説明

光学投影方法及びシステム

画像投影システムが提案される。このシステムは光学ユニットおよびそれに対して接続可能な制御ユニットを有する。光学ユニットは、物体を照明するための照明チャネル、自己から収集された光から物体の画像を生成し、そしてそれを表現する画像データを生成するための画像チャネル、および投影ターゲットの上に物体の画像を投影するための投影チャネルを規定するよう設定される。制御ユニットは、画像データを受け取って解析するよう、また画像生成および投影を制御するよう、設定され、および動作可能とされる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は光投影およびイメージング(画像化)方法並びにシステムに関する。
【背景技術】
【0002】
画像投影技術は種々の用途で広く使われている。通常、投影装置は、レーザおよび/またはLEDと1つ以上の空間光変調器(SLM)、例えば液晶ディスプレイ(LCD)、または、デジタル画像データの真の光学画像の生成のためのデジタル極小ミラーデバイス(DMD)を利用する。投影装置は、着色された画像を投影するために配置されうる。
【0003】
マイクロプロジェクターに使うのに適した種々の投影技術が、例えば特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、および本願の譲受人にすべて譲渡された特許文献6に開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開WO04/064410号パンフレット
【特許文献2】国際公開WO04/084534号パンフレット
【特許文献3】米国特許第7,128,420号明細書
【特許文献4】国際公開WO07/060666号パンフレット
【特許文献5】国際公開WO05/036211号パンフレット
【特許文献6】国際公開WO08/010219号パンフレット
【発明の概要】
【課題を解決するための手段】
【0005】
本発明は、撮像機および投影機として設定され、および動作可能とされ、それによって画像および投影モードにおいて独立して動作可能な光学システムを提供する。これのために、このシステムは、いくつかの実施の態様において部分的に重なっている(すなわち、共通の光学素子を持つ)ような画像チャネルおよび投影チャネルを有する。
【0006】
好ましくは、このような画像および投影システムは、投影チャネルによって、画像チャネルで生成された画像を投影するよう設定される。この生成された画像は、投影されている画像を表現することができ、物体と投影された画像との正確な空間的整列のために追加的に使われうる。換言すれば、このシステムは、先に生成された画像に対応する電子データを表現する画像を投影するよう動作させることができ、ここで、後者(先の画像)は、投影表面に投影された画像でありうる。いくつかの実施の態様において、投影された画像は、物体と投影された画像との間の正確な整列の目的のためのフィードバックとして、画像チャネルにおいてさらに得られる。
【0007】
投影システムがスクリーン上にどんな像を作っても、本発明は、そのいくつかの実施の態様において、問題となる物体の画像を、物体特徴を強調するために問題となる同じ物体の表面に投影することを提供する。画像および投影モードは、異なるスペクトル、例えば近赤外画像と可視スペクトル投影で実行されうる。これは例えば、近赤外スペクトルによりある物体(身体)における問題となる領域を画像化することによって、そして表面上または身体中の問題となる前記領域と整列される皮膚領域上に、可視光でこのデジタル的に処理された画像投影することによって、医学の用途に使われうる。あるいは、またはそれに加えて、画像および投影モードは、時間的に離されて、または同様のまたは異なるスペクトル範囲の光を使って組み合わされた方法で、行なうことができる。
【0008】
このように本発明は、照明、画像、および投影チャネルをシステムの一部として見なす。本発明のいくつかの実施の態様において、照明と画像化は第1の波長帯(例えば近赤外)で行なわれ、一方投影は第1のものとは異なる第2のまたはさらに多くの波長帯(例えば可視域)の光で行なわれる。人間の目に入るが、第1の波長帯に見出される画像データは、第2の波長帯における投影チャネルにより、問題となる物体の特徴を視覚化するために使われる。(そしてそれは、投影表面に同じシステムによって投影される画像でありうる。)第1の波長範囲の照明は、好ましくは、問題となる物体の表面上における明瞭な形状により、また明瞭な偏光状態により、均一な放射パターンの投影として扱われるべきである。従って、赤外(IR)光源は、空間的に成形され、比較的均一な放射分布で問題となる物体に供給される。投影システムが既に専用の投影レンズを持っているならば、第1の波長帯の照明は、その投影レンズを通して方向付けられうる。さらに、画像検出器上に物体を画像化するために、反転された光線方向において、照明のものとは異なる偏光状態で同じ投影レンズが使われうる。それにより、偏光状態の変更が物体によって導入される。
【0009】
照明、投影および画像チャネルを統合されたシステムに結合することは、照明放射の効率的な使用と実質的な電力節約をもたらす。さらにこのシステムは、照明光源の数と電力の縮小に起因してコンパクトになる。電力節約とコンパクト化は、携帯用バッテリを対話型の投影システムを動作させるために特に重要である。
【0010】
本発明のいくつかの実施の態様において、レーザまたはLEDは照明および投影光源として使用される。人間の静脈構造の視覚化の用途において、無害な近赤外光源が組織を照らす。照明光は、静脈を取り巻いている組織中の数ミリメートルの深さに通り抜け、そして表面に反射されて戻り、一方、実質的に少ない光が血管中の血液から反射される。照明光の偏光状態は、物体(身体)との、例えば人間の静脈構造相互作用の後に変えられうる。デジタルビデオカメラは、組織から戻った近赤外反射光の所定の偏光成分を捕捉する。画像処理ユニットはコントラストを改善し、そして好ましくは実際の位置における横方向位置の登録において皮膚上に戻ったこの画像を投影する。画像投影機は、DMD技術、LCDマイクロディスプレイ、または、皮膚表面上に合焦された血管系の画像を表示するためのLCOS技術を利用することができる。
【0011】
本発明は、投影された画像の横方向位置と問題となる物体の表面の横方向位置との間の、動的および固有の登録をも提供する。これは、同じ画像検出器によって、第1および第2の波長帯の両方で捕捉された問題となる物体の画像を監視することによって実行される。この技術が、先の段落で開示されたような照明、投影および画像チャネルを結合(統合)するシステムとしないシステムの両方にとって有益である、ということは注目すべきである。
【0012】
これは、照明および投影波長帯を時間的または空間的に離すことによって達成されうる。時間的に離すことに関しては、照明および投影光源は時間的に連続的なモードで動作され、また画像検出器は広範なスペクトル感度を持っていて、照明および投影の波長帯の両方を検出するのに十分である。画像検出器は光源動作の時間シーケンスに同期させられる。空間的に離すことに関しては、画像検出器は一般化された波長感応性モザイク(組み合わせ)を持つ。ここに、検出器は、第1の波長帯に感応するピクセル(画素)、および、それらと組み合わされた第2の波長帯に感応するピクセルで構成される。照明および投影光源は任意に動作し得る。
【0013】
このように本発明の広範な局面によれば、画像を投影するためのシステムが提供される。このシステムは光学ユニットと、それに対して接続可能な制御ユニットを有する。光学ユニットは、物体を照明するための照明チャネル、自己から収集された光から物体の画像を生成し、そしてそれを表現する画像データを生成するための画像チャネル、および投影ターゲットの上に物体の画像を投影するための投影チャネルを規定するよう設定される。制御ユニットは、画像データを受け取って解析するよう、また画像生成および投影を制御するよう、設定され、および動作可能とされる。
【0014】
本発明のいくつかの実施の態様において、照明および画像チャネルは、少なくとも1つの第1の波長範囲の光を生成する光源ユニットを有する画像ユニット、画像検出器、および光収集および光方向付け装置によって規定される。後者(光方向付け装置)は、照明の偏光状態と第1の波長範囲の画像の偏光状態とを分離するための偏光ビームスプリッタ(分離器)を有することができる。投影チャネルは、第1の波長範囲と異なる少なくとも1つの第2の波長範囲の光を生成する1つ以上の光源ユニット、空間光変調器(SLM)、および光収集および光方向付け装置を有する投影ユニットによって規定される。
【0015】
本発明のいくつかの実施の態様において、システムは、投影ターゲットに位置する問題となる物体を画像化するよう設定される。前記制御ユニットは、画像データを分析し、そして前記画像データに対応する画像を投影ターゲット上に生成するように、前記投影チャネルを通して光伝播を動作させるよう適合される。いくつかの実施の態様において、前記制御ユニットは、前記第2の波長範囲の光を使って対応する像の投影を動作させるように、前記第1の波長範囲の光によって生成された物体の画像データを分析するよう適合される。それに加えて、いくつかの実施の態様においては、前記制御ユニットは、物体と第2の波長範囲における対応する投影画像との相互整列を確実にするために、第2の波長範囲の光によって生成された物体の画像データを分析するよう適合される。
【0016】
前記照明、画像および投影チャネルは、空間的に離される。および/または、前記画像および投影チャネルは、少なくとも部分的に重なっている。および/または、前記照明チャネルは、前記画像および投影チャネルから空間的に離されるか、あるいは、少なくとも部分的に前記投影チャネルと重なっている。前記照明チャネルは、物体を画像化するために使われる光の偏光符号化を提供するよう設定される。
【0017】
前記光学ユニットは、光源アセンブリと光方向付け装置と画像検出器とを有する。光源アセンブリは、前記照明チャネルを通って伝播する第1の波長範囲の光を生成する第1の光源ユニット、および第1の波長範囲と異なる第2の波長範囲の光を生成する第2の光源ユニットを含みうる。光方向付け装置は、前記投影ターゲットに位置する物体を照明するように、前記照明チャネル中の第1の経路に沿って第1の波長の光を方向付けるよう、また、前記投影チャネル中の第2の経路に沿って第2の波長の光を空間光変調器(SLM)の方に方向付けるよう、また、画像チャネル中の第3の経路に沿って照明された物体から伝播する第1の波長の光を収集するよう、配置されうる。
【0018】
いくつかの実施の態様において、前記光方向付け装置は、前記照明チャネルに位置する偏光子と、前記画像チャネルに位置する偏光フィルタとを有する。前記光方向付け装置は、前記画像および投影チャネルに収容され、照明された物体から伝播する第1の波長の光を収集し、投影ターゲット上にSLMによって変調された第2の波長の光を画像化するよう動作させる共通投影および画像レンズユニットを有し、また、前記画像および投影チャネルに収容され、第1および第2の波長の光部分を空間的に離し、前記画像検出器および前記投影および画像レンズユニットそれぞれの方にそれらを方向付ける共通のビームスプリッタ(分離器)/コンバイナ(結合器)を有する。
【0019】
上記形態において、前記照明チャネルは、前記画像および投影チャネルから空間的に離されうるか、あるいは少なくとも部分的に前記画像チャネルと結合されうる。後者のケースでは、前記光方向付け装置は、好ましくは、結合された照明および画像チャネルに位置し、物体に伝播する第1の波長の光と物体から戻った第1の波長の光の光路にある偏光ビームスプリッタを有する。前記照明チャネルは、リング状の第1の波長範囲のビームを提供するよう設定され、それによって、照明および画像チャネルの間の強化された分離のために、第1の波長の照明と戻り光との間の空間的分離を可能にしうる。
【0020】
本発明の他の局面によれば、画像を投影するための方法が提供される。この方法は、投影ターゲットに位置する物体を、第1の波長範囲を使って画像検出器上に画像化する段階と、それを表現する画像データを生成する段階と、前記画像データに従って変調された第2の異なる波長範囲の光によって形成された画像を投影ターゲット上に投影するために前記画像データを使う段階と、を有する。
【0021】
このように、本発明のいくつかの実施の態様においては、対話型の光投影の方法が提供される。この方法によれば、第1の波長範囲における波長によって照明放射を空間形成することと、詳細特徴と表面を有する問題となる物体に前記放射を供給することと、が提供される。前記第1の波長範囲で問題となる物体から戻った放射は、捕捉され、そして物体のデジタル画像が形成される。このデジタルの捕捉された画像は、詳細特徴の引き出しおよび対比により処理される。前記捕捉された画像に従う投影光の空間的変調が実行され、そして空間的に変調された光は、問題となる物体の表面上に、第2の波長帯および任意選択的に他のいくつかの波長範囲(その全てが第1の波長範囲とは異なる)を含んだ投影波長範囲における波長を該投影光が持つという状態で、投影画像として投影される。画像の位置は、問題となる物体の細部特徴にマッチ(適合)する前記位置を有するまで、問題となる物体の表面に沿って調整される。ここで、照明放射は、重ね合わせ段階から始まり、照明放射と問題となる物体への投影光を供給する段階で終わる段階の過程にある投影光と重ねられる。重ね合わせ段階は、投影光の空間的変調の後に続き、問題となる物体上への空間的に変調された光の投影に先行する。
【0022】
上記に示されたように、いくつかの実施の態様において、照明放射は本質的に、投影光から空間的に離される。
【0023】
本発明の対話型の光投影の方法は、第1の波長範囲の波長を備えた照明放射の空間的形態を有し、詳細特徴と表面を有する問題となる物体に前記放射を供給する照明と、第1の波長範囲で問題となる物体から戻った放射および物体のデジタル画像の形状を捕捉する段階と、詳細特徴の引き出しおよび対比によるデジタルの捕捉された画像を処理する段階と、前記捕捉された画像に従う投影光の空間的変調と、第1の波長帯と異なる第2の波長範囲における波長を投影光が持つという状態で、問題となる物体の表面上に投影画像として空間的に変調された光を投影することと、問題となる物体の細部特徴にマッチ(適合)する前記位置を有するまで問題となる物体の表面に沿った投影画像の位置を調整することと、を含むことができる。問題となる物体の表面からの投影画像の第2の画像は、第2の波長範囲と任意選択的にいくつかの他の波長範囲を含んだ、サンプリングされた波長範囲においてさらに提供されうる。問題となる物体に対する投影画像の位置のフィードバックタイプの修正を、第1の波長範囲とサンプリングされた波長範囲との実際の横方向の画像位置間の不一致に応じて行なうことができる。ここで、照明および投影段階は、一時的に分離されうる。つまり、連続的なフレーム(コマ)を、照明と投影の間の時間的重複なしで時間的にサブフレームに分離することを実行することができ、そして第1の波長範囲の放射を捕捉することが照明のサブフレームにおいて時間的に同期させられ、またサンプリングされた波長範囲の光を捕捉することが時間的に投影のサブフレームと同期させられうる。あるいは、第1の波長範囲のデジタル画像を捕捉するプロセスは、サンプリングされた波長範囲のデジタル画像を捕捉するプロセスから空間的に分割されうる。つまり、いくつかのサブピクセルに空間的に分離されたピクセルを用いて画像検出器によって実行されうる。
【0024】
本発明を理解し、それがどのように実際に実行されうるかを知る見るために、添付の図面を参照しつつ、単に限定的でない例を通じて実施形態をここで説明する。
【図面の簡単な説明】
【0025】
【図1】別個の照明チャネルと部分的に重なっている画像および投影チャネルを利用する、本発明の投影および画像システムの例の概略図である。
【図2】図1のシステムで使うのに適した画像および投影チャネルを部分的に結合するための、光学スキームの特定の例を示す。
【図3A】システム性能データを実証する図であって、画像および投影チャネルにおける多色の回折MTFを示す。
【図3B】システム性能データを実証する図であって、画像および投影チャネルにおける多色の回折MTFを示す。
【図4A】システム性能データを実証する図であって、画像および投影チャネルにおいて囲まれたエネルギーを示す。
【図4B】システム性能データを実証する図であって、画像および投影チャネルにおいて包括(囲まれた)エネルギーを示す。
【図5】本発明の投影/画像システムのさらなる例を示し、部分的に重なっている照明、画像および投影チャネルを有するシステムの例を示す。
【図6】本発明の投影/画像システムのさらなる例を示し、部分的に重なっている照明、画像および投影チャネルを有するシステムの例を示す。
【図7】本発明の投影/画像システムのさらなる例を示し、そのようなチャネルが重なり合わないシステムを示す。
【図8A】本発明のシステムで使うのに適した、共有の画像検出器上の照明、投影および画像光源の時間的に連続的な動作の原理を示す。
【図8B】本発明のシステムで使うのに適した、共有の画像検出器上の照明、投影および画像光源の時間的に連続的な動作の原理を示す。
【図9A】本発明のシステムで使うのに適した、第1の波長範囲(典型的にIR(赤外))および第2の波長範囲(典型的に可視画像)の両方の並列した画像化のための、画像検出器アレイの横方向モザイク構造の原理を示す。
【図9B】本発明のシステムで使うのに適した、第1の波長範囲(典型的にIR(赤外))および第2の波長範囲(典型的に可視画像)の両方の並列した画像化のための、画像検出器アレイの横方向モザイク構造の原理を示す。
【図9C】本発明のシステムで使うのに適した、第1の波長範囲(典型的にIR(赤外))および第2の波長範囲(典型的に可視画像)の両方の並列した画像化のための、画像検出器アレイの横方向モザイク構造の原理を示す。
【図9D】本発明のシステムで使うのに適した、第1の波長範囲(典型的にIR(赤外))および第2の波長範囲(典型的に可視画像)の両方の並列した画像化のための、画像検出器アレイの横方向モザイク構造の原理を示す。
【発明を実施するための形態】
【0026】
システムの例を概略的に示す図1を参照すると、全般的に示された10は、本発明による画像装置(イメージャ)および撮像装置(プロジェクタ)として、すなわち投影および画像化の結合された光路を有する相互作用光投影ディスプレイを利用するよう設定され、および動作可能とされる。システム10は、光学ユニット12および制御ユニット14のような、主たる構造上の部分を含む。
【0027】
光学ユニット12は、照明チャネル16、画像チャネル18、および投影チャネル20を規定するよう設定され、さらに以下で記載されるように、少なくとも部分的に重ね合わせられ(結合され)うるか、または重ね合わせられないようにされうる。画像チャネル18は、投影平面26に位置した問題となる物体の画像を作るよう設定され、照明チャネルによって照明され、そして対応する画像データを生成する。投影チャネル20は、投影平面26における問題となる領域(または投影ターゲット)上に物体の画像を投影するよう設定され、投影画像は照明チャネルから来る光の適切な空間的変調によって形成される。図1で実証されるように、投影チャネルによって作られた前記投影ターゲットは、画像チャネルに対して問題となる物体を構成することができる。
【0028】
光学ユニット12は照明チャネル16および投影チャネル20に関連する光源アセンブリ22を含む。現在の例では、光源アセンプリ22は異なる波長の光、現在の例では3つのそのような波長、つまり2つの異なるスペクトル−IR(赤外)スペクトルにおける1つと、2つの可視スペクトル(緑色Gと赤色R)の光、を生成するよう設定される。これらの2つの異なるスペクトル範囲の光部分は、それぞれ、画像および投影チャネルに方向付けられる。異なるスペクトル範囲の光部分は照明および投影チャネル16および20それぞれに沿って方向付けられる。このようにこの例では、光源アセンプリ22は、IR照明光源22A(LEDまたはレーザダイオードでありうる)、および緑色および赤色光源22Bおよび22Cを有し、それらのそれぞれのビーム収集および成形光学部品24A、24B、および24Cに関連付けられる。また現在の例では、画像および投影チャネルは部分的に重なっている。すなわち、共通の光学素子(レンズユニットおよびビームスプリッタ/コンバイナ)によって規定された、結合された光路を有する。
【0029】
このように、光学ユニット12は投影ユニットと画像ユニットとを含む。投影ユニットは投影チャネル20を規定し、そして(1つ以上の光源22B、22Cを含む)それ自身の光源ユニット、空間光変調器(SLM)35、および光方向付け光学部品を含む。画像ユニットは照明および画像チャネル16および18を規定し、そして光源ユニット22A、画像検出器40、および光方向付け光学部品を含む。
【0030】
光学ユニット12は、光源22から物体26の方に伝播する入射(照明)光のIR光成分、および物体から戻り(反射され/散乱され)、そして画像検出器40(CCDまたはCMOS)の方に伝播するIR光成分、を分離するよう設定される。現在の例では、これはIR照明の偏光符号化、つまり、IR光源22Aによって発せられ、物体の方に伝播する光30の光路にある、照明チャネルにおける偏光子28を使うことによって達成される。
【0031】
投影チャネル20は、投影光源22B、22C、収集および成形光学機器24B、24C、空間光変調器(SLM)35、および投影レンズユニット36を有する。ビーム収集および成形光学部品は、本質的に均一な強度と投影光の高度なコリメーション(平行化)を提供し、そして直列のマイクロレンズを有するビームホモジナイザーとして実装されうるか、あるいは最上層回折光学素子として実装されうる。着色された画像の投影のために、一般的に、投影チャネルが異なる色のための別個のSLMを利用し、また結合された光路に沿って伝播させるように、異なる色の変調された光を混合するようよう設定されうる、ということに注目すべきである。しかしながら現在の例では、共通のSLMユニット35が使われ、そして異なる色の光成分32と34が波長選択ビームスプリッタコンバイナ(例えばダイクロイックミラー)38によって結合される。同じく、投影チャネルにおいて、任意選択的に光方向付け/偏向素子(例えばミラー)39、41、および投影強化レンズユニット42が提供される。
【0032】
画像チャネル18は(投影チャネルと共通な)収集レンズユニット36と画像検出器40とを有する。同じく、画像チャネルにおいて、収集された光から特定の波長範囲(現在の例ではIR)を分離し(フィルタをかけ)、それを画像検出器に方向付け、それにより前記波長範囲の外の光を検出器によって検出することを回避する、スペクトルフィルタアセンブリ44が提供される。現在の例では、このようなスペクトルフィルタアセンプリは、投影チャネルと共通であって、また画像チャネルと投影チャネルとの光部分を空間的に分離するよう動作させる波長選択ビームスプリッタコンバイナ46(ホットミラー)を含む。さらなるフィルタユニット48が、好ましくはホットミラーの出力側において使われる。そしてこのフィルタは、IR放射を透過し、そして偏光特性を持っている(上記で示したように、物体上に入射するIR光の偏光状態が、照明チャネルにおいて偏光子28によって適切に変調される)。任意選択的に、画像チャネルにおいて、画像強化レンズ49が提供される。このように、画像チャネル18は、逆の光線方向でIRカメラレンズとして投影レンズ36を利用し、ホットミラー46によって投影レンズに光学的に接続される。
【0033】
制御ユニット14は、典型的に、とりわけ、画像検出器40(CCDまたはCMOS)からの画像データを受け取って処理し、また少なくともいくつかの光源への制御データ(例えば変調データ)を生成する電子処理および同期ブロックを備えたコンピュータシステムである。システム10は、従って以下のように動作させうる。
【0034】
投影平面(例えば投影ターゲット領域)に位置する物体は、CCD40の上に画像化される。つまり、物体は「画像化」光30、例えばIR光によって照らされる。照明された物体から戻った光30は、レンドユニット36によって収集され、ホットミラー46によってフィルタ48の方に反射され、それは画像強化レンズ49によってCCD40にこの光を透過する。CCDは対応する画像データを制御ユニット14に出力する。後者は、対応する投影ターゲットを投影平面に投影するために投影チャネルを動作させる。つまり、緑および赤の光成分32、34を生成するために光源22B、22Cを動作させ、そして画像データに従ってSLMユニット35を動作させる。光成分32、34は、ダイクロイックミラー38の方に伝播し(光成分34は−直接に、そして光成分32は−ミラー39によって)、そのダイクロイックミラー38はそれらを混合し、(ミラー41によって)SLM35に方向付ける。結果としての変調され光は、投影強化レンズ42、ホットミラー46、および投影レンズ36を介して連続的に通過し、そして観測者50によって見られるように投影ターゲットに方向付けられる。
【0035】
例えば医学用途では、カメラ40(CCDまたはCMOS)は、人体組織の埋められた特徴の一部から、赤外線の写真を撮り、一方で、投影チャネルが同じ領域上に、血管および静脈のような肉眼では見られない細部を示す可視の写真を作る。IR照明チャネルからの光は、問題となる物体、例えば人間の組織に到達し、数ミリの深さに侵入し、そして反射または後方散乱される。反射光は、順番に存在する投影レンズであるカメラレンズ36によって取得され、ホットミラー46から反射され、IR照明放射に垂直な偏光状態のIR照明範囲で光を伝えるフィルタ48を通過する。共通の投影および画像レンズ36の使用に起因して起こりうる画像の収差は、本質的に画像強化レンズ49によって修正されうる。最終的に、問題となる物体の合焦された画像が、IR照明放射において画像検出器上に得られ、電子ブロックによって対比するためにデジタル形式に変換され、デジタル的に処理される。次に、対比された画像は、ビーム収集と投影チャネルの成形光学部品によって供給された光を空間的に変調するSLMに転送される。空間的に変調された光はホットミラーを通過し、次に問題となる物体の表面上に投影レンズによって画像化される。任意選択的な投影強化レンズは、画像チャネルのカメラレンズの役割をも果たすよう意図された投影レンズの残余の光学収差を修正する。問題となる物体の表面上に空間的に変調された光の画像の位置は、画像と問題となる物体における詳細特徴の大きさと位置の監視によって問題となる前記物体に適合される。1つの選択肢においては目視によって適合が実行される。他の選択肢においては、物体の前面に接触する可視光−対−IR変換プレートの適用によって適合が実行される。
【0036】
このように上記の実施形態は、投影および画像の結合された経路(光路)によって設計されたデータを含む。結合された(部分的に重なり合う)画像および投影チャネルのための、特定ではあるが限定的ではない形態を例示した図2を参照する。ここでは、投影カラーサブチャネルのただ1つが示される。示されたように、緑色光32は緑色光源22Bから伝播し、コリメーションレンズユニット、DMLA、フィールドレンズ、および収集レンズ(収集、ビーム成形、およびスペックル除去光学部品を構成する)によってSLM35上に方向付けられる。SLMからの光出力は、例えばテレセントリックレンズによって、ダイクロイックビームスプリッタキューブ(ホットミラー)46上に方向付けられる。該ダイクロイックビームスプリッタキューブ46は、共通の投影および画像化光学部品36によって投影ターゲット26上にこの光を反射または透過する。同時に、または投影過程の前か後に、IR光が投影ターゲット(ここでは示されない)を照らし、また照明領域から戻った光が共通の投影および画像化光学部品36によって(画像強化レンズによって)IR検出器40にそれを反射するホットミラー46の方に収集される、という場合があってもよい。
【0037】
投影光源22(図1の22)が、コリメートされたレーザ、または成形され、拡大され、スペックル除去され、およびフィールドレンズとコリメータを含んだビーム成形光学部品(図1の24B、24C)によって均一化された、LEDビームでありうる、ということに注目すべきである。DMLAのF#(Fナンバー)倍のコリメータレンズの焦点距離は、SLMへの長方形の照明スポットの大きさを決定する。SLMへの入射角は、好ましくはSLMに対する典型的な受け入れ角度範囲の下にあるべきであって、LCDまたはLCOS SMLの場合に対して7〜9度で、DMD SLMに対して12〜15度である。このようにして効率とコントラストが改善される。Xキューブを使うことによって、図1に示すように、ダイクロイックミラー38、41の代案としてRGB(または他の色)を混合することができる。
【0038】
本発明者は実験的な光学システムを設計し、そしてシステム性能を調べるために動作させた。性能データ(画像および投影チャネルにおける多色の回折MTF、画像および投影チャネルにおける包括(囲まれた)エネルギー、画像および投影チャネルにおける光路差、画像および投影チャネルにおいてプロットされた横方向光学収差、画像および投影チャネルにおいてプロットされた像面湾曲と分散)は発明提案の実現可能性を示した。実験の設備は図1のシステムに類似するよう設定された。設計選考は、以下の通りであった。カメラ検出器と投影機SLMが同じ大きさを持つ必要がなく、両方のチャネルの視野が等しい必要がないので、ビームスプリッタ/コンバイナキューブの後で2つのレンズを変えることによって、それぞれのチャネルに対して異なる焦点距離を使うことができる。投影レンズは、SLMから集まる光に対し最も良好な効率を持つようにテレセントリックである。カメラチャネルにこのような必要性はない。SLMとビームスプリッタ/コンバイナキューブとの間の2つのレンズはテレセントリックフィールドレンズとしてはたらく。キューブビームスプリッタはレンズアセンブリ内に挿入される。単純な平面のホットミラーをダイクロイックビームスプリッタ/コンバイナとして使用することにより、投影チャネルに対してコマ収差を発生させることになる一方で、キューブは対称であって、設計の際のことを考慮に入れる場合さらに良好な光学性能を可能にする。キューブの後部および上部の側面は、球形の光学表面であって、部品の数を減らすために光学系の部分として使用される。
【0039】
上記で示されたように、DMLAのF#倍のコリメータレンズの焦点距離は、SLMへの長方形の照明スポットの大きさを決定する。このように、実験設備は、最大の効率と均一性を獲得するために、SLMの動作領域(ピクセル配列/マトリクスによって規定された表面)の大きさに一致するこのスポットを持つように設計される。そして、設計はSLMにおける照明の低い角度を維持し、それによって効率とコントラストを改善する。
【0040】
全般的に100と表された、本発明による投影および画像システム他の例を概略的に示した図5を参照する。すべての例において共通な部材を識別するために同一の参照符号が使われる。示されたように、システム100は、上記のシステム10に全般的に類似するが、照明、画像、および投影チャネル16、18、および20の部分的な重複(結合された経路)を持つという点で、それとは区別される。これは、システムの光学的効率を向上させ、また照明チャネルを実質的に一層コンパクトにする。
【0041】
上述されたシステム10において、入射し収集された光のIR光成分の分離は、照明および画像チャネルの間の空間的分離と、入射IR光部分の偏光符号化(照明チャネルにおける偏光子28と画像チャネルにおける適切なフィルタ48)とをを使って実行される。システム100には、任意選択的に、照明強化レンズ54が提供される。システム100において、照明チャネルと画像および投影チャネルとの結合(部分的)は、第1の波長範囲の波長のための偏光ビームスプリッタ52を使うことによって可能である。該偏光ビームスプリッタ52は、照明放射の偏光に適合するビームコンバイナ(ホットミラー)46と光学的に接続され、同じく画像検出器40と(任意選択的な画像強化レンズ49と共に)光学的に接続される。
【0042】
偏光ビームスプリッタ52は、当然、照明によって提供されうる画像における光点および眩光を避ける照明および画像のための直交偏光の使用を確実にする。偏光ビームスプリッタ52は、偏光しているビームスプリッティングキューブとして、あるいは、45度ワイヤー−グリッド偏光子として、さらに多数の波長回折ビームスプリッタ/コンバイナとしても、実装されうる。システム100は、上述されたシステム10に類似した動作をする。
【0043】
図6は、本発明の投影/画像化システム200のさらに他の例を示す。ここで、照明と画像IR放射成分の分離は、環状の周囲照明チャネル光学スキームによってさらに改善される。システム200は、光エミッタ22Aから伝播する光(IR光)の光学経路における照明チャネルに位置するそのビーム収集および成形器24Aが、リング状のIR照明を提供するよう設定される、という点で上述されたシステム100とは区別される。現在の例では、これは、レンズ58と、そのレンズ下流にレンズの中央領域から発せられる光を遮断するように収容された光遮断絞り56(照明チャネルを介した光伝播の方向における)を使うことによって達成され、それによりレンズの周囲領域から来る光によって形成されるリング光照明を作る。ゆえに、照明放射30は、本質的に偏光ビームスプリッタ/コンバイナ52の周囲の(リング状の)区域を通過し、そしてホットミラー46の対応する部分によってさらに反射され、投影レンズ36の周囲のリング状の部分を通り、一方問題となる物体から戻った放射は投影レンズ36の中央の部分とビームコンバイナ52のそこを本質的に通過し、そして光遮断絞り56によって遮断される。この形態は照明および画像チャネルの間のクロストーク(混線)の低減を提供する。
【0044】
図7を参照すると、本発明の投影/画像システム300のさらに他の例が示されており、全般的に上述のシステム10(図1)に類似しているが、ここでは、IR放射に対して使われるのと同じ画像チャネルに対して、問題となる物体26の表面からの投影された可視光(G,R)の追加の画像化が、分離された(重なり合わない)照明、画像および投影チャネル16、18、および20を使って提供される、という点でそれとは異なる。この形態は、投影画像と問題となる物体の特徴との間の大きさおよび配列のさらなる適合を可能にする。従って、IR照明チャネル16、画像チャネル18、および投影チャネル20において共通の光学素子がない。照明および反射されたIR成分は偏光符号化、つまり照明チャネル16の偏光子28と画像チャネルのフィルタ偏光子48を使って分離される。システム10における共通の投影および画像レンズ36は、ここでは、それぞれ投影および画像チャネルに置かれた別個のレンズ336Aと336Bで置き換えられる。画像検出器は、追加的に、投影波長範囲における光を捕捉し、投影画像は問題となる物体の細部特徴に適合される。これらのためにはいくつかのオプションがある。例えば、IR照明の時間的に連続的なパルス化された動作、IR画像、およびIR画像とは異なるタイムフレームで画像検出器によって読み込まれた可視画像を捕捉することが、使われうる。あるいは、モザイクIRと可視画像検出器がIRおよび可視画像間の分離のために使われうる。
【0045】
図8Aおよび図8Bは、共有された画像検出器上で、照明、投影および画像光源の時間的に連続的な動作の原理を例示する。照明光源は、投影光が動作しない時に離散的な時間サブフレームにおいて動作する。
【0046】
図9A〜図9Dは、IR画像と可視画像の両方の並列的画像化のための画像検出器アレイの横方向モザイク構造の原理を例示する。モザイク構造は画像検出器のそれぞれのピクセル内に異なるフィルタを備えたサブピクセルを有し、一のフィルタタイプが第1の波長範囲の光を、そして他のフィルタが第2の波長範囲のものを、捕捉することを可能にする。
【産業上の利用可能性】
【0047】
このように、本発明は、スタンドアロンシステム(単独システム)として、または他の何らかの電子システムに統合されたとして構成されうる新規な混合された投影および画像システムを提供する。本発明は、医学用を含む種々の用途で好都合に使われうる。
【0048】
当業者は、添付の特許請求の範囲内において、およびそれによって規定されたその範囲を逸脱することなく、本発明の上述されたような実施形態に種々の変更と変化が適用されうる、ということを容易に理解するであろう。
【符号の説明】
【0049】
10 システム
12 光学ユニット
14 制御ユニット
16 照明チャネル
18 画像チャネル
20 投影チャネル
22 光源アセンプリ
22A IR照明光源
22B 緑色光源
22C 赤色光源
24A 成形器
26 投影ターゲット
28 偏光子
30 光
32 光成分
336A レンズ
336B レンズ
34 光成分
35 空間光変調器(SLM)
36 投影レンズ
38 ダイクロイックミラー
39 ミラー
40 画像検出器
41 ミラー
42 投影強化レンズ
44 スペクトルフィルタアセンブリ
46 ダイクロイックビームスプリッタキューブ(ホットミラー)
48 フィルタ
49 画像強化レンズ
50 観測者
52 偏光ビームスプリッタ/コンバイナ
54 照明強化レンズ
58 レンズ
100 システム
200 投影/画像化システム
300 投影/画像システム

【特許請求の範囲】
【請求項1】
画像を投影するためのシステムであって、
物体を照明するための照明チャネル、自己から収集された光から物体の画像を生成し、そしてそれを表現する画像データを生成するための画像チャネル、および投影ターゲットの上に物体の画像を投影するための投影チャネルを規定するよう設定された光学ユニットと、
画像データを受け取って解析するよう、また画像生成および投影を制御するよう、設定され、および動作可能とされた制御ユニットと、
を有することを特徴とするシステム。
【請求項2】
前記照明および画像チャネルは、少なくとも1つの第1の波長範囲の光を生成する光源ユニットを有する画像ユニット、画像検出器、および光収集および光方向付け装置によって規定されることを特徴とする請求項1に記載のシステム。
【請求項3】
前記投影チャネルは、第1の波長範囲と異なる少なくとも1つの第2の波長範囲の光を生成する1つ以上の光源ユニット、空間光変調器(SLM)、および光収集および光方向付け装置を有する投影ユニットによって規定されることを特徴とする請求項1または2に記載のシステム。
【請求項4】
前記画像チャネルは、投影ターゲットに位置する問題となる物体を画像化するよう設定されることを特徴とする請求項1から3のいずれか1項に記載のシステム。
【請求項5】
前記制御ユニットは、画像データを分析し、そして前記画像データに対応する画像を投影ターゲット上に生成するように、前記投影チャネルを通して光伝播を動作させるよう適合されることを特徴とする請求項4に記載のシステム。
【請求項6】
前記制御ユニットは、前記第2の波長範囲の光を使って対応する像の投影を動作させるように、前記第1の波長範囲の光によって生成された物体の画像データを分析するよう適合されることを特徴とする請求項3に記載のシステム。
【請求項7】
前記照明、画像および投影チャネルは、空間的に離されることを特徴とする請求項1から6のいずれか1項に記載のシステム。
【請求項8】
前記画像および投影チャネルは、少なくとも部分的に重なっていることを特徴とする請求項1から6のいずれか1項に記載のシステム。
【請求項9】
前記照明チャネルは、前記画像および投影チャネルから空間的に離されることを特徴とする請求項8に記載のシステム。
【請求項10】
前記照明チャネルは、少なくとも部分的に前記画像および投影チャネルと重なっていることを特徴とする請求項8に記載のシステム。
【請求項11】
前記照明チャネルは、物体を画像化するために使われる光の偏光符号化を提供するよう設定されることを特徴とする請求項1から10のいずれか1項に記載のシステム。
【請求項12】
前記光学ユニットは、
・前記照明チャネルを通って伝播する第1の波長範囲の光を生成する第1の光源ユニット、および第1の波長範囲と異なる第2の波長範囲の光を生成する第2の光源ユニットを含む光源アセンブリと、
・前記投影ターゲットに位置する物体を照明するように、前記照明チャネル中の第1の経路に沿って第1の波長の光を方向付けるよう、また、前記投影チャネル中の第2の経路に沿って第2の波長の光を空間光変調器(SLM)の方に方向付けるよう、また、画像チャネル中の第3の経路に沿って照明された物体から伝播する第1の波長の光を収集するよう、配置された光方向付け装置と、
・収集された第1の波長の光を受け、そしてそれの表示画像データを生成するよう設定された画像検出器と、
を有することを特徴とする請求項1から11のいずれか1項に記載のシステム。
【請求項13】
前記光方向付け装置は、前記照明チャネルに位置する偏光子と、前記画像チャネルに位置する偏光フィルタとを有することを特徴とする請求項12に記載のシステム。
【請求項14】
前記光方向付け装置は、前記画像および投影チャネルに収容され、照明された物体から伝播する第1の波長の光を収集し、投影ターゲット上にSLMによって変調された第2の波長の光を合焦させるよう動作させる共通投影および画像レンズユニットを有し、また、前記画像および投影チャネルに収容され、第1および第2の波長の光部分を空間的に離し、前記画像検出器および前記投影および画像レンズユニットそれぞれの方にそれらを方向付ける共通の波長感応ビームスプリッタ/コンバイナを有することを特徴とする請求項12または13に記載のシステム
【請求項15】
前記照明チャネルは、前記画像および投影チャネルから空間的に離されることを特徴とする請求項14に記載のシステム。
【請求項16】
前記照明チャネルは、少なくとも部分的に前記画像チャネルと結合されることを特徴とする請求項14に記載のシステム。
【請求項17】
前記光方向付け装置は、結合された照明および画像チャネルに位置し、物体に伝播する第1の波長の光と物体から戻った第1の波長の光の光路にある偏光ビームスプリッタを有することを特徴とする請求項16に記載のシステム。
【請求項18】
前記照明チャネルは、第1の波長範囲のビームの断面においてリング状の空間的構成を提供するよう設定されることを特徴とする請求項16または17に記載のシステム。
【請求項19】
第1の波長範囲はIR(赤外)範囲を含み、第2の波長範囲は可視スペクトルを含むことを特徴とする請求項2から18のいずれか1項に記載のシステム。
【請求項20】
物体を照明するための照明チャネル、自己から収集された光から物体の画像を生成し、そしてそれを表現する画像データを生成するための画像チャネルを規定するよう設定され、および動作可能とされた画像ユニットと、投影ターゲットの上に物体の画像を投影するための投影チャネルを規定するよう設定され、および動作可能とされた投影ユニットと、を有し、少なくとも2つの照明、画像、および投影チャネルが共通の1つ以上の光学素子によって少なくとも部分的に結合されていることを特徴とする光学ユニット。
【請求項21】
第1の波長範囲の光を生成する光源ユニットと、第2の異なる波長範囲の光を生成するための1つ以上の光源ユニットと、を有する光源アセンブリを有することを特徴とする請求項20に記載の光学ユニット。
【請求項22】
投影ターゲットに位置する物体を、第1の波長範囲を使って画像検出器上に画像化する段階と、それを表現する画像データを生成する段階と、前記画像データに従って変調された第2の異なる波長範囲の光によって形成された画像を投影ターゲット上に投影するために前記画像データを使う段階と、を有することを特徴とする画像を投影するための方法。
【請求項23】
投影ターゲットに位置する物体を、第2の波長範囲を使って画像化する追加の段階と、第2の波長範囲の光によって形成された投影画像と投影ターゲットに位置する物体との相互整列のためにそれを表現する追加の画像データを使う段階と、を有することを特徴とする請求項22に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B−9D】
image rotate


【公表番号】特表2010−538685(P2010−538685A)
【公表日】平成22年12月16日(2010.12.16)
【国際特許分類】
【出願番号】特願2010−516650(P2010−516650)
【出願日】平成20年7月17日(2008.7.17)
【国際出願番号】PCT/IL2008/000990
【国際公開番号】WO2009/010977
【国際公開日】平成21年1月22日(2009.1.22)
【出願人】(510016287)エクスプレイ・リミテッド (2)
【Fターム(参考)】