説明

光導波路

【課題】形状精度、長期信頼性に優れ、導波路損失の少ない光導波路を提供する。
【解決手段】コア層と、該コア層に積層して形成されるクラッド層とを有する光導波路であって、少なくとも前記コア層が、(A)ラジカル重合性官能基を有するポリマーであって、数平均分子量を上記ラジカル重合性官能基のモル数で除した値が3,000以上であるポリマー、(B)特定の構造を有する(メタ)アクリレート、及び(C)ラジカル性光重合開始剤を含む光導波路用感光性樹脂組成物の硬化物からなる光導波路。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信分野や光情報処理分野で用いられる光導波路に関する。
【背景技術】
【0002】
マルチメディア時代を迎え、光通信システムやコンピュータにおける情報処理の大容量化および高速化の要求から、光を伝送媒体とする伝送システムが、公衆通信網、LAN(ローカルエリアネットワーク)、FA(ファクトリーオートメーション)、コンピュータ間のインターコネクト、家庭内配線等に使用されつつある。この伝送システムを構成する要素のうち、光導波路は、例えば、映画や動画等の大容量の情報伝達や光コンピュータ等を実現するための光デバイス、光電集積回路(OEIC)、光集積回路(光IC)等における基本構成要素である。そして、光導波路は、大量の需要があることから鋭意研究される一方、特に、高性能で低コストの製品が求められている。
【0003】
光導波路としては、従来、石英系光導波路やポリマー系光導波路が知られている。
このうち、石英系光導波路は、伝送損失が低いという利点を有する反面、製造工程における加工温度が高いこと、および、大面積のものを作製しがたいこと等のプロセス上の問題があった。
また、ポリマー系光導波路は、加工のし易さや材料設計の幅広さ等の利点を有することから、ポリメチルメタクリレートやポリカーボネート等のポリマー材料を用いたものが検討されてきた。しかし、一般に、ポリマー系光導波路は、耐熱性が劣るという問題がある。そのため、最近では、耐熱性および伝送損失に優れるフッ素化ポリイミドの検討が盛んに行なわれている。
【0004】
ところが、ポリマー材料を用いた場合には、光導波路中のコア部を作製する際に、石英系光導波路と同様にドライエッチング処理を必要とするため、製造に要する時間が多大であるという問題がある。
このような状況下において、近年、フォトリソグラフィー性を付与したエポキシ系紫外線硬化樹脂等の光硬化性材料および該材料を用いた光導波路が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】特開平6−273631号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
従来のポリマー系光導波路の材料には、種々の問題、すなわち、光通信等で用いられる波長650〜1600nmの領域において導波路損失が比較的大きいこと、耐熱性が低いこと、あるいは硬化収縮率が大きいため、基板から剥離したり、精度良く作製できないこと等の問題があり、光導波路に求められる諸特性を全て満足するものがなかった。
この問題を解決するために、ポリマーのフッ素化や重水素化置換等の化学的処理が検討されているが、このような化学的処理を行なった場合にも、種々の問題、すなわち、基板との接着性が低下し剥離を生じること、長期信頼性に問題が生じること、あるいはコア材として用いる場合に、屈折率を所定の程度にまで高めることができないこと等の問題があった。
そこで、本発明は、導波路損失が少なく、長期信頼性に優れ、しかも形状の精度が良い光導波路を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題を解決するために鋭意検討した結果、重合性官能基を有する特定のポリマーと、特定の化学構造を有する芳香族系(メタ)アクリレートと、ラジカル性光重合開始剤とを構成成分として含む感光性樹脂組成物を、光導波路の少なくともコア層を形成するための樹脂組成物として用いることによって、各層に好適な屈折率を付与しつつ、導波路損失が少なく、長期信頼性に優れ、しかも形状の精度に優れる光導波路が得られることを見出し、本発明を完成した。
【0008】
すなわち、本発明(請求項1)の光導波路は、コア層と、該コア層に積層して形成されるクラッド層とを有する光導波路であって、少なくとも上記コア層が、(A)ラジカル重合性官能基を有するポリマーであって、数平均分子量を上記ラジカル重合性官能基のモル数で除した値が3,000以上であるポリマー、(B)下記式(1)及び/又は下記式(2)で表される構造を有する(メタ)アクリレート、及び(C)ラジカル性光重合開始剤を構成成分として含有する感光性樹脂組成物の硬化物からなることを特徴とする。
【化1】

(式中、Rは−(CHCHO)−、−(CHCH(CH)O)−、または−CHCH(OH)CHO−;Xは−C(CH−、−CH−、−O−または−SO−;Yは水素原子またはハロゲン原子を表す。ただし、nは0〜4の整数を表す。)
【化2】

(式中、Rは−(CHCHO)−、−(CHCH(CH)O)−、または−CHCH(OH)CHO−;Yは水素原子、ハロゲン原子、Ph−C(CH−、Ph−、または炭素数1〜20のアルキル基を表す。ただし、nは0〜4の整数、Phはフェニル基を表す。)
【発明の効果】
【0009】
本発明の光導波路は、コア層の形成時のパターニング性に優れ、かつ、優れた伝送特性(低い導波路損失)及び優れた長期信頼性等の物性を有する。
【発明を実施するための最良の形態】
【0010】
以下、本発明を詳細に説明する。
本発明の光導波路は、コア層と、該コア層に積層して形成されるクラッド層とを有する光導波路であって、少なくとも前記コア層が、下記の感光性樹脂組成物の硬化物からなるものである。
本発明の光導波路に用いる感光性樹脂組成物は、以下に説明する成分(A)〜(C)を構成成分として含むものである。
上記感光性樹脂組成物を構成する成分(A)は、ラジカル重合性官能基を有するポリマーであって、数平均分子量をラジカル重合性官能基のモル数で除した値が3,000以上であるポリマーである。
成分(A)中のラジカル重合性官能基としては、付加重合、環化重合、異性化重合、開環重合、重付加、縮合できる官能基のいずれであってもよい。好ましくは、付加重合または開環重合できる官能基であり、例えば、(メタ)アクリロイル基、ビニル基、ビニルエーテルなどの不飽和二重結合を有するものや、オキシラン、オキセタン、オキソラン、チイラン、シクロヘキセンオキシド等の環状反応性基を有するもの等が挙げられる。
成分(A)のポリマー構造としては、特に限定されないが、成分(A)のガラス転移温度(Tg)が50℃以上であることが、導波路の耐熱性向上の点で好ましい。Tgが50℃以上であるポリマーの中でも、下記式(3)、(4)に示すようなポリスチレンやポリメチルメタクリレートを主構造とするポリマーが、耐熱性及び透明性(低損失)の向上の観点から特に好ましい。
【0011】
【化4】

(式中、Rは水素原子またはメチル基;nは28以上の整数を表す。)
【化5】

(式中、Rは水素原子またはメチル基;nは30以上の整数を表す。)
【0012】
成分(A)のポリマーの数平均分子量は、好ましくは3,000以上である。数平均分子量が3,000未満であると、目的とする導波路の形状が得られなかったり、基板上から導波路が剥離するおそれがある。
成分(A)のポリマーの数平均分子量の上限値は、特に限定されないが、好ましくは、50,000以下である。数平均分子量が50,000を超えると、樹脂組成物への溶解性が低下し、均一な樹脂組成物を得ることが困難になる等の欠点がある。
成分(A)のポリマー中のラジカル重合性官能基の含有量は、当該ポリマーの数平均分子量を当該ラジカル重合性官能基のモル数で除した値として、3,000以上、好ましくは5,000以上である。該値が3,000未満であると、硬化物(例えば、コア層)の硬化収縮が大きくなり、光導波路の形状の精度が低下することがある。
ラジカル重合性官能基は、(A)成分のポリマーの化学構造中の末端にあることが好ましい。好ましいラジカル重合性官能基の例としては、(メタ)アクリロイル基が挙げられる。成分(A)のポリマーの市販品としては、AA−6、AS−6(以上、東亞合成(株)製)等が挙げられる。
なお、成分(A)のポリマーは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0013】
上記感光性樹脂組成物中の成分(A)成分の重量割合は、任意成分を含む組成物全量に対して、好ましくは5〜50重量%、より好ましくは10〜40重量%である。該重量割合が5重量%未満であると、目的とする導波路の形状が得られなかったり、基板から導波路が剥離することがある。該重量割合が50重量%を超えると、樹脂組成物の粘度が増加して、光導波路の製造時に塗工性に問題が生ずることがある。
【0014】
上記感光性樹脂組成物を構成する成分(B)は、下記式(1)及び/又は下記式(2)で表される構造を有する(メタ)アクリレートである。下記式(1)、(2)で表される構造以外の構造を有する(メタ)アクリレートを用いた場合には、硬化物(例えば、コア層)の物性、特に光導波路の用途で必要な所定の屈折率を得ることが困難となるほか、耐熱性に問題を生ずるおそれがある。
【化7】

(式中、Rは−(CHCHO)−、−(CHCH(CH)O)−、または−CHCH(OH)CHO−;Xは−C(CH−、−CH−、−O−または−SO−;Yは水素原子またはハロゲン原子を表す。ただし、nは0〜4の整数を表す。)
【化8】

(式中、Rは−(CHCHO)−、−(CHCH(CH)O)−、または−CHCH(OH)CHO−;Yは水素原子、ハロゲン原子、Ph−C(CH−、Ph−、または炭素数1〜20のアルキル基を表す。ただし、nは0〜4の整数、Phはフェニル基を表す。)
【0015】
これらのうち、耐熱性向上の観点からは、式(1)で表される構造を有するジ(メタ)アクリレートが好ましい。
式(1)で表される構造を有するジ(メタ)アクリレートの具体例としては、例えば、エチレンオキシド付加ビスフェノールA(メタ)アクリル酸エステル、エチレンオキシド付加テトラブロモビスフェノールA(メタ)アクリル酸エステル、プロピレンオキシド付加ビスフェノールA(メタ)アクリル酸エステル、プロピレンオキシド付加テトラブロモビスフェノールA(メタ)アクリル酸エステル、ビスフェノールAジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環反応で得られるビスフェノールAエポキシ(メタ)アクリレート、テトラブロモビスフェノールAジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環反応で得られるテトラブロモビスフェノールAエポキシ(メタ)アクリレート、ビスフェノールFジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環反応で得られるビスフェノールFエポキシ(メタ)アクリレート、テトラブロモビスフェノールFジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環反応で得られるテトラブロモビスフェノールFエポキシ(メタ)アクリレート等が挙げられる。
【0016】
中でも、エチレンオキシド付加ビスフェノールA(メタ)アクリル酸エステル、エチレンオキシド付加テトラブロモビスフェノールA(メタ)アクリル酸エステル、ビスフェノールAジグリシジルエーテルと(メタ)アクリル酸とのエポキシ開環反応で得られるビスフェノールAエポキシ(メタ)アクリレート、テトラブロモビスフェノールAエポキシ(メタ)アクリレート等は、特に好ましく用いられる。
【0017】
式(1)で表される構造を有するジ(メタ)アクリレートの市販品としては、例えば、ビスコート#700、#540(以上、大阪有機化学工業(株)製)、アロニックスM−208、M−210(以上、東亞合成(株)製)、NKエステルBPE−100、BPE−200、BPE−500、A−BPE−4(以上、新中村化学(株)製)、ライトエステルBP−4EA、BP−4PA、エポキシエステル3002M、3002A、3000M、3000A(以上、共栄社化学(株)製)、KAYARAD R−551、R−712(以上、日本化薬(株)製)、BPE−4、BPE−10、BR−42M(以上、第一工業製薬(株)製)、リポキシVR−77、VR−60、VR−90、SP−1506、SP−1506、SP−1507、SP−1509、SP−1563(以上、昭和高分子(株)製)、ネオポールV779、ネオポールV779MA(日本ユピカ(株)製)等が挙げられる。
【0018】
式(2)で表される構造を有するモノ(メタ)アクリレートの具体例としては、例えば、フェノキシエチル(メタ)アクリレート、フェノキシ−2−メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、2−フェニルフェノキシエチル(メタ)アクリレート、4−フェニルフェノキシエチル(メタ)アクリレート、3−(2−フェニルフェニル)−2−ヒドロキシプロピル(メタ)アクリレート、エチレンオキシドを反応させたp−クミルフェノールの(メタ)アクリレート、2−ブロモフェノキシエチル(メタ)アクリレート、4−ブロモフェノキシエチル(メタ)アクリレート、2,4−ジブロモフェノキシエチル(メタ)アクリレート、2,6−ジブロモフェノキシエチル(メタ)アクリレート、2,4,6−トリブロモフェニル(メタ)アクリレート、2,4,6−トリブロモフェノキシエチル(メタ)アクリレート等が挙げられる。
【0019】
中でも、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、エチレンオキシドを反応させたp−クミルフェノールの(メタ)アクリレート、2,4,6−トリブロモフェノキシエチル(メタ)アクリレート等は、特に好ましく用いられる。
【0020】
式(2)で表される構造を有するモノ(メタ)アクリレートの市販品としては、例えば、アロニックスM113、M110、M101、M102、M5700、TO−1317(以上、東亞合成(株)製)、ビスコート#192、#193、#220、3BM(以上、大阪有機化学工業(株)製)、NKエステルAMP−10G、AMP−20G(以上、新中村化学工業(株)製)、ライトアクリレートPO−A、P−200A、エポキシエステルM−600A(以上、共栄社化学(株)製)、PHE、CEA、PHE−2、BR−30、BR−31、BR−31M、BR−32(以上、第一工業製薬(株)製)等が挙げられる。
【0021】
上記感光性樹脂組成物中の成分(B)の重量割合は、任意成分を含む組成物全量に対して、好ましくは5重量%以上、より好ましくは10重量%以上、特に好ましくは15重量%以上である。該重量割合が15重量%以上であると、上記感光性樹脂組成物を光導波路のコア部分に用いることによって、より高い屈折率及びより低い導波路損失を有する光導波路を得ることができる。
成分(B)の重量割合の上限値は、特に限定されないが、好ましくは80重量%以下、より好ましくは70重量%以下である。該重量割合が80重量%を超えると、導波路の形状が悪化したり、長期信頼性に問題が生じることがある等の欠点がある。
【0022】
上記感光性樹脂組成物を構成する成分(C)は、ラジカル性光重合開始剤である。
成分(C)の具体例としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−2−フェニルアセトフェノン、キサントン、フルオレノン、べンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4'−ジメトキシベンゾフェノン、4,4'−ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、チオキサントン、ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド等が挙げられる。
【0023】
成分(C)の市販品としては、例えば、Irgacure184、369、651、500、819、907、784、2959、CGI1700、CGI1750、CGI11850、CG24−61、Darocurl116、1173(以上、チバ・スペシャルティ・ケミカルズ(株)製)、LucirinLR8728(BASF社製)、ユベクリルP36(UCB社製)等が挙げられる。
なお、成分(C)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0024】
上記感光性樹脂組成物中の(C)成分の重量割合は、任意成分を含む組成物全量に対して、通常、0.01〜10重量%、好ましくは0.5〜7重量%である。該重量割合を10重量%以下とすることによって、樹脂組成物の硬化特性、パターニング性、取り扱い性等を良好にすることができ、伝送特性に優れた光導波路を得ることができる。また、該重量割合を0.01重量%以上とすることによって、樹脂組成物の硬化速度の低下を防止し、パターニング性を良好にすることができ、また、硬化物(例えば、コア層)の力学特性等を良好にすることができる。
【0025】
上記感光性樹脂組成物には、任意成分として、成分(A)及び成分(B)成分と異なる(メタ)アクリロイル基またはビニル基を含有するモノマー(E)(以下、「不飽和モノマー」という。)を使用することができる。本発明で用いられる不飽和モノマーは、単官能不飽和モノマー及び多官能不飽和モノマーを含む。
【0026】
単官能不飽和モノマーの具体例としては、例えば、N−ビニルピロリドン、N−ビニルカプロラクタム、ビニルイミダゾール、ビニルピリジン等のビニルモノマー;イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、4−ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、t−オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、N,N−ジエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、ヒドロキシブチルビルエーテル、ラウリルビニルエーテル、セチルビニルエーテル、2−エチルヘキシルビニルエーテルおよび下記式(5)、(6)
【0027】
【化9】

(式中、Rは水素原子またはメチル基;Rは炭素数2〜8のアルキレン基;nは1〜8の整数を表す。)、
【化10】

(式中、RおよびRは各々独立して水素原子またはメチル基;Rは炭素数2〜8のアルキレン基;nは1〜8の整数を表す。)
で表される単官能モノマー等が挙げられる。
【0028】
本発明で用いられる多官能不飽和モノマーは、2官能性及び3官能性以上の不飽和モノマーを含む。ここで、2官能性不飽和モノマーとは、(メタ)アクリロイル基またはビニル基を分子中に2つ有する不飽和モノマーであり、その具体例としては、例えば、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート等のアルキルジオールジアクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート等のポリアルキレングリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンメタノールジアクリレート等が挙げられる。
【0029】
3官能性以上の不飽和モノマー、すなわち、(メタ)アクリロイル基を3つ以上有する(メタ)アクリレートとしては、3価以上の多価アルコールの(メタ)アクリレートが挙げられる。該(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリス(2−アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールポリアクリレート等が挙げられる。
これらの不飽和モノマーは、単独でまたは2種以上を組み合せて用いることができる。
【0030】
上記感光性樹脂組成物には、さらにポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエポキシ(メタ)アクリレート等のオリゴマーまたはポリマー、あるいは(メタ)アクリレート以外のビニル基としてビニルエーテルなどの不飽和二重結合を有するもの、オキシラン、オキセタン、オキソラン、チイラン、シクロヘキセンオキシドなどの環状反応性基を有するモノマー、オリゴマー、ポリマーを配合してもよい。
【0031】
上記感光性樹脂組成物には、さらに光増感剤を配合することができる。
光増感剤の具体例としては、例えば、トリエチルアミン、ジエチルアミン、N−メチルジエタノールアミン、エタノールアミン、4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル等が挙げられる。
光増感剤の市販品の具体例としては、例えば、ユベクリルP102、103、104、105(以上、UCB社製)等が挙げられる。
【0032】
上述の成分以外にも各種添加剤として、例えば、酸化防止剤、紫外線吸収剤、光安定剤、シランカップリング剤、塗面改良剤、熱重合禁止剤、レベリング剤、界面活性剤、着色剤、保存安定剤、可塑剤、滑剤、溶媒、フィラー、老化防止剤、濡れ性改良剤、離型剤等を必要に応じて配合することができる。
【0033】
ここで、酸化防止剤の市販品としては、例えば、Irganox1010、1035、1076、1222(以上、チバ・スペシャルティ・ケミカルズ(株)製)、Antigen
P、3C、FR、GA−80(住友化学工業(株)製)等が挙げられる。
紫外線吸収剤の市販品としては、例えば、Tinuvin P、234、320、326、327、328、329、213(以上、チバ・スペシャルティ・ケミカルズ(株)製)、Seesorb102、103、110、501、202、712、704(以上、シプロ化成(株)製)等が挙げられる。
【0034】
光安定剤の市販品としては、例えば、Tinuvin 292、144、622LD(以上、チバ・スペシャルティ・ケミカルズ(株)製)、サノールLS770(三共(株)製)、Sumisorb TM−061(住友化学工業(株)製)等が挙げられる。
シランカップリング剤としては、例えば、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メタアクリロキシプロピルトリメトキシシラン等が挙げられる。市販品としては、SH6062、6030(以上、東レ・ダウ
コーニング・シリコーン(株)製)、KBE903、603、403(以上、信越化学工業(株)製)等が挙げられる。
【0035】
塗面改良剤としては、例えば、ジメチルシロキサンポリエーテル等のシリコーン添加剤が挙げられる。市販品としては、DC−57、DC−190(以上、ダウ コーニング社製)、SH−28PA、SH−29PA、SH−30PA、SH−190(以上、東レ・ダウ
コーニング・シリコーン(株)製)、KF351、KF352、KF353、KF354(以上、信越化学工業(株)製)、L−700、L−7002、L−7500、FK−024−90(以上、日本ユニカー(株)製)等が挙げられる。
離型剤の市販品としては、プライサーフA208F(第一工業製薬(株)製)等が挙げられる。
【0036】
上記感光性樹脂組成物は、前記各成分を常法により混合して製造することができる。このようにして調製される樹脂組成物の粘度は、通常、50〜20,000cp/25℃、好ましくは100〜10,000cp/25℃、より好ましくは200〜5,000である。該粘度が高すぎると、基板に樹脂組成物を塗布する際に、塗布ムラやうねりが生じたり、あるいはコア層の形成時に、パターニング性が悪化して目的とする形状が得られない。逆に、粘度が低すぎても、目標とする膜厚が得られにくい上に、パターニング性が悪化することがある。
【0037】
本発明の光導波路を構成するコア層及びクラッド層のうち、少なくともコア層は、上述の感光性樹脂組成物の硬化物からなる。クラッド層の材料としては、例えば、上述の感光性樹脂組成物や、上述の感光性樹脂組成物以外の他の感光性樹脂組成物が挙げられる。
放射線によって硬化させて得られる上記感光性樹脂組成物の硬化物(例えば、コア層)は、好ましくは、以下の物性を有するものである。
上記感光性樹脂組成物の硬化物の硬化収縮率は、8%以下であることが好ましく、7%以下であることがより好ましい。該硬化収縮率が8%よりも大きいと、信頼性試験後に基板からの剥離等が生じることがある。また、上記樹脂組成物をコア層に用いた場合、設計どおりの形状を得られないことがある。
上記感光性樹脂組成物の硬化物は、光導波路のコア層として使用された場合、25℃および波長824nmでの屈折率が、1.53以上であることが好ましく、1.54以上であることがより好ましい。該屈折率が1.53未満であると、上記樹脂組成物をコア層に用いて導波路を形成した場合、良好な伝送損失が得られないことがある。
【0038】
上記感光性樹脂組成物の硬化物は、ガラス転移温度が50℃以上であることが好ましく、80℃以上であることがより好ましい。該温度が50℃未満では、光導波路の耐熱性を十分に確保できないことがある。ここで、「ガラス転移温度」は、共振型動的粘弾性測定装置において振動周波数10Hzでの損失正接が最大値を示す温度として定義される。
【実施例】
【0039】
以下、本発明を実験例に基いて具体的に説明する。ただし、本発明は、これらの実験例(実施例)によって限定されるものではなく、特許請求の範囲に記載の範囲内において種々の実施形態の変更が可能である。
[実施例1〜4、比較例1〜3]
表1に記載の各成分を仕込み、液温を50〜60℃に制御しながら1時間攪拌し、液状硬化性組成物を得た。なお、表1中、各成分の添加量の単位は、重量部である。
<成分>
表1中の成分は、次のとおりである。
「AS−6」:マクロマーAS−6(東亞合成(株)製);式(3)で表されるポリマー(数平均分子量6,000、ガラス転移温度100℃)
「AA−6」:マクロマーAA−6(東亞合成(株)製);式(4)で表されるポリマー(数平均分子量6,000、ガラス転移温度105℃)
「V779」:ネオポールV779(日本ユピカ(株)製)
(化合物名:テトラブロモビスフェノールAエポキシアクリレート)
「Vis#700」:ビスコート700(大阪有機工業(株)製)
(化合物名:ビスフェノールAポリエトキシジアクリレート)
「BR−31」:ニューフロンティアBR31(第一工業製薬(株)製)
(化合物名:トリブロモフェノキシエチルアクリレート)
「IRG184」:Irgacure184(チバ・スペシャリティ・ケミカルズ製)
(化合物名:1−ヒドロキシ−シクロヘキシル−フェニルケトン)
「TMPTA」:ビスコート295(大阪有機化学(株)製)
(化合物名:トリメチロールプロパントリアクリレート)
「IBXMA」:(大阪有機化学(株)製)
(化合物名:イソボルニルメタアクリレート)
「SA1002」:(三菱化学(株)製)
(化合物名:トリシクロデカンジメタノールジアクリレート)
「VP」:VP(BASF製)
(化合物名:N−ビニルピロリドン)
【0040】
<評価法>
1.屈折率の評価
824nmでの屈折率を以下の手法により測定した。まず、スピンコーターを用いて、回転数および時間を調整しながら、4インチのシリコンウエファ基板上に液状硬化性組成物を7μm厚になるように塗布して樹脂組成物層を形成させた後、窒素雰囲気下、1.0J/cmの紫外線をマスクアライナーから樹脂組成物層に照射し、硬化膜を得た。次いで、日本メトリコン製プリズムカップラーを用いて、この硬化膜の屈折率(824nm、25℃)を測定した。
【0041】
2.ガラス転移温度の評価
アプリケーターを用いて、ガラス基板上に樹脂組成物を60μm厚になるように塗布して樹脂組成物層を形成させた後、窒素雰囲気下、コンベア式UV照射装置を用いて、1.0J/cmの紫外線を樹脂組成物層に照射し、硬化膜を得た。次いで、共振型動的粘弾性測定装置を用いて、振動周波数10Hzの振動を与えながら、この硬化膜の損失正接の温度依存性を測定した。得られた損失正接の最大値を示す温度をガラス転移温度とした。
【0042】
3.硬化収縮率の評価
比重瓶を用いて23℃での樹脂組成物の液密度(D1)を測定した。続いて、上記作製条件にて厚さ120μmの硬化膜を作製し、23℃、50%の恒温恒湿器中で24時間放置した。その後、20mm角の大きさに切り、試験片の重量(W1)、及び25℃での蒸留水中での重量(W2)を測定し、下式:
フィルム密度=[W1/(W1−W2)]×0.9971
からフィルム密度(D2)を算出した。D1、D2を用いて、下式:
硬化収縮率=[1−(D1/D2)]×100
から硬化収縮率を算出した。
【0043】
4.パターニング性の評価
スピンコーターを用いて、回転数および時間を調整しながら、4インチのシリコンウエファ基板上に樹脂組成物を50μm厚になるように塗布して樹脂組成物層を形成させた後、空気雰囲気下、1.0J/cmの紫外線を、50μm幅の分岐のない直線形状を有するフォトマスクを介して、マスクアライナーから樹脂組成物層に照射した。次いで、アセトンを用いて、樹脂組成物層を3分間現像処理した後、70℃に設定したオーブン中で基板を10分間加温した。
得られたパターンを光学顕微鏡にて観察し、目的のコア形状(50μm±1μm)が得られた場合を「◎」、50μm±2μmの範囲内の形状が得られた場合を「○」、形状が変形していたり、50±2μmの範囲を外れる形状が得られた場合を「×」とした。
【0044】
5.伝送損失の評価
スピンコーターを用いて、回転数および時間を調整しながら、4インチのシリコンウエファ基板上にElectro−Lite社製ELC2500clear(液屈折率n25=1.52)を50μm厚になるように塗布した後、当該塗布層に、空気雰囲気下、1.0J/cmの紫外線をマスクアライナーから照射した。次いで、スピンコーターを用いて、基板上に樹脂組成物を50μm厚になるように塗布した後、空気雰囲気下、1.0J/cmの紫外線を、50μm幅の分岐のない直線形状を有するフォトマスクを介して当該塗布層に照射した。アセトンを用いて、照射後の塗布層を3分間現像処理した後、70℃に設定したオーブン中で基板を10分間加温した。さらに、この基板上にElectro−Lite社製ELC2500clearを50μm厚になるように再び塗布した後、紫外線を基板に照射して、直線状のコアラインを有するチャネル導波路を得た。
本導波路の端面をへき開にてカットした後、マルチモードファイバ(50μm径)を介して850nmの光を挿入し、カットバック法により導波路損失を測定した。カットバックは、導波路長5cmから1cm刻みに4点測定して行なった。得られた光強度を導波路長に関してプロットし、その傾きから損失値を算出した。得られた損失値が0.5dB/cm以下であるときを「○」、それよりも高いときを「×」として評価した。
【0045】
6.長期信頼性の評価
作製した導波路(導波路長10mm)に対し、冷熱衝撃試験を実施した。具体的には、導波路の保存温度を−40℃と85℃で交互に繰り返し、500サイクル終了後の損失を測定した。測定後の損失が、1.0dB以内であったものを「○」、それ以上に増加したものを「×」とした。
得られた結果を表1に示す。
【0046】
【表1】

【0047】
表1より、本発明の光導波路(実施例1〜4)は、コア層の形成時のパターニング性に優れ、かつ、優れた伝送特性(低い導波路損失)及び優れた長期信頼性を有することがわかる。
一方、比較例1では、成分(A)を含まないため、長期信頼性試験でガラス基板からの剥離が生じ、伝送損失が大きくなった。比較例2、3では、成分(B)を含まないため、クラッド層と十分な屈折率差が確保できず初期の伝送損失が大きくなった。また、比較例3では、硬化収縮率が大きく、導波路の形状の精度が劣るとともに、長期信頼性試験でガラス基板からの剥離が生じ、伝送損失が大きくなった。

【特許請求の範囲】
【請求項1】
コア層と、該コア層に積層して形成されるクラッド層とを有する光導波路であって、少なくとも上記コア層が、下記成分(A)〜(C)を含む光導波路用感光性樹脂組成物の硬化物からなることを特徴とする光導波路。
(A)ラジカル重合性官能基を有するポリマーであって、数平均分子量を上記ラジカル重合性官能基のモル数で除した値が3,000以上であるポリマー
(B)下記式(1)及び/又は下記式(2)で表される構造を有する(メタ)アクリレート
(C)ラジカル性光重合開始剤
【化1】

(式中、Rは−(CHCHO)−、−(CHCH(CH)O)−、または−CHCH(OH)CHO−;Xは−C(CH−、−CH−、−O−または−SO−;Yは水素原子またはハロゲン原子を表す。ただし、nは0〜4の整数を表す。)
【化2】

(式中、Rは−(CHCHO)−、−(CHCH(CH)O)−、または−CHCH(OH)CHO−;Yは水素原子、ハロゲン原子、Ph−C(CH−、Ph−、または炭素数1〜20のアルキル基を表す。ただし、nは0〜4の整数、Phはフェニル基を表す。)
【請求項2】
上記成分(A)は、数平均分子量を上記ラジカル重合性官能基のモル数で除した値が5,000以上のポリマーである請求項1に記載の光導波路。
【請求項3】
上記成分(A)のポリマー中のラジカル重合性官能基が、(メタ)アクリロイル基である請求項1又は2に記載の光導波路。
【請求項4】
上記成分(A)のポリマーのガラス転移温度が50℃以上である請求項1〜3のいずれか1項に記載の光導波路。

【公開番号】特開2008−116971(P2008−116971A)
【公開日】平成20年5月22日(2008.5.22)
【国際特許分類】
【出願番号】特願2007−296573(P2007−296573)
【出願日】平成19年11月15日(2007.11.15)
【分割の表示】特願2003−287148(P2003−287148)の分割
【原出願日】平成15年8月5日(2003.8.5)
【出願人】(000004178)JSR株式会社 (3,320)
【Fターム(参考)】