファイバの特性を測定する光ファイバ特性測定装置が開示されている。この光ファイバ特性測定装置は、光ファイバ内における相関ピークの位置を変化させつつ各位置で増幅されたプローブ光を受光することで、光ファイバの長手方向における特性を測定することができる。
【0004】
また、以下の特許文献2には、周波数変調した連続光(プローブ光)及びパルス光(ポンプ光)を光ファイバの一端及び他端からそれぞれ入射させて光ファイバ内を伝播するポンプ光の位置に応じて相関ピークを順次発生させ、光ファイバから射出される光のうちの測定点近傍からの光(誘導ブリルアン散乱光)のみを得ることにより、その測定点での光ファイバの特性を測定する光ファイバ特性測定装置が開示されている。この光ファイバ特性測定装置は、プローブ光及びポンプ光の変調周波数と光ファイバから射出される光の受光タイミングとを調整して測定点を移動させることで、光ファイバの長手方向における任意の位置の特性を測定することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3667132号公報
【特許文献2】特許第3607930号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、上記の特許文献2に開示された光ファイバ特性測定装置は、光ファイバから射出される光を受光する光検出器の前段にタイミング調整器を備えており、光ファイバから射出された光をタイミング調整器で切り出すことによって測定点近傍からの光のみを光検出器で受光するようにしている。このようなタイミング調整器は、例えば電気光学効果(ポッケルス効果)を利用したLN(Lithium Niobate:ニオブ酸リチウム)変調器を応用した光スイッチで実現される。
【0007】
上記の光スイッチは、オン状態(光を透過させる状態)とオフ状態(光を遮断する状態)との切り替えを高速に行うことができ、例えば光ファイバから射出される光を数nsec程度の時間間隔で切り出すことも可能である。従って、このような光スイッチをタイミング調整器として用いれば、1cm程度の高い空間分解能有する光ファイバ特性測定装置を実現することが可能である。しかしながら、上記の光スイッチは、挿入損失が大きく、偏波依存性があり、高価である。このため、今後、光ファイバ特性測定装置の空間分解能の向上及びコストの低減を図る上で、以下の問題が生ずる可能性が考えられる。
【0008】
(1)測定精度の悪化
光ファイバ特性測定装置で得られる信号のレベル(受光信号の強度)は、空間分解能を高くするにつれて低下するため、空間分解能を高くすれば必然的にS/N比(信号対雑音比)も低下する。上記の光スイッチは、挿入損失が3〜5dB程度と大きく、S/N比を更に低下させるため、光ファイバ特性測定装置の空間分解能を向上させようとした場合に、測定精度を悪化させる要因になるという問題がある。
【0009】
(2)安定性・再現性の悪化
上記の光スイッチは、入射する光の偏波方向に応じて透過する光の強度が変動する偏波依存性を有するが、かかる特性は入射する光の偏波方向に応じて光スイッチの挿入損失が変動する特性でもある。このため、上記の光スイッチは、光ファイバ特性測定装置の空間分解能を向上させようとした場合に、測定精度を悪化させる要因になるとともに、測定の安定性及び再現性を悪化させる要因になるという問題がある。
【0010】
(3)その他
上記の光スイッチは、動作特性が温度変化や経時変化するのを防止するためにバイアス電圧をフィードバック制御する制御装置を備えるものが多いが、構成が複雑化するとともに、フィードバック制御のための制御信号が光ファイバから射出される光に重畳されてしまい、S/N比を低下させる要因になるという問題がある。また、上記の光スイッチは、それ自体が高額であるため、光ファイバ特性測定装置のコスト低減を図る上で不利であるという問題がある。
【0011】
本発明は上記事情に鑑みてなされたものであり、測定精度の悪化や安定性・再現性の悪化を招くことなく、空間分解能の向上及びコストの低減を図ることができる光ファイバ特性測定装置及び方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明の光ファイバ特性測定装置は、所定の変調周波数で変調したレーザ光を射出する光源(11)と、該光源からのレーザ光を連続光(L1)及びパルス光(L2)として光ファイバ(14)の一端及び他端からそれぞれ入射させる入射手段(12、13、15、16)と、前記光ファイバから射出される光を検出する光検出器(17)とを備え、該光検出器の検出結果を用いて前記光ファイバの特性を測定する光ファイバ特性測定装置(1、2)において、前記光検出器から出力される検出信号(D1)のうち、前記光ファイバに設定された測定点近傍の光を検出して得られた検出信号の切り出しを行い、所定の周期を有する同期信号(SY、SY1)を用いて切り出しを行った検出信号を同期検波する同期検波装置(18、30)を備えることを特徴としている。
この発明によると、光検出器から出力された検出信号のうち、光ファイバに設定された測定点近傍の光を検出して得られた検出信号の切り出しが行われ、所定の周期を有する同期信号を用いて切り出しが行われた検出信号が同期検波される。
また、本発明の光ファイバ特性測定装置は、前記同期検波装置が、前記光検出器から出力される検出信号のうち、前記光ファイバに設定された測定点近傍の光を検出して得られた検出信号を通過させることによって前記切り出しを行うタイミング調整器(18a)と、前記同期信号を用いて前記タイミング調整器を通過した検出信号を同期検波する同期検波器(18b)とを備えることを特徴としている。
また、本発明の光ファイバ特性測定装置は、前記タイミング調整器の動作周期が、前記同期信号の周期の半分の周期であることを特徴としている。
また、本発明の光ファイバ特性測定装置は、前記同期検波装置が、前記光検出器から出力される検出信号の極性を反転した反転信号を出力する反転器(21b)と、前記光検出器から出力される検出信号の極性を反転しない非反転信号を出力する非反転器(21a)と、前記反転器から出力される反転信号と前記非反転器から出力される非反転信号とを、前記光ファイバに設定された測定点近傍の光を検出して得られる検出信号が前記光検出器から出力されるタイミングで交互に出力することにより前記切り出しを行うスイッチ部(31)と、前記スイッチ部から出力される信号(S1)のフィルタリングを行うローパスフィルタ(24)とを備えることを特徴としている。
また、本発明の光ファイバ特性測定装置は、前記パルス光が前記光ファイバの他端に入射される周期が、少なくとも前記パルス光が前記光ファイバの一端と他端との間を往復するのに要する時間の2倍の時間に設定されており、前記同期信号の周期が、前記パルス光が前記光ファイバの他端に入射される周期と同じ周期であることを特徴としている。
本発明の光ファイバ特性測定方法は、所定の変調周波数で変調したレーザ光を連続光(L1)及びパルス光(L2)として光ファイバ(14)の一端及び他端からそれぞれ入射させ、前記光ファイバから射出される光を光検出器(17)で検出して前記光ファイバの特性を測定する光ファイバ特性測定方法において、前記光検出器から出力される検出信号のうち、前記光ファイバに設定された測定点近傍の光を検出して得られた検出信号の切り出しを行い、所定の周期を有する同期信号を用いて切り出しを行った検出信号を同期検波することを特徴としている。
【発明の効果】
【0013】
本発明によれば、光検出器から出力された検出信号のうち、光ファイバに設定された測定点近傍の光を検出して得られた検出信号の切り出しを行い、所定の周期を有する同期信号を用いて切り出しがを行った検出信号を同期検波しているため、測定精度の悪化や安定性・再現性の悪化を招くことなく、空間分解能の向上及びコストの低減を図ることができるという効果がある。
【図面の簡単な説明】
【0014】
【図1】本発明の第1実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。
【図2】本発明の第1実施形態よる光ファイバ特性測定装置が備えるロックインアンプの要部構成を示すブロック図である。
【図3】ポンプ光の進行に伴って光ファイバ内で相関ピークが発生する様子を示す図である。
【図4】本発明の第1実施形態において、同期検波装置で行われる処理を説明するための図である。
【図5】本発明の第2実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。
【図6】本発明の第2実施形態よる光ファイバ特性測定装置が備えるロックインアンプの要部構成を示すブロック図である。
【図7】本発明の第2実施形態において、同期検波装置としてのロックインアンプで行われる処理を説明するための図である。
【発明を実施するための形態】
【0015】
以下、図面を参照して本発明の実施形態による光ファイバ特性測定装置及び方法について詳細に説明する。
【0016】
〔第1実施形態〕
図1は、本発明の第1実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。図1に示す通り、本実施形態の光ファイバ特性測定装置1は、光源11、光分岐器12(入射手段)、光変調器13(入射手段)、光ファイバ14、パルス変調器15(入射手段)、方向性結合器16(入射手段)、光検出器17、及び同期検波装置18を備えており、光ファイバ14の長手方向における特性(例えば温度分布や歪み分布等)を測定する。
【0017】
光源11は、半導体レーザ11a及び信号発生器11bを備えており、所定の変調周波数fで変調したレーザ光を射出する。ここで、半導体レーザ11aは、例えば、小型であり、且つ、スペクトル幅の狭いレーザ光を射出するMQW・DFB・LD(Multi-Quantum Well・Distributed Feed-Back・Laser Diode)等を用いることができる。信号発生器11bは、半導体レーザ11aから射出されるレーザ光を変調周波数fで周波数変調する正弦波信号(変調信号)を半導体レーザ11aに出力する。光分岐器12は、光源11から射出されたレーザ光を、例えば1対1の強度比で2分岐する。
【0018】
光変調器13は、マイクロ波発生器13aとSSB(Single Side Band:単側波帯)光変調器13bとを備えており、光分岐器12で分岐された一方のレーザ光を変調して(光周波数シフトさせて)、レーザ光の中心周波数に対する側波帯(単側波帯)を発生させる。尚、本実施形態では、低周波側の単側帯波が光変調器13から出力されるとする。マイクロ波発生器13aは、光分岐器12で分岐された一方のレーザ光に与える周波数シフト分の周波数を有するマイクロ波を出力する。SSB光変調器13bは、入力光の中心周波数に対してマイクロ波発生器13aから出力されるマイクロ波の周波数に等しい周波数差を有する単側帯波を発生させる。尚、マイクロ波発生器13aから出力されるマイクロ波の周波数は可変である。光変調器13で変調された光は、プローブ光L1(連続光)として光ファイバ14の一端から光ファイバ14内に入射する。
【0019】
パルス変調器15は、信号発生器15aと光強度変調器15bとを備えており、光分岐器12で分岐された他方のレーザ光をパルス化してパルス光を生成する。信号発生器15aは、レーザ光をパルス化するタイミングを規定するタイミング信号を出力する。光強度変調器15bは、例えばEO(Electro-Optic:電気光学)スイッチであり、信号発生器15aから出力されるタイミング信号で規定されるタイミングで光分岐器12からのレーザ光をパルス化する。
【0020】
ここで、パルス変調器15は、以下の(1)式で示される周期Tで、以下の(2)式で示されるパルス幅tpwを有するパルス光を生成する。但し、以下の(1),(2)式中のLは光ファイバ14の長さ(一端から他端までの長さ)であり、nは光ファイバ14の屈折率であり、cは光速であり、dは光ファイバ14中で形成される相関ピークの間隔であり、fは光源11から射出されるレーザ光の変調周波数である。
T≧2×(2×L)/(c/n) …(1)
pw=(2×d)/(c/n)=1/f …(2)
つまり、上記(1)式から、パルス変調器15がパルス光を生成する周期Tは、少なくとも、パルス光が光ファイバ14の一端と他端との間を往復するのに要する時間の2倍の時間に設定されている。
【0021】
方向性結合器16は、パルス変調器15から出力されるパルス化されたレーザ光をポンプ光L2(パルス光)として光ファイバ14の他端から光ファイバ14内に入射させるとともに、光ファイバ14を伝播して光ファイバ14の他端から射出されたプローブ光L1を含む光(検出光L11)を光検出器17に向けて射出する。尚、検出光L11の強度は、光ファイバ14内で生ずる誘導ブリルアン散乱現象による影響を受けたものとなる。
【0022】
光検出器17は、例えばアバランシェ・フォト・ダイオード等の高感度の受光素子を備えており、上記の検出光L11(光ファイバ14の他端から射出されて方向性結合器16を介した光)を検出(受光)して検出信号D1を出力する。尚、図1においては、図示を簡略化しているが、光検出器17は、上記の受光素子に加えて光波長フィルタを備えており、検出光L11からプローブ光L1に関する低周波側の側波帯のみを選択してそのパワーを検出する。尚、本実施形態ではSSB光変調器13bを用いているため、上記の光波長フィルタを省略することもできる。但し、光波長フィルタを設けることでコスト高にはなるが不要な周波数成分を抑圧できるため、測定精度をより向上させることができる。
【0023】
同期検波装置18は、タイミング調整器18a及びロックインアンプ18b(同期検波器)を備えており、光検出器17から出力される検出信号D1の同期検波を行う。具体的に、同期検波装置18は、光検出器17から出力される検出信号D1のうち、光ファイバ14内に設定した測定点(特性を測定しようとする点)及びその近傍で発生した誘導ブリルアン散乱光を含む光を検出して得られた検出信号の切り出しを行い、所定の周期を有する同期信号SY(図2,図4参照)を用いて切り出しを行った検出信号D2を同期検波する。
【0024】
タイミング調整器18aは、例えばオン状態(検出信号D1を通過させる状態)とオフ状態(検出信号D1を遮断する状態)との切り替えを高速に行うことができる電気スイッチ(高速アナログスイッチ)で実現される。このタイミング調整器18aは、光検出器17から出力される検出信号D1のうち、光ファイバ14内に設定した測定点及びその近傍で発生した誘導ブリルアン散乱光を含む光を検出して得られた検出信号を通過させることによって検出信号の切り出しを行う。尚、タイミング調整器18aの動作周期は、上記同期信号SYの周期の半分の周期に設定される。
【0025】
ここで、タイミング調整器18aは、数nsec程度の時間間隔で検出信号D1を切り出すことが可能であり、低損失(例えば、1dB以下)であるものが望ましい。数nsec程度の時間間隔での検出信号の切り出しが可能であれば1cm以下の高い空間分解能を実現することができ、低損失であればS/N比が大幅に低下することがないため測定精度を向上させることができる。また、タイミング調整器18aとして電気スイッチを用いることにより、小型化及びコスト低減が可能であり、且つ、光スイッチのような偏波依存性を有しないため安定性や再現性の悪化を招くことがなく、更には−40〜+80℃程度の広い温度範囲での測定が可能になる。
【0026】
ロックインアンプ18bは、上述した同期信号SYを用いて、タイミング調整器18aを通過した検出信号D2(タイミング調整器18aで切り出しが行われた検出信号)を同期検波する。ここで、上記の同期信号SYの周期は、ポンプ光L2が光ファイバ14の他端に入射される周期と同じ周期(少なくとも、パルス光が光ファイバ14の一端と他端との間を往復するのに要する時間の2倍の時間)に設定されている。
【0027】
図2は、本発明の第1実施形態よる光ファイバ特性測定装置が備えるロックインアンプの要部構成を示すブロック図である。図2に示す通り、ロックインアンプ18bは、非反転器21a、反転器21b、スイッチ部22、移相器23、ローパスフィルタ24、及び直流電圧計25を備えており、同期信号入力端Q2に入力される同期信号SYを用いて、信号入力端Q1に入力される検出信号D2を同期検波する。
【0028】
非反転器21aは、信号入力端Q1に入力される検出信号D2の極性を反転せずにそのまま出力し、反転器21bは、信号入力端Q1に入力される検出信号D2の極性を反転して出力する。つまり、非反転器21aは、検出信号D2の極性を反転しない非反転信号を出力し、反転器21bは、検出信号D2の極性を反転した反転信号を出力する。スイッチ部22は、非反転器21aの出力端が接続される入力端a1、反転器21bの出力端が接続される入力端a2、及びローパスフィルタ24が接続される出力端b1を備えており、移相器23を介した同期信号SYに基づいて、入力端a1,a2と出力端b1との接続を切り替える。
【0029】
移相器23は、同期信号入力端Q2に入力される同期信号SYの位相を変化させて位相調整を行う。ローパスフィルタ24は、スイッチ部22の出力端b1から出力される出力信号S1のフィルタリングを行う。具体的には、出力信号S1の低周波数成分(カットオフ周波数よりも低い周波数成分)を通過させ、カットオフ周波数以上の高周波数成分を遮断する。直流電圧計25は、ローパスフィルタ24から出力される信号の電圧値(直流電圧値)を測定する。
【0030】
上記構成において、変調周波数fで周波数変調されたレーザ光が光源11から射出されると光分岐器12で分岐される。光分岐器12で分岐された一方のレーザ光は光変調器13へ入射してSSB光変調器13bで変調されることにより、レーザ光の中心周波数に対する単側波帯が生成される。光変調器13から射出された単側波帯を有するレーザ光(連続光)は、プローブ光L1として光ファイバ14の一端から光ファイバ14内に入射する。
【0031】
これに対し、光分岐器12で分岐された他方のレーザ光は、パルス変調器15に入射して光強度変調器15bで強度変調されることによりパルス化される。具体的には、前述した(2)式に示したパルス幅を有するパルス光が、前述した(1)に示す周期Tで生成される。このパルス光は、方向性結合器16を介してポンプ光L2として光ファイバ14の他端から光ファイバ14内に入射する。
【0032】
変調周波数fで周波数変調された連続光としてのプローブ光L1とパルス光としてのポンプ光L2とが光ファイバ14内に入射すると、図3に示す通り、ポンプ光L2が光ファイバ14内を伝播するに伴って、光ファイバ14中の異なる位置で相関ピークP0〜P4が発生する。図3は、ポンプ光の進行に伴って光ファイバ内で相関ピークが発生する様子を示す図である。尚、図3においては、図示の複雑化を避けるため5つの相関ピークP0〜P4のみを図示している。また、図3に示す例では、ポンプ光L2が相関ピークP2付近を通過している様子を示している。図3において、破線で示した相関ピークP0,P1は過去に通過した相関ピークであり、相関ピークP3,P4はポンプ光L2の進行に伴ってこれから通過する相関ピークである。
【0033】
尚、相関ピークの間隔はdは、以下の(3)式で表される。
=(c/n)/(2×f) …(3)
つまり、光源11における変調周波数fを変えれば、相関ピークの間隔dを変化させることができ、相関ピークP1〜Pnの発生位置を移動させることができる。但し、プローブ光L1とポンプ光L2との光路差が0となる位置に発生する0次の相関ピークP0の発生位置は変調周波数fを変化させても移動させることができない。このため、図3に示す通り、0次の相関ピークP0の発生位置は光ファイバ14の外部になるように設定されている。
【0034】
各相関ピークP1〜P4の位置において、プローブ光L1は、ポンプ光L2によって誘導ブリルアン増幅による利得(ゲイン)を得る。相関ピークの位置で、ポンプ光L2を基準としてポンプ光L2とプローブ光L1との周波数差を変化させると、ブリルアン周波数シフトνを中心周波数とするローレンツ関数の形状をしたブリルアン・ゲイン・スペクトル(BGS)と呼ばれるスペクトルが得られる。このブリルアン周波数シフトνは、光ファイバ14の材質、温度、歪み等に依存して変化し、特に歪みに対して線形的に変化することが知られている。このため、ブリルアン・ゲイン・スペクトルのピーク周波数を検出することで、光ファイバ14の歪み量を求めることができる。
【0035】
光ファイバ14を介したプローブ光L1及び光ファイバ14内で発生した誘導ブリルアン散乱光は、光ファイバ14の他端から射出された後に方向性結合器16を介して検出光L11として光検出器17に入射する。そして、光検出器17が備える不図示の光波長フィルタで低周波側の側波帯の光が選択されてその強度が検出され、その検出結果を示す検出信号D1が光検出器17から出力される。光検出器17から出力された検出信号D1は、同期検波装置18に入力して同期検波される。
【0036】
図4は、本発明の第1実施形態において、同期検波装置で行われる処理を説明するための図である。尚、以下では説明を簡単にするため、ポンプ光L2が光ファイバ14の他端に入射される周期T(同期信号SYの周期)は、ポンプ光L2が光ファイバ14の一端と他端との間を往復するのに要する時間の2倍の時間に設定されているものとする。かかる設定がなされている場合には、光ファイバ14の他端から入射されたポンプ光L2が光ファイバ14の一端に至るのに要する時間、及び、ファイバ14の一端で発生した誘導ブリルアン散乱光が光ファイバ14の他端に至るのに要する時間は共にT/4である。
【0037】
同期信号SYの1周期Tの前半部分T1においては、光ファイバ14を介したプローブ光L1と光ファイバ14内で発生した誘導ブリルアン散乱光とが含まれる検出光L11が光検出器17に入射する。このため、図4に示す通り、光検出器17からは誘導ブリルアン散乱光の影響を受けた検出信号D1が出力される。尚、図4においては、誘導ブリルアン散乱光の影響を受けた部分を黒帯で表現しており、符号P1〜P4を付した部分は、図3中の相関ピークP1〜P4の位置で発生した誘導ブリルアン散乱光の影響を受けた部分であることをそれぞれ示している。
【0038】
これに対し、同期信号SYの1周期Tの後半部分T2においては、光ファイバ14を介したプローブ光L1は含まれるが誘導ブリルアン散乱光が含まれない検出光L11が光検出器17に入射する。このため、図4に示す通り、光検出器17からは誘導ブリルアン散乱光の影響を受けていない(黒帯が付されていない)検出信号D1が出力される。尚、ポンプ光L2は、周期Tで繰り返し入射されるため、誘導ブリルアン散乱光の影響を受けた検出信号D1と受けていない検出信号D2とがT/2毎に交互に出力される。
【0039】
ここで、図4に示す通り、タイミング調整器18aは、その動作周期がT/2に設定されており、各々の周期において、光ファイバ14内に設定した測定点及びその近傍で発生した誘導ブリルアン散乱光を含む光を検出して得られた検出信号を通過させる動作を行う。図4に示す例では、図3に示す相関ピークP1の位置に測定点が設定されており、タイミング調整器18aは、光検出器17から出力される検出信号D1のうち、相関ピークP1の位置及びその近傍で発生した誘導ブリルアン散乱光の影響を受けた部分を通過させるようにオン状態・オフ状態が切り替えられる。これにより、ロックインアンプ18bには、タイミング調整器18aによって切り出しが行われた図4に示す検出信号D2が入力される。
【0040】
この検出信号D2がロックインアンプ18bに入力されると、極性が反転されていない検出信号D2が非反転信号として非反転器21aから出力されるとともに、極性が反転された検出信号D2が反転信号として反転器21bから出力される。ここで、ロックインアンプ18bの同期信号入力端Q2には、周期がTである同期信号SYが入力されており、スイッチ部22の入力端a1,a2と出力端b1との接続がT/2毎に切り替えられている。このため、図4に示す通り、スイッチ部22の出力信号S1は、検出信号D2のうちの誘導ブリルアン散乱光の影響を受けていない部分の極性が反転されたものとなる。
【0041】
このような出力信号S1がローパスフィルタ24に入力されると、前半部分T1においてプローブ光L1のみを検出して得られた検出信号に相当する信号d11と、後半部分T2においてプローブ光L1のみを検出して得られた検出信号に相当する信号d12とが相殺される。これら信号d11,d12が複数周期に亘って相殺されると、直流電圧計25の測定値V1は、図4に示す通り、誘導ブリルアン散乱光のレベルを示すものとなる。タイミング調整器18aの切り出しタイミングを変更することによって光ファイバ14内に設定する測定点の位置を変えつつ、以上説明した動作を繰り返すことにより、光ファイバ14の長さ方向における特性を測定することができる。
【0042】
以上説明した通り、本実施形態では、光ファイバ14を介したプローブ光L1や光ファイバ14内で発生した誘導ブリルアン散乱光が含まれる検出光L11を光検出器17で検出し、光検出器17から出力される検出信号D1のうち、光ファイバ14に設定された測定点近傍の光を検出して得られた検出信号をタイミング調整器18aで切り出し、切り出した検出信号をD2をロックインアンプ18bで同期検波している。このため、従来のような光スイッチを用いた場合のように測定精度の悪化や安定性・再現性の悪化を招くことなく、空間分解能の向上及びコストの低減を図ることができる。
【0043】
具体的に、従来の光スイッチを用いた場合の挿入損失は3〜5dB程度であったが、これを1dB程度に低減することができれば、空間分解能を向上させても光ファイバ14の特性を精度良く測定することができる。例えば、挿入損失が3dBから1dBに低減すれば空間分解能を1.5倍程度に向上させても精度の良い測定が可能であり、挿入損失が5dBから1dBに低減すれば空間分解能を2倍程度に向上させても精度の良い測定が可能である。
【0044】
〔第2実施形態〕
図5は、本発明の第2実施形態による光ファイバ特性測定装置の要部構成を示すブロック図である。図5に示す通り、本実施形態の光ファイバ特性測定装置2は、同期検波装置18に代えてロックインアンプ30(同期検波装置)を備える点が第1実施形態の光ファイバ特性測定装置1と相違する。第1実施形態の光ファイバ特性測定装置1は、タイミング調整器18aとロックインアンプ18bとを別体で備える構成であったが、本実形態の光ファイバ特性測定装置2は、いわばタイミング調整器18aとロックインアンプ18bとが一体化されたロックインアンプ30を備える構成である。
【0045】
図6は、本発明の第2実施形態よる光ファイバ特性測定装置が備えるロックインアンプの要部構成を示すブロック図である。図6に示す通り、ロックインアンプ30は、図2に示すロックインアンプ18bが備えるスイッチ部22をスイッチ部31に代えた構成である。また、このロックインアンプ30では、図2,図4に示す同期信号SYに代えて同期信号SY1が用いられる。尚、同期信号SY1の詳細については後述する。
【0046】
スイッチ部31は、非反転器21aの出力端が接続される入力端a1、反転器21bの出力端が接続される入力端a2、及びローパスフィルタ24が接続される出力端b1に加えて、入力端a1,a2とは電気的に絶縁された入力端a3を備えており、移相器23を介した同期信号SY1に基づいて、入力端a1,a2,a3と出力端b1との接続を切り替える。尚、入力端a3は、入力端a1,a2と電気的に絶縁されいれば、開放されていても良く、グランド等に短絡されていても良く、終端されていても良い。このスイッチ部31としては、例えば図1に示すタイミング調整器18aとして用いられる電気スイッチ(高速アナログスイッチ)と同様のものを用いることができる。
【0047】
図7は、本発明の第2実施形態において、同期検波装置としてのロックインアンプで行われる処理を説明するための図である。尚、本実施形態でも、説明を簡単にするため、ポンプ光L2が光ファイバ14の他端に入射される周期Tは、ポンプ光L2が光ファイバ14の一端と他端との間を往復するのに要する時間の2倍の時間に設定されているものとする。尚、同期信号SY1の周期は、同期信号SYと同じ周期であり、ここでは上記の周期Tである。
【0048】
本実施形態においても、第1実施形態と同様に、同期信号SY1の1周期Tの前半部分T1では、光ファイバ14を介したプローブ光L1と光ファイバ14内で発生した誘導ブリルアン散乱光とが含まれる検出光L11が光検出器17に入射する。また、同期信号SY1の1周期Tの後半部分T2では、光ファイバ14を介したプローブ光L1は含まれるが誘導ブリルアン散乱光が含まれない検出光L11が光検出器17に入射する。このため、光検出器17から出力される検出信号D1は、前半部分T1では誘導ブリルアン散乱光の影響を受けたものになるが、後半部分T2では誘導ブリルアン散乱光の影響を受けていないものになる。このような検出信号D1がロックインアンプ30に入力される。
【0049】
検出信号D1がロックインアンプ30に入力されると、非反転器21aからは極性が反転されていない検出信号D1が非反転信号として出力され、反転器21bからは極性が反転された検出信号D1が反転信号として出力される。非反転器21aから出力された非反転信号はスイッチ部31の入力端a1に入力され、反転器21bから出力された反転信号はスイッチ部31の入力端a2に入力される。
【0050】
ここで、図7に示す通り、ロックインアンプ30で用いられる同期信号SY1は、図4に示す同期信号SYと同じ周期Tを有する信号である。しかしながら、同期信号SY1は、1周期Tの殆どにおいて、スイッチ部31の入力端a3と出力端b1とを接続させ、前半部分T1の特定のタイミングのみでスイッチ部31の入力端a1と出力端b1とを接続させるとともに、後半部分T2の特定のタイミングのみでスイッチ部31の入力端a2と出力端b1とを接続させる信号である。
【0051】
具体的に、同期信号SY1は、1周期Tの前半部分T1では、光ファイバ14内に設定した測定点及びその近傍で発生した誘導ブリルアン散乱光を含む光を検出して得られた検出信号D1が光検出器17から出力されるタイミング(正確には、その検出信号D1の非反転信号が非反転器21aから出力されるタイミング)でスイッチ部31の入力端a1と出力端b1とを接続させる。また、1周期Tの後半部分T2では、前半部分T1内におけるタイミングと同様のタイミングのみでスイッチ部31の入力端a2と出力端b1とを接続させる。
【0052】
このような同期信号SY1によってスイッチ部31の切り替えが行われると、入力端a1に入力される非反転信号及び入力端a2に入力される反転信号がスイッチ部31によって切り出される。これにより、図7に示す通り、スイッチ部31からは図4に示す出力信号S1と同様の出力信号S1が出力されることになる。この出力信号S1がローパスフィルタ24に入力されると、第1実施形態と同様に、前半部分T1においてプローブ光L1のみを検出して得られた検出信号に相当する信号d11と、後半部分T2においてプローブ光L1のみを検出して得られた検出信号に相当する信号d12とが相殺され、直流電圧計25の測定値V1は誘導ブリルアン散乱光のレベルを示すものとなる。
【0053】
ここで、スイッチ部31の切り替えタイミングは、同期信号SY1によって変更される。このため、本実施形態では、同期信号SY1によってスイッチ部31の切り替えタイミングを変更することによって光ファイバ14内に設定する測定点の位置を変えつつ、以上説明した動作を繰り返すことにより、第1実施形態と同様に、光ファイバ14の長さ方向における特性を測定することができる。
【0054】
以上説明した通り、本実施形態においては、第1実施形態のタイミング調整器18aで行われる切り出しとロックインアンプ18bで行われる同期検波とをロックインアンプ30で実現している。このため、第1実施形態と同様に、測定精度の悪化や安定性・再現性の悪化を招くことなく、空間分解能の向上及びコストの低減を図ることができる。また、本実施形態では、タイミング調整器18aの機能とロックインアンプ18bの機能とがロックインアンプ30に集約されているため、小型化及びコストの低減を図る上で有利である。
【0055】
以上、本発明の実施形態による光ファイバ特性測定装置及び方法について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、光変調器13と光ファイバ14の一端との間に光遅延器と光アイソレータとを備える構成にするのが望ましい。光遅延器を設けることによって、光ファイバ14内に形成される相関ピークの位置を調整することが可能になり、図3を用いて説明した通り、0次の相関ピークP0の発生位置を光ファイバ14の外部に設定することが容易になる。また、光アイソレータを設けることにより、光ファイバ14から光変調器13に向かう光(例えば、ポンプ光L2)を遮断することができるため、ノイズの低減等を図ることができる。
【符号の説明】
【0056】
1,2 光ファイバ特性測定装置
11 光源
12 光分岐器
13 光変調器
14 光ファイバ
15 パルス変調器
16 方向性結合器
17 光検出器
18 同期検波装置
18a タイミング調整器
18b ロックインアンプ
21a 非反転器
21b 反転器
24 ローパスフィルタ
30 ロックインアンプ
31 スイッチ部
D1 検出信号
L1 プローブ光
L2 ポンプ光
S1 出力信号
SY 同期信号
SY1 同期信号

【特許請求の範囲】
【請求項1】
所定の変調周波数で変調したレーザ光を射出する光源と、該光源からのレーザ光を連続光及びパルス光として光ファイバの一端及び他端からそれぞれ入射させる入射手段と、前記光ファイバから射出される光を検出する光検出器とを備え、該光検出器の検出結果を用いて前記光ファイバの特性を測定する光ファイバ特性測定装置において、
前記光検出器から出力される検出信号のうち、前記光ファイバに設定された測定点近傍の光を検出して得られた検出信号の切り出しを行い、所定の周期を有する同期信号を用いて切り出しを行った検出信号を同期検波する同期検波装置を備えることを特徴とする光ファイバ特性測定装置。
【請求項2】
前記同期検波装置は、前記光検出器から出力される検出信号のうち、前記光ファイバに設定された測定点近傍の光を検出して得られた検出信号を通過させることによって前記切り出しを行うタイミング調整器と、
前記同期信号を用いて前記タイミング調整器を通過した検出信号を同期検波する同期検波器と
を備えることを特徴とする請求項1記載の光ファイバ特性測定装置。
【請求項3】
前記タイミング調整器の動作周期は、前記同期信号の周期の半分の周期であることを特徴とする請求項2記載の光ファイバ特性測定装置。
【請求項4】
前記同期検波装置は、前記光検出器から出力される検出信号の極性を反転した反転信号を出力する反転器と、
前記光検出器から出力される検出信号の極性を反転しない非反転信号を出力する非反転器と、
前記反転器から出力される反転信号と前記非反転器から出力される非反転信号とを、前記光ファイバに設定された測定点近傍の光を検出して得られる検出信号が前記光検出器から出力されるタイミングで交互に出力することにより前記切り出しを行うスイッチ部と、
前記スイッチ部から出力される信号のフィルタリングを行うローパスフィルタと
を備えることを特徴とする請求項1記載の光ファイバ特性測定装置。
【請求項5】
前記パルス光が前記光ファイバの他端に入射される周期は、少なくとも前記パルス光が前記光ファイバの一端と他端との間を往復するのに要する時間の2倍の時間に設定されており、
前記同期信号の周期は、前記パルス光が前記光ファイバの他端に入射される周期と同じ周期である
ことを特徴とする請求項1から請求項4の何れか一項に記載の光ファイバ特性測定装置。
【請求項6】
所定の変調周波数で変調したレーザ光を連続光及びパルス光として光ファイバの一端及び他端からそれぞれ入射させ、前記光ファイバから射出される光を光検出器で検出して前記光ファイバの特性を測定する光ファイバ特性測定方法において、
前記光検出器から出力される検出信号のうち、前記光ファイバに設定された測定点近傍の光を検出して得られた検出信号の切り出しを行い、所定の周期を有する同期信号を用いて切り出しを行った検出信号を同期検波することを特徴とする光ファイバ特性測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−159387(P2012−159387A)
【公開日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2011−18951(P2011−18951)
【出願日】平成23年1月31日(2011.1.31)
【国等の委託研究の成果に係る記載事項】(出願人による申告)経済産業省委託「次世代航空機用構造部材創製・加工技術開発」に係る「光相関ブリルアン散乱計測法による航空機構造センシング技術の開発」、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(504137912)国立大学法人 東京大学 (1,942)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【出願人】(000006507)横河電機株式会社 (4,443)
【Fターム(参考)】