説明

光学ガラス部材のマーク形成方法、マーク付き光学ガラス部材の製造方法、マーク付き光学ガラス部材及び光学ガラス部材のマーク読みだし方法

【課題】マークエッジ部分での光の散乱、反射を防ぐことにより、マークの視認性を低下させ、光学ガラス部材の光学特性に影響を与えないマークを形成する。
【解決手段】光学ガラス部材のマーク形成方法であって、ガラスプリフォームを用意することと、ガラス粒子を含む被膜を前記ガラスプリフォームの表面に形成することと、被膜の所定の領域にレーザ光を照射することで、ガラス粒子をガラスプリフォームの表面に融着させて融着膜を形成することと、融着膜が形成されたガラスプリフォームをプレスすることを含む光学ガラス部材のマーク形成方法が提供される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学ガラス部材のマーク形成方法、マーク付き光学ガラス部材の製造方法、マーク付き光学ガラス部材及び光学ガラス部材のマーク読みだし方法に関する。
【背景技術】
【0002】
製品管理や意匠の目的で、ガラス部材上へマークを施すことがある。マークを形成する方法としては、スキャニングレーザによるダイレクトマーキングなどが広く用いられる。ここで、ダイレクトマーキングとは、マーキング対象の部材の表面にレーザビームを走査して、レーザアブレーションさせることで当該部材にマークを施すことである。
【0003】
ダイレクトマーキング以外に次のようなマーク形成方法が知られている。金属粉体及び/又は無機顔料を着色源としてペースト中に混練した着色ペーストをガラス面に塗布する。着色ペーストが塗布されたガラス面を所定パターンでレーザ走査することで、ペーストが硬化したパターンを形成する。次いで、未硬化の着色ペーストを有機溶剤に溶解させて除去した後、焼成することで、焼成パターンをガラス表面上に形成させる(特許文献1参照)。
【0004】
一方、光学ガラス部材にマークを形成する場合、マークの形成は光学ガラス部材を製品形状に成形した後に、最終工程として実施される。光学ガラス部材の中には、複雑な表面形状を有する非球面レンズ等、製造工程にプレス工程を有するものがある。このようなプレス工程を有する光学ガラス部材の製造においても、マークの形成は、プレス工程の後に行われている。それ故、形成されたマークは製品としての光学ガラス部材から突出していることがある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−351746号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
光学ガラス部材にマークを施す場合、形成されたマークによる光の散乱や反射を抑制する必要がある。光の散乱や反射が大きいと、たとえマークが光学有効径外に形成されていたとしても、フレアやゴーストが発生することがあるからである。また、光学ガラス部材の用途によっては、マークは光学ガラス部材の表面において目立たない(視認できない)方が良いことがある。
【0007】
フレアやゴーストを抑制するためには、透光性の高いマークを形成することが考えられる。透光性の高いマークは、マークが目立たない方が良い用途においても好適である。そのような透光性の高いマークを形成する方法としては、ガラス粒子をレーザにより融着させてマークを形成することが考えられる。しかし、ガラス粒子の融着により形成されたマークは、融着ガラスが数ミクロン程度凸状に盛り上がり、マークのエッジで光が散乱、反射される。特に、レンズ検査工程で使用されるような明るい光源では、フレアやゴーストが生じる。
【0008】
そこで、本発明の態様は、マークエッジ部分での光の散乱、反射を防ぐことにより、マークの視認性を低下させ、光学ガラス部材の光学特性に影響を与えないマークを形成することを目的とする。
【課題を解決するための手段】
【0009】
本発明の第1の態様に従えば、光学ガラス部材のマーク形成方法であって、ガラスプリフォームを用意することと、ガラス粒子を含む被膜を前記ガラスプリフォームの表面に形成することと、前記被膜の所定の領域にレーザ光を照射することで、前記ガラス粒子を前記ガラスプリフォームの表面に融着させて融着膜を形成することと、前記融着膜が形成されたガラスプリフォームをプレス成形することを含む光学ガラス部材のマーク形成方法が提供される。
【0010】
本発明の第2の態様に従えば、第1の態様の光学ガラス部材のマーク形成方法を含む光学ガラス部材の製造方法が提供される。
【0011】
本発明の第3の態様に従えば、第1の態様の光学ガラス部材のマーク形成方法によりマークが形成された光学ガラス部材、および、第2の態様の製造方法により製造された光学ガラス部材が提供される。
【0012】
本発明の第4の態様に従えば、第1の態様の光学ガラス部材のマーク形成方法によりマークが形成された光学ガラス部材に紫外線を照射し、前記マークとそれ以外の部分における前記紫外線の透過の差、又は、前記紫外線による発光の差により、前記マークを読み出す、光学ガラス部材のマーク読みだし方法が提供される。
【発明の効果】
【0013】
本発明の態様によれば、ガラスプリフォームにガラス粒子の融着膜を形成した後にプレスを施すので、得られるマークは光学ガラス部材の表面に埋没し、光学ガラス部材の表面から突出しない。それに加え、マークエッジにおける光の反射、散乱等が抑制される。よって、マークは光学ガラス部材の表面で目立たず(視認しにくく)、かつ光学ガラス部材の光学特性に与える影響(フレアやゴースト)が低減される。
【図面の簡単な説明】
【0014】
【図1】(a)〜(f)は本発明の第1の実施形態における光学ガラス部材のマーク形成方法を示す模式図である。
【図2】本発明の第1の実施形態における光学ガラス部材のマーク形成方法を示すフローチャートである。
【図3】(a)〜(c)は本発明の第1の実施形態におけるマーク部分を拡大した模式図である。
【図4】(a)及び(b)は本発明の第2の実施形態におけるプレス工程前の融着膜の形状とプレス工程後のマークの形状を示す模式図である。
【図5】本発明の第2の実施形態における光学ガラス部材のマーク形成方法を示すフローチャートである。
【図6】実施例における金型を用いてプレス工程を行うための金型の配置を示す断面図である。
【図7】実施例における成形機を用いてプレス工程を行うための成形装置の構成を示す図である。
【図8】実施例4で作製した光学レンズのマーク形成面に可視白色光を照射し、マーク形成面側から観察した実体顕微鏡写真像である。
【図9】実施例4で作製した光学レンズのマーク形成面に紫外光を照射し、マーク形成面側から観察した実体顕微鏡写真像である。
【発明を実施するための形態】
【0015】
以下、図面を参照して、本発明の好適な実施形態について説明する。
【0016】
本発明の第1の実施形態として、光学ガラス部材にマークを形成する方法、およびマーク付き光学ガラス部材の製造方法について図1及び図2を参照しながら説明する。
【0017】
まず、図1(a)に示すように、ガラスブロックを研削、研磨することにより、ガラスプリフォーム1を作製する(ステップS1)。ガラス粒子4をバインダおよび溶媒からなる媒体に分散させた分散物(被膜材料)を調製する。この分散物をガラスプリフォーム1上に塗布し、乾燥させることにより揮発成分を除去して、図1(b)に示すような被膜2を形成する(ステップS2)。
【0018】
次いで、図1(c)に示すように、被膜2に、レーザ光源10によりレーザ光11を所定パターンで照射し、被膜2に含まれるガラス粒子4をガラスプリフォーム1に融着(溶融および固着)させ、ガラスプリフォーム1上に融着膜3を形成する(ステップS3)。
【0019】
マーク3を形成した後、図1(d)に示すように、水洗等により未融着の被膜2を除去する(ステップS4)。
【0020】
次に、図1(e)に示すように、融着膜3が形成されたガラスプリフォーム1を下金型12および上金型13でプレスする(ステップS4)。このプレス工程により、ガラスプリフォーム1から所望の表面形状を有する光学ガラス部材101が得られる。プレス工程において、融着膜3もガラスプリフォーム1と同時にプレスされるため光学ガラス部材101内に埋め込まれ、マーク103として、光学ガラス部材101の表面に露出する。
【0021】
プレス工程の後、図1(f)に示すように、下金型12および上金型13からガラスプリフォーム1を取り出し、マーク103およびその周辺部分を研磨する(ステップS5)。研磨によりマーク103部分の視認性を更に低くし、同時に光学ガラス部材101の光学特性へのマークの影響を小さくすることができる。以上のようなステップを経て、マーク103付き光学ガラス部材101(光学部材1000)が得られる。
【0022】
[マークの形状]
本実施形態では、ガラスプリフォーム1にガラス粒子4を融着させ融着膜3を形成した後、プレス工程を施す。したがって、プレス工程により、マーク103は光学ガラス部材101表面に埋没しており、光学ガラス部材101表面から突出していないので、マークのエッジからの光の反射、散乱等が少ない。その結果、マーク103は、視認しにくく、マークが目立たない用途に好適である。また、マークによるフレアやゴーストが抑制される。このような効果を奏する本実施形態のマーク103の断面形状として、図3に示す103a〜103cの3種類の形状が存在する。マーク103の断面形状の相違は、ガラスプリフォームおよびガラス粒子のガラス転移温度の関係、プレス成形の条件、研磨工程の有無によるものである。以下、それぞれのマークについて説明する。
【0023】
図3(a)に示したように、マーク103aと光学ガラス部材(母材)101の境界部分に窪み(隙間)104が生じる場合がある。これは、例えば、製造に用いたガラス粒子4のガラス転移温度が、プリフォーム1のガラス転移温度より高いとき、あるいは、プレス条件により起こりうる。窪み104から光の散乱、反射等が生じるためマーク103aは視認され易くなるが、マークの表面は光学ガラス部材101の表面と面一なので、マークによるフレアやゴーストは生じにくい。マークを目立たせる用途においては、窪み104の存在が有効となり、またマーク103aの位置の確認手段として窪み104を利用することもできる。
【0024】
図3(b)に示したマーク103bは、図3(a)に示すマーク103aおよびその周辺を研磨したものある。研磨によって、窪み104は除去され、マーク103bは周辺の光学ガラス部材(母材)101の表面と面一となる。マーク103bは、マーク103aと比較して視認されにくく、マークが目立たない方が良い用途において好適である。また、マーク103aと比較して、マークによるフレアやゴーストは、より生じにくい。
【0025】
図3(c)に示したマーク103cは、プレス成形時に融着膜3が流動し変形したマークである。これは、例えば、ガラス粒子4のガラス転移温度が、プリフォーム1のガラス転移温度より低いとき、あるいは、プレス条件により、プレス時に融着膜3が流動する場合が起こりうる。その結果、窪み104は形成されない。マーク103cは、研磨工程を経ることなく、周辺の光学ガラス部材(母材)101の表面と面一となり、マーク103aと比較して、視認されにくく、マークが目立たない方が良い用途において好適である。また、マーク103aと比較して、マークによるフレアやゴーストは、より生じにくい。
【0026】
[ガラス粒子]
本実施形態で用いるガラス粒子は、ガラスを粉砕して作製することができる。粒径は1μm程度であることが好ましい。また、ガラス粒子4は、その組成および熱膨張率において、ガラスプリフォーム1と同等又は類似していることが好ましい。組成および熱膨張率が同等であると、互いに固着しやすいからである。
【0027】
ガラス粒子のガラス転移温度は、ガラスプリフォーム1のガラス転移温度よりも低いことが好ましい。そのようなガラス粒子4を用いて作製したガラス融着膜は、プレス工程において流動し変形する。したがって、マークはその周囲の光学ガラス部材101の表面と面一となり(図3(c)参照)、マークによるフレアやゴーストは生じにくい。また、図3(a)に示すような窪み104が生じないので研磨も不要である。
【0028】
ガラス粒子は、ガラスプリフォーム1の内部透過率が99.9%/cm以上となる波長の光において、0.1%/cm以上(好ましくは0.5%/cm以上)の吸収を有することが好ましい。理由として、以下のことが挙げられる。このような波長のレーザ光を照射すると、ガラス粒子はレーザ光を吸収し、発熱、溶融してガラスプリフォーム1表面に固着する。一方、上記レーザ光は、ガラスプリフォーム1にはほとんど吸収されないため、光学ガラス部材101へのクラックの発生などを防止できる。
【0029】
本実施形態で用いるガラス粒子は紫外線カットガラスにしてよく、この場合、波長587.56nmにおける光学ガラス部材と紫外線カットガラスとの屈折率差の絶対値が、0.1以下にし得る。また、ガラス粒子は、蛍光ガラスにしてよく、この場合、光学ガラス部材と蛍光ガラスとの屈折率差の絶対値が波長587.56nmにおいて0.1以下にし得る。
【0030】
ガラス粒子4に、紫外線カットガラス、又は蛍光ガラスを用いた場合、マーク103は紫外線照射により読取ることができる。紫外線カットガラスを用いたマーク103は照射した紫外線を吸収するため、マーク部分のみが暗く認識される。したがって、マークを影文字のようにして読出すことができる。一方、蛍光ガラスを用いたマーク103は紫外線照射により発光して認識される。
【0031】
このように、マーク103が、紫外線照射により読取れる(認識される)場合、可視光域ではマークを認識する必要はない。したがって、これらのガラス粒子4と光学ガラス部材101との屈折率差の絶対値は、波長587.56nmにおいて0.1以下にし得る。ガラス粒子4と光学ガラス部材101との屈折率差の絶対値を波長587.56nmにおいて0.1以下の範囲とすることで、可視波長域全体にわたって、マーク103と光学ガラス部材101との界面での光反射が十分に小さくなり、マーク103を目立たないものとすることができる。すなわち、マーク103によるフレアやゴーストは生じにくい。ガラス粒子に、このような特性の紫外線カットガラス、または蛍光ガラスを用いることにより、光学ガラス部材の光学性能への影響が小さく、かつ読出しが容易なマーク103を形成することができる。特に、図3(b)、(c)に示した形状のマークにおいては、肉眼によりマークの存在を殆ど認識出来なくなるが、紫外線を照射してマークを良好に読出すことができる。尚、マークを更に目立たないものとするためには、ガラス粒子4と光学ガラス部材101との屈折率差の絶対値を0.05以下(更には、0.02以下)とすることが好ましい。
【0032】
ガラス粒子に用いる紫外線カットガラス粒子としては、紫外光を吸収するものであれば特に制限無く用いることができるが、その吸収端波長が365nm(i線)〜436nm(g線)であることが好ましい。このような吸収波長を有する紫外線カットガラスを用いることでマークの読出しが容易になる。また、吸収短波長が436nm以上であると、可視光を吸収するようになるため、光学部材の使用領域においてもマークが目立つようになる傾向がある。
【0033】
紫外線カットガラス粒子は、TeOを重量比で40%以上含有する紫外線カットガラスから形成されていてもよい。紫外線カットガラス粒子をこのような紫外線カットガラスから形成させることで、厚さ1〜10μm程度のごく薄い層でも十分な紫外線カット効果が得られ、かつ可視光での不可視性に優れたものとなる。この場合、TeOの含有量は60〜90%であるとより好ましく、70〜80%であると更に好ましい。
【0034】
紫外線カットガラス粒子は、また、TiOを重量比で3%以上含有する紫外線カットガラスから形成されていてもよい。紫外線カットガラス粒子をこのような紫外線カットガラスで形成することで、厚さ1〜10μm程度のごく薄い層でも十分な紫外線カット効果が得られ、かつ可視光での不可視性に優れたものとなる。この場合、TiOの含有量は3〜15%であるとより好ましい。
【0035】
紫外線カットガラス粒子はさらに、CeOを重量比で0.5%以上含有した紫外線カットガラスから形成されていてもよい。紫外線カットガラス粒子をこのような紫外線カットガラスで形成することで、厚さ1〜10μm程度のごく薄い層でも十分な紫外線カット効果が得られ、かつ可視光での不可視性に優れたものとなる。この場合、CeOの含有量は1〜3%であるとより好ましい。
【0036】
紫外線カットガラスとして用いるのに好適なガラスとしては、例えば、光学ガラスとして市販されているガラスであって吸収端波長が365nm〜436nmである、HOYA社製FF8、M−FD60などが挙げられる。
【0037】
なお、紫外線カットガラス粒子は、例えば、530nmの光に対して0.1〜10%/cmの光吸収率にし得る。このような紫外線カットガラスを用いると、光学ガラス部材上にマークを形成した際の、光学ガラス部材の性能の低下を抑制することができる。
【0038】
ガラス粒子として蛍光ガラス粒子を用いる場合、430〜650nmの可視光の照射では蛍光を発せず、430nm以下の紫外光の照射により蛍光を発するものであることが好ましい。通常、光学部材は可視光領域で使用するため、この領域の光の照射で蛍光を発するマークが光学部材上に形成されると、光学部材の光学性能が低下する傾向にある。この場合、蛍光ガラス粒子は、Pr、Nd、Sm、Eu、Tb、Dy、Er、Yb及びSbからなる群より選ばれる少なくとも1種の元素を含有する蛍光ガラスから形成されることが好ましい。このような元素を含有する蛍光ガラスは、紫外線の照射により強い蛍光を発するため、マークの読出しが容易になる。これらの元素のうち、蛍光強度が大きく読出しが容易であるので、EuおよびTbが好ましい。
【0039】
蛍光ガラス粒子の総量に対する、Pr、Nd、Sm、Eu、Tb、Dy、Er、Yb及びSbからなる群より選ばれる少なくとも1種の元素の含有割合は、0.1〜10重量%であることが好ましく、0.5〜5重量%であることがより好ましい。
【0040】
蛍光ガラス粒子として用いるのに好適なガラスとしては、例えば、蛍光ガラスとして市販されている(株)住田光学ガラス製のルミラス−G9、ルミラス−R7、ルミラス−Bなどが挙げられる。
【0041】
[分散物(被膜材料)]
分散物(被膜材料)は、上述のように、ガラス粒子4を、バインダおよび溶媒を含む媒体内に分散させたものである。バインダおよび溶媒は、水で洗浄できるものが好ましい。上述の未融着の被膜2を除去する工程(図2のステップS4)を水洗浄で実施できるからである。バインダとしては、水溶性高分子である、デンプン、ゼラチン、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシルメチルセルロース、メチルセルロース、等)、ポリビニルアルコール(PVA)、ポリアクリル酸、ポリアクリルアミド、ポリエチレンオキシド等が挙げられる。中でも、PVA、ヒドロキシエチルセルロースは、通常700℃以上で燃焼し、除去されるのでレーザ照射後に残渣として残らないため、好適である。溶媒としては、水又は、メタノール、エタノール等のアルコール類が挙げられる。溶媒に水を用いる場合、メタノール、エタノール等のアルコールを添加すると、ガラス粒子4の分散性の向上および消泡の効果が得られる。
【0042】
本実施形態の分散物(被膜材料)は、カーボンブラック等のガラス粒子4の融着を促進する可燃物質を含むことが好ましい。可燃物質は、照射されたレーザ光を吸収することで加熱、燃焼する物質であり、そのような物質は、燃焼により被膜2から消失する。尚、被膜2から消失するとは、燃焼により可燃物が別の物質に変化、気化等して、別の物質として被膜中に残る場合も含む。被膜2に可燃物質を含有することで、レーザ光エネルギーを効率的に熱エネルギーに変換でき、被膜2の温度を上昇させる。その結果、ガラス粒子4の溶融が促進され、ガラス粒子4は十分な量および強度でガラスプリフォーム1に融着し、融着膜3を形成する。可燃物質を用いることにより、レーザ光の吸収が小さいガラス粒子をガラスプリフォーム1に容易に融着できる。よって、そのようなガラス粒子からなる透光性の高いマークを光学ガラス部材に形成することが可能となる。また、カーボンブラック等の可燃物質自体は燃焼し消失するので、マーク103の視認性および光学部材の光学特性に影響を与えない。
【0043】
分散物(被膜材料)の合計重量に対する、ガラス粒子4の含有量は、70〜90重量%であることが好ましく、80〜85重量%であることが更に好ましい。バインダポリマーの含有量は、5〜15重量%であることが好ましく、8〜10重量%であることが更に好ましい。添加物の含有量は、3〜20重量%であることが好ましく、8〜20重量%であることが更に好ましい。
【0044】
[塗布方法]
分散物(被膜材料)のガラスプリフォーム1上への塗布方法に特に制限は無いが、例えば、エアブラシによる噴霧、筆およびスタンプなどを用いた塗布、ディップコーティング、スピンコーティングが挙げられる。また、塗布は、乾燥後の厚み、すなわち被膜の厚みが、5〜50μm、更には5〜20μmであることが好ましい。被膜の厚みが50μmより大きいと、レーザ光による融着が困難になる傾向があり、5μmより小さいと、マークが読みだしにくくなる傾向がある。
【0045】
[ガラスプリフォーム]
ガラスプリフォーム1を形成するガラス材料としては、例えば、ホウ珪酸系ガラス、ホウ酸ランタン系ガラスおよびフッ化物リン酸系ガラスなど、光学ガラスとして市販されている材料を使用することができる。具体的には、ショット社製BK7、HOYA社製LAC8、FCD1及びFC5などが挙げられる。ガラスプリフォームは、ガラスブロック等を研削研磨等することにより作製することができる。
【0046】
また、ガラスプリフォーム1は、紫外線を透過する材料又は紫外線により発光する材料から形成できる。紫外線を透過する材料としては、波長が365nmである紫外線の吸収が0〜10%/cmである材料が好ましい。このような材料としては、例えば、ホウ珪酸系ガラス、ホウ酸ランタン系ガラスおよびフッ化物リン酸系ガラスなど、光学ガラスとして市販されている材料を使用することができる。具体的には、ショット社製BK7、HOYA社製LAC8、FCD1及びFC5などが挙げられる。
【0047】
紫外線により発光する材料としては、波長が254nmである紫外線を照射した場合に、肉眼やイメージセンサで検出可能な程度発光する材料が好ましい。このような材料としては、例えば、ホウ珪酸系ガラス及びホウ酸ランタン系ガラスを使用することができる。具体的には、ショット社製BK7及びHOYA社製LAC8などが挙げられる。
【0048】
[レーザ光の照射]
被膜の溶融および固着に用いられるレーザ光としては、例えばYAGレーザ、YVOレーザ、COレーザが挙げられる。レーザを照射する波長は、YAGレーザ、YVOレーザの基本波長(1064nm)、第二高調波(532nm)、第三高調波(355nm)を用い得る。
【0049】
レーザ光の照射は、大気雰囲気又は酸素雰囲気等、酸素を含有する雰囲気で行うことが好ましい。カーボンブラック等の可燃物質を用いた場合、その燃焼を効率的に行うためである。尚、レーザ光11の走査をバーコード形状、文字形状とすることにより、マーク103の形状をバーコード形状、文字形状とすることもできる。また、ドット状の文字を形成することもでき、この場合、融着ガラス部位を最小限にすることができ、スループットを向上できるので好ましい。
【0050】
[プレス工程]
プレス工程は、光学モールドガラスのプレス方法として知られた任意の技術を用いることができ、例えば特開平10−139453に記載されているような方法を用い得る。プレス工程は、非球面レンズ等の複雑な表面形状を有する光学ガラス部材の大量生産に適しており、同様に、本実施形態のマーク形成方法も複雑な表面形状を有する光学ガラス部材の大量生産に有効である。
【0051】
[研磨工程]
本実施形態において、少なくともマーク103およびその周辺部を研磨してもよい。マーク103の周辺の凹凸を研磨することで、光の散乱、反射を減少させ、マークを目立たなくし、更に、マークによるフレアおよびゴーストを低減できる。
【0052】
[光学ガラス部材]
本実施形態で製造するマーク付き光学ガラス部材(光学部材)1000は、本実施形態の効果を発揮する限りにおいて如何なる光学ガラスを用いた光学部材にも適応できる。このような光学部材としては、回折格子、フレネルレンズなどの回折光学素子、フライアイレンズなどが挙げられる。
【0053】
本発明の第2の実施形態は、第1の実施形態のマーク形成方法により、第1の光学ガラス部材にテストパターンのマークを形成することと、第1の光学ガラス部材において、プレス前のテストパターンの融着膜の形状と、プレス後のテストパターンのマークの形状の変化率を求めることと、求めた変化率に基づき、第1の実施形態のマーク形成方法により、第2の光学ガラス部材にマークを形成することを含む光学ガラス部材のマーク形成方法である。
【0054】
本実施形態では、テストピース(第1のガラスプリフォーム)に第1の実施形態のマーク形成方法により、テストパターンのマークを形成し、テストパターンのマークの融着膜からの変化率(例えば、伸び方向)を求め、その結果をフィードバックして、第2のガラスプリフォームの融着膜の形状を決定する。発明者の実験によると、ガラスプリフォームに形成した融着膜はその後のプレスにより変形するために、意図した形状のマークが得られない事があることに気づいた。しかし、本実施形態によれば、プレス工程によって、融着膜の形状が意図した形状とは異なる形状に変形しても、その変形率を考慮した融着膜をガラスプリフォーム上に形成することで、所望の形状のマークを得ることができる。
【0055】
以下、図4および図5に基づき、本実施形態について説明する。まず、図4(a)に示すように、第1の実施形態のマーク形成方法により、第1の光学ガラス部材(テストピース)にテストパターンのマークを形成する(ステップSS1)。ここでは、アルファベットの「F」の形状のマークを形成するものとする。Fの字の横方向をX方向、縦方向をY方向とする。テストパターンのマークの溶融膜3aは最終的に形成したいマークの形状であり、このY方向の長さをAとする。プレス工程後のマーク103aのY方向の長さを測定する。例えば、マーク103aのY方向の長さがa・Aであると、Y方向にa倍変形(拡大)していると求められる(ステップS7)。次に、求めた変化率に基づき、第2の光学ガラス部材に設ける融着膜の形状を計算する。この場合、プレス工程によりY方向にa倍変形するので、融着膜「F」のY方向の長さを(1/a)・Aと修正すればよい(ステップS8)。この計算結果に基づいて修正された長さで融着膜を形成して、第2の光学ガラス部材にマークを形成する(ステップSS2)。すなわち、図4(b)に示すように、Y方向に(1/a)・Aの長さを有する融着膜3bを形成する。次いで、融着膜3bをプレスするとY方向にa倍変形し、その結果、Y方向にAの長さを有する所望の形状のマーク103bが得られる。
【0056】
本実施形態は、多数の光学ガラス部材にマークを形成する場合において特に有効である。まず、テストピース(第1の光学ガラス部材)において、マークの変化率を求め、それをフィードバックして、多数の第2の光学ガラス部材に所望の形状のマークを形成することができる。本実施形態は、文字のみならず、バーコードや二次元コードにも適応できる。
【0057】
本実施形態においては、Y方向のみに変形(拡大)したマークの例について説明した。マークの変形は2次元平面における拡大、縮小、平行移動、回転が考えられ、どのような変形であっても本実施形態の方法を適用することができる。
【0058】
本発明の第3の実施形態は、上述の第1および第2の実施形態によりマークが形成された、光学ガラス部材(光学部材)1000である。本実施形態のマーク103は視認性が低く、マークによるフレアおよびゴーストを低減できる。一方、マーク103を形成する材料を紫外線カットガラス又は、蛍光ガラスとすることによって、視認性が低い(可視光領域において透光性が高い)にもかかわらず、紫外線照射により確実にマークを読取ることができる。
【0059】
本発明の第4の実施形態は、ガラス粒子4に紫外線カットガラス又は、蛍光ガラスを用いて、上述の第1の実施形態のマーク形成方法によりマーク103が形成された光学ガラス部材1000のマーク103の読み出し方法である。本実施形態では、ガラスプリフォーム1として、紫外線を透過する材料又は、紫外線により発光する材料を用いることができる。そして、紫外線照射により、マーク103とそれ以外の部分における紫外線の透過の差、又は、紫外線による発光の差により、マーク103を読み出すことができる。
【0060】
まず、ガラス粒子4に紫外線カットガラスを用い、尚且つガラスプリフォーム1に紫外線を透過する材料を用いた場合のマーク103の読みだし方法について説明する。ガラスプリフォーム1に紫外線を透過する材料を用いた場合、光学部材1000も紫外線を透過する。この場合、光学部材1000の上面(マーク103が形成された面)側からマーク103に向けて紫外線を照射し、光学部材1000の下面(マーク103が形成されていない面)側からマーク103を見るか、又は光学部材1000の下面側からマーク103に向けて紫外線を照射し、光学部材1000の上面側からマーク103を見ることにより、マーク103を読み出すことができる。マーク103は紫外光カットガラス層からなり、照射した紫外線を吸収するため、マーク103は紫外線を透過しないが、光学ガラス部材1000は紫外線を透過する。そのため、マーク103のみが暗く認識される。したがって、マーク103を影文字のようにして読み出すことができる。
【0061】
ガラスプリフォーム1に紫外線を透過する材料を用いた場合において、マーク103を読み出す際に照射する紫外線の波長は、マーク103によって十分にカットされる波長であることが好ましい。具体的には、254〜405nmが好ましく、365〜405nmがより好ましい。紫外線の波長が365nmの付近にあると、マークの読み出しが特に容易になる。
【0062】
次に、ガラス粒子4に紫外線カットガラスを用い、尚且つガラスプリフォーム1に紫外線により発光する材料を用いた場合のマーク103の読みだし方法について説明する。ガラスプリフォーム1に紫外線により発光する材料を用いた場合、光学ガラス部材1000も紫外線により発光する。この場合、光学部材1000の上面側からマーク103に向けて紫外線を照射し、光学部材1000の上面側からマーク103を見ることにより、マーク103を読み出すことができる。マーク103は紫外光カットガラス層からなり、光学ガラス部材1000のマーク103形成領域は、マーク103により紫外線が遮られ発光しない。よって、マーク103のみが暗く認識され、マーク103を影文字のように読み出すことができる。
【0063】
ガラスプリフォーム1に紫外線により発光する材料を用いた場合において、マーク103を読み出す際に照射する紫外線の波長は、マーク103によって十分にカットされる波長であることが好ましい。具体的には、254〜405nmが好ましく、254〜365nmがより好ましい。紫外線の波長が254nmの付近にあると、マークの読み出しが特に容易になる。
【0064】
更に、ガラス粒子4に蛍光ガラスを用い、尚且つガラスプリフォーム1に紫外線を透過する材料を用いた場合のマーク103の読みだし方法について説明する。この場合、光学部材1000の上面側からマーク103に向けて紫外線を照射し、光学部材1000の上面側からマーク103を観察することにより、マーク103を読み出すことができる。マーク103は蛍光ガラス層からなり、紫外線を照射すると蛍光を発するが、光学ガラス部材1000は紫外線を透過し、マーク103のみが光る。したがって、マーク103を容易に読み出すことができる。
【0065】
ガラス粒子4に蛍光ガラスを用いた場合において、マーク103の読み出しの際に照射する紫外線の波長は、254〜365nmが好ましく、254〜300nmがより好ましい。紫外線の波長が254nm付近にあると、マークの読み出しが特に容易になる。
【実施例1】
【0066】
[分散物(被膜材料)の調製]
紫外線カットガラスの組成及び作製方法を下記に示す。
【0067】
ガラス転移温度564℃、波長587.56nmにおける屈折率1.766のランタンフリント系光学ガラスを用意し、これを粉砕したもの100重量%に対し、ZnOを15重量%、TiOを3.7重量%、CeOを1.6重量%混合し、850℃で20分溶融させた後、300℃程度に加熱した定盤の上にキャストして板状の紫外線カットガラスを得た。得られた紫外線カットガラスのガラス転移温度は533℃であり、紫外光の吸収端は382nmであった。
【0068】
準備した紫外線カットガラスを平均粒径1μm程度まで細かく粉砕して、ガラス粒子(粉体)とした。さらに、ガラス粒子1gに、溶媒としての純水4gおよびメタノール1g、可燃物質としてカーボンブラック0.1g、さらにバインダとしてのヒドロキシエチルセルロース0.1gを混合して、分散物を調製した。
【0069】
[ガラスプリフォーム上への融着膜の形成]
光学レンズ用のガラスプリフォームとして、前述のランタンフリント系光学ガラスからなるプリフォームを用意した。分散物をエアブラシを用いてガラスプリフォーム上に塗布した後、乾燥させ、厚みが約15μmの被膜が形成されたガラスプリフォームを得た。
【0070】
次に、大気中(酸素を含有する雰囲気)において、ガラスプリフォーム上に形成された被膜に、レーザ光を被膜に対して相対移動(走査)させることで、所定のマークパターンでレーザ光を照射した。レーザ光の照射により、ガラス粒子はガラスプリフォーム上に融着した。レーザ光源としてはYVOレーザの第二高調波を光源とするレーザマーカー(ミヤチテクノス社製、ML−9001A、波長532nm)を用いて行った。マークパターンは、ガラスプリフォームの外周から1mmの位置に、高さ0.5mmの文字として描いた。レーザ光源は、電流15AでCW発振させ、50μmのスポットサイズ、0.38Wのパワーで照射した。被膜に対するレーザ光の走査速度は0.2mm/sであった。
【0071】
なお、上記レーザ波長のレーザ光に対して、ガラスプリフォームの内部透過率は99.9%/cm以上であり、紫外線カットガラスの吸収は2.5%/cmであった。
【0072】
レーザによる走査後、被膜の一部が固着したガラスプリフォームを水槽に入れ、超音波洗浄機で洗浄した後、純水で水洗した。洗浄後、ガラスプリフォームを乾燥させた。こうして、レーザ走査部のみに、紫外線カットガラスからなる融着膜が形成されたガラスプリフォームを得た。
【0073】
[プレス工程]
図6に示すように、スリーブ14の内で移動可能な下金型12と上金型13の間に、上述のガラスプリフォーム1を配置してワーク20とする。ワーク20を図7のプレス装置500の中の載置台21の上に配置する。プレス装置500は、ワーク20内のガラスプリフォームを制御された圧力及び温度で加圧することができる。バルブ31を開き油回転ポンプ27によりチャンバー26を粗引きする。粗引き後、バルブ31を閉じ、バルブ30及びバルブ29を開き、油拡散ポンプ28にてチャンバー26を本引きする。チャンバー26内の圧力を示す真空計33の真空度が所定値以下になったら、ヒーター23によりチャンバー26内を加熱し、チャンバー26内の温度を成形温度まで上昇させ、10分間その温度で保持した。その後10分間、ピストン25を作動させて、ピストン25に連動した上型軸22によりワーク20内のガラスプリフォーム1を加圧する。加圧開始後5分間でヒーター23による加熱を終了し、温度を降下させる。その後放冷し、室温になったらバルブ30を閉じ、リークバルブ32を開き大気を導入する。大気導入後ワーク20を取り出し、下金型12および上金型13からガラスプリフォームを取り出す。こうして、マークが形成された光学レンズを得た。
【0074】
本実施例において、紫外線カットガラス及び光学レンズの波長587.56nmにおける屈折率は、それぞれ、1.773及び1.766であった。よって、波長587.56nmにおける紫外線カットガラスと光学レンズとの屈折率差は、0.007であった。
【0075】
[マークの読出し]
作製した光学レンズのマークが形成された面を上面とし、上面と反対側の面を下面とする。光学レンズの下面から波長365nmのいわゆるブラックライトを照射し、マークをその透過光で観察した。マークの部分だけ光が透過せず、影文字のように明瞭に文字を視認できた。
【0076】
[マークの観察、評価]
光学レンズに形成したマークを光学顕微鏡により観察した。マークの形状は、図3(c)に示すように、光学レンズ表面に埋没して表面は平坦であり、可視光下ではほとんど目立たないものであった。さらに、光の反射、散乱ともに光学レンズの光学性能に悪影響を与えない水準のものであった。本実施例において、ガラス粒子のガラス転移温度は533℃、ガラスプリフォームのガラス転移温度は564℃であり、ガラス粒子のガラス転移温度の方が低い。図3(a)にあるような窪み104は形成されなかったため、形成されたマークはプレス工程において流動したものと考えられる。本実施例では研磨を行わなかった。
【実施例2】
【0077】
[分散物(被膜材料)の調製]
原料ガラスとして実施例1と同一のランタンフリント系光学ガラスを用意した。用意した原料ガラスを平均粒径1〜5μm程度に粉砕した。粉砕した原料ガラス粉末体に、TiO粉末を添加し、充分に撹拌した。TiO粉末の添加量は、原料ガラス粉末体とTiO粉末の合計量に対して、3.6重量%とした。さらにTiO粉末を添加した原料ガラス粉末体を白金坩堝に入れ、1400℃で30分間溶解し、撹拌、清澄を行った後、400℃に加熱した金属製型上にキャストし、固化させた。その後徐冷して、板状の紫外線カットガラスを得た。得られた紫外線カットガラスのガラス転移温度は554℃であり、紫外光の吸収端は330nmであった。
【0078】
この紫外線カットガラスを平均粒径1μm程度まで細かく粉砕して、ガラス粒子(粉体)とした。さらに、ガラス粒子1gに対して、溶媒としての純水4gおよびメタノール1g、可燃物質としてカーボンブラック0.1g、さらにバインダとしてのヒドロキシエチルセルロース0.1gを混合して、分散物を調製した。
【0079】
[マークの形成]
実施例1と同一のガラスプリフォームを用意し、分散物を、エアブラシを用いてガラスプリフォームに噴霧した後、自然乾燥し、厚みが約15μmの被膜が形成された光学プリフォームを得た。
【0080】
以下、実施例1と同様の条件で、レーザ光を被膜に照射してガラスプリフォーム上に融着膜を形成し、プレス工程を経て、マークが形成された光学レンズを得た。尚、被膜に照射したレーザ波長のレーザ光に対して、ガラスプリフォームの内部透過率は99.9%/cm以上であり、紫外線カットガラスの吸収は0.6%/cmであった。
【0081】
更に、本実施例においては、プレス工程の後、マークおよびその周辺をCeO研磨剤により研磨した。
【0082】
本実施例において、紫外線カットガラス及び光学レンズの波長587.56nmにおける屈折率は、それぞれ、1.769及び1.766であった。すなわち、波長587.56nmにおける紫外線カットガラスと光学レンズとの屈折率差は、0.003であった。
【0083】
[マークの読出し]
作製した光学レンズのマークが形成された面を上面とし、上面と反対側の面を下面とする。作製した光学レンズの下面から波長365nmのいわゆるブラックライトを照射して、マークをその透過光で観察した。マークだけ光が透過せず、影文字のように明瞭に文字を視認できた。
【0084】
[マークの観察、評価]
光学レンズに形成したマークを光学顕微鏡により観察した。光学顕微鏡の観察は、研磨工程の前のマークと、研磨工程の後のマークの両方について行った。研磨工程の前のマークは、光学レンズ表面に埋没して表面は平坦であり、そのマークのエッジに図3(a)に示すような窪み104が形成されていた。研磨工程前のマークは多少の視認性を有するが、光の反射、散乱ともに光学レンズの光学性能に悪影響を与えない程度のものであった。研磨工程後のマークでは、窪み104は消失していた。研磨工程後のマークは、可視光下ではほとんど目立たないものであった。また、研磨工程後のマークからの光の反射、散乱は、光学レンズの光学性能に悪影響を与えない程度であり、研磨工程前のマークと比較してマークからの光の反射、散乱は更に低くなっていた。
【0085】
本実施例において、ガラス粒子のガラス転移温度は554℃、ガラスプリフォームのガラス転移温度は564℃であり、ガラス粒子のガラス転移温度の方が僅かに低い。よって、プレス時における溶融したガラス粒子は流動しなかったか、または流動が殆ど起こらなかったため、研磨工程前のマークでは窪み104が生じたものと考えられる。研磨工程により、窪み104は消去し、より視認性の低いマークを得られることが確認できた。
【実施例3】
【0086】
[分散物(被膜材料)の調製]
実施例1と同一のランタンフリント系光学ガラスの粉砕物からなる原料粉末体に、CeO粉末を添加し、充分に撹拌した。CeO粉末の添加量は、原料粉末体とCeO粉末の合計量に対して、1.6重量%とした。さらにCeO粉末を添加した原料粉末体を白金坩堝に入れ、1350℃で30分間溶解し、撹拌、清澄を行った後、400℃に加熱した金属製型上にキャストし、固化させた。そしてその後徐冷して、板状の紫外線カットガラスを得た。得られた紫外線カットガラスのガラス転移温度は、568℃であり、紫外線の吸収端は372nmであった。
【0087】
このように作製した紫外線カットガラスを、平均粒径1μm程度まで細かく粉砕して、ガラス粒子(粉体)とした。さらに、ガラス粒子1gに、溶媒としての純水4gおよびメタノール1g、可燃物質としてカーボンブラック0.1g、さらにバインダとしてのヒドロキシエチルセルロース0.1gを混合して、分散物を調製した。
【0088】
[マークの形成]
実施例1と同一のガラスプリフォームを用意した。分散物を、エアブラシを用いてガラスプリフォームに噴霧した後、乾燥し、厚みが約15μmの被膜が形成されたガラスプリフォームを得た。
【0089】
以下、実施例1と同様の条件で、レーザ光を被膜に照射してガラスプリフォーム上に融着膜を形成し、プレス工程を経て、マークが形成された光学レンズを得た。更に、本実施例では、プレス工程の後、実施例2と同様の条件でマークおよびその周辺を研磨した。被膜に照射した波長のレーザ光に対して、ガラスプリフォームの内部透過率は99.9%/cm以上であり、紫外線カットガラスの吸収は0.5%/cmであった。
【0090】
本実施例において、紫外線カットガラス及び光学レンズの波長587.56nmにおける屈折率は、それぞれ、1.769及び1.766であった。すなわち、紫外線カットガラスと光学レンズとの波長587.56nmにおける屈折率差は0.003であった。
【0091】
[マークの読出し]
作製した光学レンズのマークが形成された面を上面とし、上面と反対側の面を下面とする。作製した光学レンズの下面から波長365nmのいわゆるブラックライトを照射して、マークをその透過光で観察した。マークだけ光が透過せず、影文字のように明瞭に文字を視認できた。
【0092】
[マークの観察、評価]
光学レンズに形成したマークを光学顕微鏡により観察した。光学顕微鏡の観察は、研磨工程の前のマークと、研磨工程の後のマークの両方について行った。研磨工程の前のマークは、光学レンズ表面に埋没して表面は平坦であり、そのマークのエッジに図3(a)に示すような窪み104が形成されていた。研磨工程前のマークは多少の視認性を有するが、光の反射、散乱ともに光学レンズの光学性能に悪影響を与えない程度のものであった。研磨工程後のマークでは、窪み104は消失していた。研磨工程後のマークは、可視光下ではほとんど目立たないものであった。また、研磨工程後のマークからの光の反射、散乱は、光学レンズの光学性能に悪影響を与えない程度であり、研磨工程前のマークと比較してマークからの光の反射、散乱は更に低くなっていた。
【0093】
本実施例において、ガラス粒子のガラス転移温度は568℃、ガラスプリフォームのガラス転移温度は564℃であり、ガラス粒子のガラス転移温度の方が僅かに高い。よって、プレス時における溶融したガラス粒子は流動しなかったか、または流動が殆ど起きなかったため、研磨工程前のマークでは窪み104が生じたものと考えられる。研磨工程により、窪み104は消去し、より視認性の低いマークを得られることが確認できた。
【実施例4】
【0094】
実施例1と同様の材料(紫外線カットガラスおよびガラスプリフォーム、等)を用い、実施例1と同一の手順でガラスプリフォーム上への融着膜の形成およびプレス加工等を行い、更に、マークおよびその周辺を実施例2及び3と同一の条件で研磨し、マークが形成された光学レンズを作製した。
【0095】
[マークの読みだし]
まず、本実施例で作製した光学レンズのマークが形成された面(上面)から可視白色光を照射し、上面側からマークを観察した。図8に、観察されたマーク部分の実体顕微鏡写真像を示す。可視白色光の照射では、光学レンズ表面に形成されたマークを視認することはできなかった。
【0096】
次に、本実施例で作製した光学レンズの上面から波長254nmの紫外線を照射し、上面側からマークを観察した。図9に、観察されたマーク部分の実体顕微鏡写真像を示す。波長254nmの紫外線を照射することにより、マークとマーク周辺との間にコントラストが生じ、マークされたパターンを視認できた。これは、波長254nmの紫外線照射により、光学レンズ全体は蛍光を発するが、マークは紫外線カットガラスにより形成されているため、紫外線が遮られ蛍光を発しないからである。この結果、マークが周囲よりも暗く認識されコントラストを生じることができる。
【0097】
以上の各実施例で示したガラス転移温度は、示差熱測定装置(DTA)を用い、昇温速度3℃/分で測定した値である。
【0098】
尚、実施例2〜4においては、プレス工程の後、マークおよびその周辺の研磨を行っているが、研磨は光学ガラス部材の使用用途によっては不要である。実施例2及び3における研磨前のマークは、そのマークエッジ部に窪みを有しており、窪みによる視認性自体をマークとして活用可能であり、またマークの位置の確認手段として利用することもできる。
【0099】
尚、本実施例1〜4においては、被膜にレーザを照射した後、ガラスプリフォームを洗浄し、未融着の被膜をガラスプリフォームの表面から除去しているが、場合によっては洗浄工程は不要である。例えば、ガラスプリフォーム上の被膜をマークのパターンとして形成し、形成した被膜全てをガラスプリフォーム上に融着させる場合には、レーザを照射した後の光学レンズの洗浄は不要である。
【符号の説明】
【0100】
1 ガラスプリフォーム
2 被膜
3 融着膜
4 ガラス粒子

101 光学ガラス部材
103 マーク
104 窪み
1000 マーク付き光学ガラス部材(光学部材)

10 レーザ光源
11 レーザ光
12 下金型
13 上金型
14 スリーブ
20 ワーク
21 載置台
22 上型軸
23 ヒーター
25 ピストン
26 チャンバー
27 油回転ポンプ
28 油拡散ポンプ
29、30、31 バルブ
32 リークバルブ
33 真空計
500 プレス装置

【特許請求の範囲】
【請求項1】
光学ガラス部材のマーク形成方法であって、
ガラスプリフォームを用意することと、
ガラス粒子を含む被膜を前記ガラスプリフォームの表面に形成することと、
前記被膜の所定の領域にレーザ光を照射することで、前記ガラス粒子を前記ガラスプリフォームの表面に融着させて融着膜を形成することと、
前記融着膜が形成されたガラスプリフォームをプレス成形すること
を含む光学ガラス部材のマーク形成方法。
【請求項2】
前記ガラス粒子のガラス転移温度が、前記ガラスプリフォームのガラス転移温度よりも低い請求項1に記載の光学ガラス部材のマーク形成方法。
【請求項3】
前記プレスの後、更に、前記光学ガラス部材のマークが形成された部分を研磨することを含む請求項1または2に記載の光学ガラス部材のマーク形成方法。
【請求項4】
前記融着膜の形成後、更に、融着しなかったガラス粒子を含む被膜を前記ガラスプリフォームの表面から除去することを含む請求項1〜3のいずれか一項に記載の光学ガラス部材のマーク形成方法
【請求項5】
前記ガラス粒子は、紫外線カットガラスであり、波長587.56nmにおける前記光学ガラス部材と前記紫外線カットガラスとの屈折率差の絶対値が0.1以下である請求項1〜4のいずれか一項に記載の光学ガラス部材のマーク形成方法。
【請求項6】
前記ガラスプリフォームは、紫外線照射により蛍光を発光する材料からなる請求項5に記載の光学ガラス部材のマーク形成方法。
【請求項7】
前記ガラス粒子は、蛍光ガラスであり、波長587.56nmにおける前記光学ガラス部材と前記蛍光ガラスとの屈折率差の絶対値が0.1以下である請求項1〜4のいずれか一項に記載の光学ガラス部材のマーク形成方法。
【請求項8】
請求項1〜7のいずれか一項に記載の光学ガラス部材のマーク形成方法により、第1の光学ガラス部材にテストパターンのマークを形成することと、
前記第1の光学ガラス部材において、プレス前のテストパターンの融着膜の形状に対するプレス後のテストパターンのマークの形状の変化率を求めることと、
前記求められた変化率に基づいて融着膜を形成することを含む、請求項1〜6のいずれか一項に記載のマーク形成方法により、第2の光学ガラス部材にマークを形成すること
を含む光学ガラス部材のマーク形成方法。
【請求項9】
請求項1〜8のいずれか一項に記載の光学ガラス部材のマーク形成方法を含む光学ガラス部材の製造方法。
【請求項10】
請求項1〜8のいずれか一項に記載の光学ガラス部材のマーク形成方法によりマークが形成された光学ガラス部材。
【請求項11】
前記マークの表面と前記光学部材の表面とが、面一である請求項10に記載の光学ガラス部材。
【請求項12】
請求項9に記載の製造方法により製造された光学ガラス部材。
【請求項13】
請求項5〜7に記載の光学ガラス部材のマーク形成方法によりマークが形成された光学ガラス部材に紫外線を照射し、前記マークとそれ以外の部分における前記紫外線の透過の差、又は、前記紫外線による発光の差により、前記マークを読み出す、光学ガラス部材のマーク読みだし方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−213564(P2011−213564A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−86168(P2010−86168)
【出願日】平成22年4月2日(2010.4.2)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】