説明

光機能性薄膜素子、その製造方法、及びそれを用いた物品

【課題】 素子内部で発生した光を外部へ放射する際に損失を極力抑制して、光機能性薄膜素子の発光性能を高めた光機能性薄膜素子を提供する。表示体又は照明体として使用できる光機能性薄膜素子を用いた物品を提供する。さらに、発光性能の優れた光機能性薄膜素子が容易に得られる光機能性薄膜素子の製造方法を提供する。
【解決手段】 第1の電極(陽極1)と第2の電極(陰極5)との間に光機能性薄膜(発光層4)を挟む光機能性薄膜素子(有機EL素子1)であって、第1の電極(陽極1)と光機能性薄膜(発光層4)との間である第1の界面、光機能性薄膜(発光層4)と第2の電極(陰極5)との間である第2の界面、及び第1の電極(陽極1)と空気との間である第3の界面の少なくともいずれかに屈折率整合処理をして形成された屈折率調整層6,7,8を備えることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ディスプレイ、照明体、光通信用光源等の各用途に適用される光機能性薄膜素子、その製造方法、及びそれを用いた物品に関する。
【背景技術】
【0002】
最近の情報化、IT技術の進展はすさまじく、光を発する発光素子(例えば、ルミネッセンス素子、レーザなど)の開発が加速している。各素子では、素子内部で生成した光を外部に効率良く、さらに長期間に亘って外部に出射させることが肝心であることから、発光効率の良い材料の開発、長寿命化の工夫、さらに光の取出し効率(素子内部で発生した光を損失させることなく外部へ出射させる割合)を上げる研究が進められている。
【0003】
発光素子は、各種ディスプレイ、メータ、信号、インジケータ、照明体、光通信用光源などの用途に適用されており、フラットTVを例に挙げると、高輝度、広視野角をメリットとしたプラズマディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、フィールドエミッションディスプレイなどによる方式が勢力的に研究されている。TV以外にも、パソコン用ディスプレイ、自動車用ナビゲーションなどのフラットパネルディスプレイ、あるいはモバイル化の進展と共に、携帯電話、電子ペーパ及びモバイル用パソコンとしても利用されている。
【0004】
上記発光素子は、基本的に、発光層の両側に陽極と陰極とを配置したサンドイッチ型の構成を有しており、素子の内部で発生した光を外部に取出すために、光の取り出し面となる陽極又は陰極のいずれかに光透過性を有する電極(透明電極)を用いている。発光素子では、陽極及び発光層の接合界面と、陰極及び発光層の接合界面とにおける荷電キャリア(電子・正孔)の動きを積極的に利用して、電子的又は光学的な機能を発現させている。
【0005】
発光素子の代表例として、最近脚光を浴びている有機エレクトロルミネッセンス(EL)素子を挙げて、その基本構成及び作用を説明する。
【0006】
有機エレクトロルミネッセンス(EL)素子は、透明基板(例えば、ガラスや樹脂)上に、陽極となる透明電極(例えば、ITO: Indium Tin Oxide)を配置し、陽極上に発光層(光機能性薄膜)と、陰極となる電極(Mg・Ag)を各々配置した多層積層構造とし、陽極と陰極との間に電源を接続して電圧を印加することにより発光する。なお、ここでは、基材の存在する有機エレクトロルミネッセンス素子としたが、基材のない構成にしても良い。
【0007】
上記有機エレクトロルミネッセンス素子では、電源により陽極と陰極の間に印加した電圧により、正孔は、陽極側から発光層に向かい接合界面の電位障壁の高さΔφを乗り越えて注入され、電子は、陰極側から発光層に向かい接合界面の電位障壁の高さΔφを超えて注入される。注入された正孔と電子は再結合することにより発光し、この発光を陽極(透明電極)側から出射させて発光素子の外部に光を取出している。
【0008】
ところが、有機エレクトロルミネッセンス素子の発光層内部で光を効率良く発生させたとしても、各界面で光損失が発生し、基材及び陽極を通じて外部に光を効率良く取出すことができない場合がある。
【0009】
光損失は、発光層で発生した光が導波又は伝播して、発光層内部での全反射効果により、素子の端部に導波して漏出することで発生する。また、電極(陽極、陰極)及び基材においても、発光層と同様に、全反射効果により素子端部に導波、漏出して光損失が生じる。さらに素子端部からの光の漏出に加えて、導波中に光が吸収されて光損失が生じる場合もある。
【0010】
前述した全反射効果は、主に有機エレクトロルミネッセンス素子の各層の界面における屈折率差Δnに起因するが、この屈折率差Δnは、隣接する2つの層又は電極の各材料の屈折率の違いにより生じる。
【0011】
代表的な材料を例に挙げて、各界面での屈折率差を説明する。基材(ガラス)の屈折率nは1.5、第1の電極(ITO)である陽極の屈折率nは2.0、発光層(Alq3)の屈折率nは1.6、第2の電極である屈折率nは2.0、空気の屈折率nは1.0である。なお、ここで言う屈折率とは、一般的にD線(波長589 nm)での値を言う(以下、単に屈折率と表記している場合はこれに準じる)隣接する各界面の差、すなわち屈折率差Δnを算出すると、各界面(第1の界面〜第4の界面)において屈折率差Δnが、約0.4から0.5まで存在することになる。
【0012】
このように各界面において屈折率差Δnが存在すると、前述した全反射効果によって光の損失が生じ、発光効率が低下することから、発光層内部で生じた光の損失を軽減することが望まれていた。
【0013】
屈折率差Δnを軽減するために、陽極と基材の間に低屈折率のシリカエアロゲル層(n=1.1)を挿入した有機EL素子が提案されている。
【0014】
また、基材上に、メサ形の基板層とバッファー層を配置し、その上部に、陽極、発光層、陰極を順に積層した有機EL素子が開示されている(例えば、非特許文献1参照)。この有機EL素子によれば、メサ型の基板層とバッファー層とのテーパ角を約35°〜40°とすることで、光の取出し効率が最大になる。
【非特許文献1】「有機ELディスプレイにおける高輝度・高効率・長寿命化技術」、第113頁〜第114頁、技術情報協会発行
【発明の開示】
【発明が解決しようとする課題】
【0015】
しかしながら、前述したシリカエアロゲルにより低屈折率層を光取出し側の界面に挿入した有機EL素子の場合には、例えば、ゾルゲル法を利用するため、ガラス等の限られた基材上にしか層を形成することができないという問題を有していた。また、均一なシリカエアロゲル層を均一に形成することが困難であれば、着色したり、光透過性が低下する恐れも有していた。さらに、界面に、このような低屈折率層を挿入すると、電位障壁を形成し、電子と正孔のスムーズな移動を妨げることになり、発光効率が低下し、素子の寿命が著しく低下する恐れを有していた。
【0016】
また、基材上にメサ形の基板層とバッファー層を配置する場合には、製造プロセスの工程が複雑となるだけではなく、高精度に加工する工程が必要になる。また、折角、そのような微細構造を形成したとしても、その微細構造の表面が汚れ又は傷つき、光の取出し効率が激減する恐れをも有していた。さらに、このような微細構造が、ガラスなどの比較的高強度かつフラットな基材上に形成した場合には、それほど問題にはならないが、基材がフレキシブルな樹脂である場合には、温度又は湿度の変化によって微細構造の寸法自体が変化してしまう恐れを有していた。
【0017】
以上説明したように、低屈折率層を設けた有機EL素子、あるいは基材上にメサ型の微細構造を形成した有機EL素子は、光の取出し効率を高める上で有効ではあるが、実用化する上で、前述した様々な問題を有していた。
【課題を解決するための手段】
【0018】
本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の光機能性薄膜素子は、第1の電極と第2の電極との間に光機能性薄膜を挟む光機能性薄膜素子であって、第1の電極と光機能性薄膜との間である第1の界面、光機能性薄膜と第2の電極との間である第2の界面、及び第1の電極と空気との間である第3の界面の少なくともいずれかに屈折率整合処理をして形成された屈折率調整層を備えることを要旨とする。
【0019】
本発明の光機能性薄膜素子の製造方法は、第1の電極、第2の電極及び光機能性薄膜の少なくともいずれかの表面を酸溶液又はアルカリ溶液に浸漬し、浸漬した面を純水によりリンスして、乾燥させて屈折率調整層とし、第1の電極、第2の電極及び光機能性薄膜を接合して光機能性薄膜素子とすることを要旨とする。
【0020】
本発明の物品は、上記記載の光機能性薄膜素子を用いた表示体又は照明体のいずれかの物品であることを要旨とする。
【発明の効果】
【0021】
本発明の光機能性薄膜素子によれば、素子内部で発生した光を外部へ放射する際に損失を極力抑制して発光性能を高めることができる。
【0022】
本発明の光機能性薄膜素子の製造方法によれば、発光性能の優れた光機能性薄膜素子を容易に得ることができる。
【0023】
本発明の物品によれば、表示体や照明体としても使用することができる。
【発明を実施するための最良の形態】
【0024】
以下、添付図面を参照して、本発明の実施の形態に係る光機能性薄膜素子、その製造方法、及びそれを用いた物品を説明する。
【0025】
図1は、本発明の実施の形態に係る光機能性薄膜素子の一例である有機EL素子1の断面図である。有機EL素子1は、基材上2に、第1の電極である陽極3と、機能性薄膜としての発光層4と、第2の電極である陰極5と、を順次積層し、基材2表面、基材2と陽極3との間及び陽極3と発光層4との間に、それぞれ屈折率調整層6,7,8を配置している。陽極3と陰極5には電源9を接続して、電圧を印加可能にしている。
【0026】
陽極3としては、光透過性を有し、かつ、電圧印加時に正孔注入が容易な材料を用いることが好ましく、正孔注入が容易であれば、ITO(酸化インジウム錫)以外のSnO2(酸化錫)、ZnO(酸化亜鉛)、FTO(F ドープ酸化錫)などの無機系酸化物を用いても良く、また、無機-有機コンポジット系や後述する有機透明導電体を用いても良い。陰極5としては、光を反射し、かつ、電子を注入し易い、所謂、仕事関数の低い材料を用いることが好ましく、例えば、Mg/Ag又はAlを用いても良い。このように陽極3側から光を入射させた後、発光層4から生成した光を陰極5側から反射させることによって、陽極3側から発光させることが可能になる。
【0027】
なお、図1に示す有機EL素子1では、屈折率調整層6,7,8を三箇所に形成したが、三箇所全てに屈折率調整層6,7,8を配置しなくても良く、隣接する二つの層の屈折率差が大きい場合に、二つの層の界面に屈折率調整層6,7,8を配置すると良い。このように屈折率調整層6,7,8を形成することにより、有機EL素子内部で生成した光を、光の取出し方向に位置する各界面での全反射による光閉じ込めによって端部に導波、漏出し、また、吸収による光の損失を極力軽減することができる。さらに、この屈折率調整層6,7,8は、電極(陽極、陰極)、発光層のいずれかの面に対して処理することで屈折率が調整された層であるため、新たに層を挿入する必要が無くなる。
【0028】
また、本図では、陽極3側から光を取出す例を示したが、陽極3と陰極5に、光透過性を有する透明導電膜(例えば、ITO(Indium Tin Oxide))を用いることで、両電極3,5側から光を取出すことが可能となり、透明素子又は透明ディスプレイの用途に利用できる。
【0029】
次に、屈折率調整層6,7,8の形成方法を説明する。この形成方法を大別すると二種類の方法がある。
【0030】
第一の方法は、屈折率調整層を配置する界面を形成する隣接する各層の二種類の材料を適切な割合にして混合し、屈折率を変えた屈折率調整層6,7,8を形成する方法である。
【0031】
図1に示す有機EL素子1を例に挙げると、陽極3であるITO(波長589 nmでの屈折率n=2.0)と、発光層4であるAlq3(波長589 nmでの屈折率n=1.6)とを積層した状態にして、Alq3のガラス転移温度(79℃)近傍で真空加熱、高エネルギのUV光又は電子線を照射して、界面に存在する二種類の材料を拡散させる。二種類の材料を拡散させると、界面では各々の単独の屈折率から両者の拡散状況に応じて屈折率を変えることが可能になる。前述したように、ITOの屈折率nは2.0、Alq3の屈折率nは1.6であることから、両者の屈折率nである1.6〜2.0の範囲内にして屈折率を調整することができる。また、熱、光あるいは電子線による相互拡散であるため、界面に見かけ上形成される拡散層も極めて薄く(約0.1〜約数nm)、陽極3と陰極5の間に電圧を印加した場合でも、新たな電位障壁の形成又はそれに基づく電子・正孔の移動に大きな影響を及ぼすことはない。しかしながら、陽極3又は発光層4自体にも、熱的又は光・電子エネルギが暴露されて、それらの膜質(結晶性、配向性、表面モルフォロジー)にも影響を与えることになるため、陽極3と発光層4の物性値と屈折率整合処理条件には十分な留意が必要になる。
【0032】
第二の方法は、屈折率調整層を形成する界面となる両側の層を酸溶液又はアルカリ溶液によって浸漬した後、純水によりリンスし、乾燥した後、含有水分を除去して屈折率調整層を形成する方法である。図1に示す有機EL素子1を例に挙げると、基材2表面、基材2と陽極3との間の界面、陽極3と発光層4との間の界面に対して、屈折率調整層6,7,8を形成するための屈折率調整処理をする。
【0033】
ここで、酸溶液又はアルカリ溶液は、特に限定されるものではなく、硫酸(H2SO4)、塩酸(HCl)、過塩素酸(HClO3)、硝酸(HNO3)、酢酸(Ch3COOH)などの酸溶液、水酸化ナトリウム(NaOH)、アンモニア(NH3)及び水酸化カリウム(KOH)などのアルカリ溶液を用いることができる。
【0034】
なお、酸溶液又はアルカリ溶液により屈折率の値を変えられる程度は、屈折率を調整する処理面となる材料の種類又は厚さ、その表面粗さ等、屈折率整合処理条件(処理溶液の種類、濃度、温度、浸漬時間など)が密接に関与するため一義的に決定することはできないが、室温下では高濃度溶液になるほど、未処理時の屈折率に比べて短時間で屈折率を小さくできることが判った。
【0035】
図2に、陽極3として用いられる無機系透明導電体(ITO)と有機系透明導電体(PEDOT/PSS(=1/6)膜)とに対し、硫酸溶液により浸漬処理をした場合としない場合の比較実験を行い、屈折率の変化を調べた。
【0036】
ITO及びPEDOT/PSSの透明導電体膜は、いずれも石英ガラス基材上にコートしたものであり、ITOはスパッタ法によって形成し、PEDOT/PSS(=1/6)膜はスピンコート法によって形成し、ITO膜とPEDOT/PSS膜の厚さを、いずれも200nmとなるように調整した。
【0037】
これらの透明導電体膜を硫酸溶液に浸漬する際、硫酸溶液の濃度1N、温度を室温、浸漬時間を600秒として、硫酸溶液に浸漬した後、純水によりリンスし、その後、150℃で20分間乾燥処理をした。
その後、光学式薄膜測定システム(Scientific Computing International社製、Film Tek3000)を用いて、石英ガラス単体と透明導電膜/石英ガラスとに対して、それぞれ透過スペクトルと反射スペクトルとを同時に測定して、屈折率nを算出した。
【0038】
図2から明らかなように、波長589nmにおける未処理ITO薄膜の屈折率nは2.0であったが、硫酸溶液による処理をすると同波長で1.7となる、0.3小さくなることが判明した。さらに、未処理のPEDOT/PSS薄膜に関しても、その屈折率nは1.43から1.33となり、0.1小さくなることが判明した。他の種類の透明導電膜である電極3,5又は発光層4についても同様の実験をしたところ、いずれの場合にも未処理の状態に比べて、酸溶液又はアルカリ溶液により処理をすると、屈折率nが小さくなることが判明した。
【0039】
このように酸処理又はアルカリ処理をすることで、透明導電膜である電極3,5又は発光層4の屈折率nが小さくなる理由は明確ではないが、陽極3又は陰極5及び発光層4に対して、酸溶液又はアルカリ溶液による浸漬処理をすると、例えば、酸(H2SO4、HCl、HNO3など)処理では、プロトン(H+)がそれらの構成物質の一部と置換されることが考えられる。酸としてH2SO4を用いて処理した場合を考えると、陽極3にSO4-がドープされて、以下の式(1)の反応が進み、H2Oが生成するものの、後工程にて加熱処理をすると量が減り、これに伴いOH-イオン量が低下するものと考えられる。
【0040】
R-SO3Na + H2SO4 → (R-SO3H + H2O) + Na2SO4 …式(1)
このような推定をした根拠として、石英ガラス基板上に形成した電極(PEDOT/PSS)に対して、未処理の場合と、H2SO4により酸処理をした場合とについて、「飛行時間型二次イオン質量分析法(TOF-SIMS分析)」によるOH-イオンの挙動を調べた。図3(a)に、未処理の場合の結果、図3(b)に、H2SO4によって酸処理をした場合の結果をそれぞれ示す。図3(a)(b)から明らかなように、H2SO4により酸処理をすると、OH-イオン量が著しく低下することが判明した。
【0041】
このように相手側物質の分子又は原子との置換作用及び欠陥部への導入作用により、未処理状態の屈折率に比べて、酸又はアルカリによる処理をすると屈折率が小さくなるものと考えられる。なお、この傾向は酸処理をした場合だけではなく、アルカリ処理をした場合にも同様な結果が得られることが判明した。
【0042】
図2に、波長589nmにおける屈折率nを説明したが、さらに酸処理又はアルカリ処理をした面の屈折率の波長依存性、即ち、屈折率分散についても詳細に検討した。
【0043】
図2は、前述したITO薄膜、石英ガラス及びPEDOT:PSS薄膜の三種類の試料についての屈折率の波長依存性も示しており、試料によって屈折率nの変化幅は異なるが、いずれの試料も波長λが大きくなるに従って、屈折率nが小さくなることが判明した。前述したように、一般には波長589nmのいわゆるD線と呼ばれる波長において、屈折率nを表記するが、屈折率nの波長依存性を鋭意検討したところ、以下の二つの特性が存在することが判明した。
【0044】
第一の特性は、材料の種類によって屈折率nの波長依存性が微妙に異なり、つまり、波長λが大きくなっても屈折率nの低下幅に差異があること(換言すると、分散曲線の傾きが異なる)である。例えば、可視光線領域において石英ガラスの屈折率の波長依存性は小さくなるが、PEDOT:PSS薄膜の同依存性は大きくなるということである。
【0045】
第二の特性は、材料の種類が変わると、酸処理又はアルカリ処理の効果が大きく異なる点である。例えば、ITO薄膜では未処理時の屈折率nが2.0、酸(H2SO4)処理後の屈折率nが1.7となり、変化幅がΔn≒0.3と大きくなるが、PEDOT:PSS薄膜の未処理時の屈折率nは1.42、酸(H2SO4)処理後の屈折率nは1.31となり、変化幅はΔn≒0.11程度の僅かな変化しか認めることができなかった。これらの検討結果に基づき、以下のように規定することが好ましいことが判明した。
【0046】
すなわち、第1の界面では、屈折率整合処理をした陽極3又は発光層4の少なくとも一方が、可視光線領域において屈折率の波長依存性を示し、その屈折率の波長依存性曲線において、陽極3と発光層4の波長380nmにおける屈折率をそれぞれ、n1(380)、nf(380)、波長780nmにおける同屈折率をそれぞれ、n1(780)、nf(780)としたとき、波長380nmにおける両者の差{ n1(380) − nf(380) }、及び波長780nmにおける両者の差{ n1(780) − nf(780) }が、|{ n1(380) − nf(380) }|≦0.3、|{ n1(780) − nf(780) }|≦0.3を満たすようにすることが好ましい。これにより、必要な波長域での屈折率差Δnを極力小さくすることができ、同界面での光の損失を小さくすることができる。
【0047】
以下、図2に示す基材(石英ガラス)と陽極(PEDOT:PSS薄膜)に着目して説明する。石英ガラスの屈折率の波長依存性曲線は、概ね一定である。これに対して、PEDOT:PSS薄膜(未処理)の同曲線は、波長380nmでは屈折率n=1.60、波長780nmでは屈折率n=1.30と、大きな波長依存性を示す。未処理時における両者の屈折率の波長依存性曲線が交差する(屈折率Δn=0)波長λを読み取ると、波長690nmであり、色彩的には赤色領域である。発光層4から発せられる光は、この波長に近い赤色から近赤外領域の発色であれば、波長λ=690nmの近傍で屈折率差Δn≒0となることから、界面での光損失は少なく、それほど問題にならないものと考えられる。
【0048】
しかし、一般的には、赤(R)、緑(G)、青(B)の三種類の発色を可能にするため、発光層4を設けた発光素子が要望されており、赤(R)に対してだけ界面での光損失を考慮するのは、原色の発光輝度のバランスを考慮する観点からも好ましくない。このため、陽極3と発光層4の屈折率の波長依存性曲線を、可視光線領域(波長380nm〜780nm)において任意に交差できるようにすることが好ましい。
【0049】
図4に、陽極(未処理のPEDOT:PSS薄膜)に対して硫酸溶液(H2SO4)を用いて、浸漬処理をした際の屈折率の波長依存性曲線を示した。この時、硫酸溶液の濃度を、0.01N、0.1N、1Nの3水準とし、温度を室温、処理時間を600秒として、浸漬処理をした。図4から明らかなように、基材(石英ガラス)の波長依存性曲線に対して、陽極を未処理とした場合、波長660nm(赤色)付近の(a)点で交差するが、硫酸溶液濃度を0.01Nから1Nへと変化させた際の交差点は、それぞれ、波長590nm(赤色)付近の(b)点、波長530nm(緑色)付近の(c)点、波長470nm(青色)付近の(d)点へと、交差点が短波長側へとシフトし、これら三波長において、両者の屈折率差Δnが極力小さくなることが判明した。これは、硫酸溶液の濃度を変えることにより、陽極3と発光層4との間の屈折率差Δnが、可視光線領域において小さくなることを意味する。なお、ここでは屈折率整合処理の条件として、酸溶液の濃度を変えた例を示したが、その他の処理条件(処理溶液の種類、温度、時間など)を変えて屈折率を小さくしても良い。
【0050】
さらに、上記の結果を踏まえ、図5に示すように、屈折率整合処理をした陽極3と、発光層4の屈折率の波長依存性曲線が可視光線領域において交差し、その交差点の波長をλ1とし、図6に示す発光層から発せられる発光のスペクトルピーク波長をλemとすると、|λ1 − λem|≦100nmを満たすことが重要である。その根拠を図5により説明する。
【0051】
図5は、図4から抜粋した石英ガラス(基材)と、処理濃度0.1Nで硫酸処理した陽極(PEDOT:PSS薄膜)の波長依存性曲線を示し、両曲線は波長530nm付近で交差し、両者の屈折率差Δnは、ほぼ無くなっている(Δn≒0)。一方、図1に示す基材が存在しない有機El素子の場合には、発光層4から前述のように両者の屈折率差Δnがほぼ無い波長λ1で、発光のスペクトルピーク(波長λem)となるように調整することで、陽極3と発光層4との界面での光損失を最小にすることが可能になる。
【0052】
なお、屈折率整合処理がなされた陽極3と、発光層4の屈折率の波長依存性曲線が交差する波長λ1と、発光層4から発せられる発光スペクトルピークの波長λemとの差|λ1 − λem|は、両者の屈折率差Δnの大きさに基づく光の干渉効果が顕著となり、狙いとした発光色が得られなくなる。このため、両者の差は、できるだけ小さくすることが好ましく、|λ1 − λem|≦100nmを満たすことが好ましい。この様子を図7に示す。図7に示すように、|λ1 − λem|の大きさが100nmを超えると、縦軸の発光スペクトルピーク波長λemが10nm以上短波長側にシフトし、人間の眼で色の変化として認知されるレベルとなり、発光素子として好ましくなくなる。従って、|λ1 − λem|をこの範囲とすることで、各界面におけるある波長での屈折率差Δnを極めて小さくし、さらに、その波長近傍において、発光層から発せられる発光のスペクトルピーク波長λemをできるだけ一致できるようにしている。
【0053】
この人間の眼による官能評価を、より定量的に評価した方法として、CIE(国際照明委員会)の色度図が挙げられる。3刺激値を数値化したデータを色度図にプロットすることで、どのような色であるのかを示すものであり、これにより人間の眼で見た色彩感覚と物理量である反射スペクトルデータから定量化することができる(詳細は、例えば、オーム社:照明ハンドブック、頁60参照)。
【0054】
図8(a)に色度図を示し、図8(b)に説明図を示す。図8(b)の説明図からも明らかなように、馬蹄形の曲線の外側が、色の3属性の一つである「色相」を表す波長軸(本願でいうλem)である。なお、人間の視覚感度(色変化の認知度)を考慮して、その波長のきざみは20nmとなっている。図8(a)に、λem=520nmとλem=540nmとをプロットしたが、Δλem=±10nm(従って、変化幅は20nm)になると色の変化として認知されることが判明した。このように、変化幅Δλem=±10nmを満たさない状態では、発光素子を最終的に表示体として使用した場合には、色むら又は実物との色の違いが顕著となり、商品性を著しく損ねてしまうことが判明した。
【0055】
次に、有機EL素子1に代表される光機能性薄膜素子の構成材料を説明する。
【0056】
機能性薄膜層(発光層4)用の材料としては、加工性(繊維化)又は各種発光性能(希望とする発光色、発光輝度、さらに発光寿命等)を考慮して選択する必要があるが、実用性の面からは、π共役系材料とすることが好ましい。ここで、π共役系材料とは、ベンゼンのように、単結合と二重結合とが繰り返し長く繋がっている分子を意味し、π電子が比較的小さなエネルギで取出し易く、動き易いという性質を有する(吉野勝美著、「有機ELのはなし」、頁23、日刊工業新聞社)。機能性薄膜層(発光層)をπ共役系材料から形成することで、素子としての機能が得られるだけではなく、低温プロセス、大面積化、低コスト化を可能とする印刷を含めた各種湿式法による素子化が可能になる。π共役系材料としては、キノリノール誘導体、フルオレン誘導体、フタロシアニン誘導体、トリフェニルジアミン誘導体、ポリパラフェニレン誘導体、ジスチリスアリーレン誘導体、オキサジアゾール誘導体、ピラゾリン誘導体、ポリチオフェン誘導体、ポリ(N-アルキルカルバゾール)誘導体、ポリフェニルアセチレン誘導体、ポリフェニレンエチニレン誘導体、ポリフェニレンブタジイニレン誘導体の群から選択される一種、あるいはこれらの中から選択される一種を含む混合物とすることが好ましい。
【0057】
第1の電極(陽極3)、光機能性薄膜、第2の電極(陰極5)としては、水又は溶剤に可溶性を有する材料とすることが好ましい。この理由は、π共役系材料を熱溶融させることが一般的に難しいため、通常の湿式薄膜形成技術(例えば、スピンコート、キャスティング、ディップ、LB膜法、印刷法など)を適用することが難しいからである。このため、後述する水又は溶剤に可溶な材料を用いることで、各界面での屈折率整合処理と各層の成膜を一貫して湿式プロセスで対応することができ、各種湿式の薄膜形成技術を用いることが可能となり、この結果、狙いとする光機能性薄膜素子を得ることができる。なお、溶剤としては、ニトロベンゼン、プロピレンカーボネート、無水酢酸などの非プロトン性溶媒の他にも、メタノール、エタノールなどのプロトン溶媒、あるいはエチル、トルエン、キシレンなどの希釈溶剤を用いることができるが、例示した溶剤に限定されるものではない。
【0058】
第1の電極(陽極3)及び第2の電極(陰極5)の材料としては、電極機能として、導電性と光透過性を確保できる観点から、少なくとも一方が、ドーピングされたポリピロール(doped Polypyrrole)、ドーピングされたポリアニリン(doped Polyaniline)、ドーピングされたポリチオフェン(doped Polythiophene)、ドーピングされたポリアセチレン(doped Polyacethilene)、ドーピングされたポリイソチアナフテン(doped Polyisothianaphtene)及びこれらの誘導体の中から選択される少なくとも一種を用いても良い。ドーピング材(ドーパントとも称する)としては、使用する導電性高分子の種類、ドナー性(電子を奪う性質)又はアクセプタ性(電子を与える性質)を狙うのかに応じて異なるが、導電性高分子ポリチオフェンをアクセプタ性とするためには、B10Cl2-10 、Bu4NBF4-、ClO4-など、また、ドナー性とするためにはLi+、K+などを用いることができる。これらのドーピング材を適切な条件下で用いることにより、導電率σ=102S/cm、可視光線領域における全光線透過率(例えば、JIS K6911参照)がT=78%程度の光透過性を有する電極(陽極3、陰極5)を提供することができる。
【0059】
さらに、第1の電極(陽極3)及び第2の電極(陰極5)として、ポリエチレンジオキシチオフェン(PEDOT)、ポリプロピレンオキシド(PO)及びこれらの誘導体の中から選択される少なくとも一種の材料を用いても良い。これらの材料は特に水分散性が良く、導電性と全光線透過率とを確保した上、薄膜を形成することも比較的容易となる。例えば、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)を適切な割合(例えば、1/6)にして分散させた複合体は、導電率σ=103S/cm、全光線透過率T=82%を確保することも可能であり、光透過性を有する電極としてはより好ましい。
【0060】
屈折率整合処理方法については、既に前述したが、図1に示す有機EL素子1を挙げて、具体的に説明する。
【0061】
光透過性を有する基材として石英ガラス、光透過性を有する第1の電極(陽極3)及び第2の電極(陰極5)としてポリジオキシチオフェン(PEDOT)/ポリスチレンスルフォン酸(PSS)薄膜、光機能性薄膜(発光層4)としてポリフェニレンビニレン薄膜(PPV)を用いた場合の有機EL素子1の構成を説明する。本構成において、各界面において屈折率整合処理をするに当たり、酸溶液として硫酸(H2SO4)の0.1N濃度溶液を用いて、処理温度を室温、処理時間を600秒にして浸漬処理をする。その手順は次の通りである。(1)基材の石英ガラスを硫酸溶液に浸漬して、石英ガラスの両面を処理する。その後、超純水によってリンスして、80℃にして乾燥させる(屈折率整合処理)。(2)硫酸溶液処理面の一方に、PEDOT/PSS(=1/6)溶液をスピンコート法によって膜厚100nmを形成する。その後、超純水によりリンスし、200℃にして乾燥させる。(3)さらに、PEDOT/PSS薄膜面に対して、硫酸溶液に浸漬し、超純水によってリンスして、200℃にして乾燥させる(屈折率整合処理)。(4)屈折率整合処理をした面に、光機能性薄膜(発光層4)として波長530nmで発光するPPV溶液を、スピンコート法によって膜厚100nmに形成し、その後、80℃にして乾燥させる。(5)上記発光層4上に、PEDOT/PSS(=1/1.6)溶液をスピンコート法によって膜厚100nmを形成し、第2の電極(陰極5)とした。
【0062】
以上の方法を用いて、屈折率整合処理をした有機EL素子及び屈折率整合処理をしていない有機EL素子を、順次クライオスタット内に設置し、第1の電極(陽極3)と第2の電極(陰極5)の間に印加する電源からの直流電圧を0Vから12Vにまで可変させて、発光特性を評価した。なお、発光特性としては、各電圧に対する発光スペクトル及び発光輝度を実測した。
【0063】
屈折率整合処理の有無による、両素子の印加電圧12Vにおける発光輝度を比較したところ、屈折率整合処理をした場合には発光輝度が1500cd/m2となり、処理をしない場合には発光輝度が980cd/m2となり、屈折率整合処理をしない場合に比べて、約1.5倍の発光輝度を示すことが判明した。なお、本素子に屈折率整合処理をした場合には、素子端部からの光の漏れもほとんど認められず、屈折率整合処理によって光機能性薄膜(発光層4)で発した光が、光透過性を有する第1の電極(陽極3)及び基材11を通して、効率良く外部に出射されていることを裏付けていた。
【0064】
なお、本発明の実施の形態に係る光機能性薄膜素子として、図1に示す有機EL素子1を挙げたが、図1に示す積層構造の構成に限定されず、繊維状にしても良い。図9及び図10は、繊維状の光機能性薄膜素子の斜視図であり、図9の断面を円形、図10の断面を矩形とした。
【0065】
図9に示すように、光機能性薄膜素子(有機EL素子)10は、基材11を芯材として、基材11の外周に陽極12を配置し、この陽極12の外周を屈折率整合処理して、屈折率調整層13を形成し、その外周に、順次、光機能性薄膜(発光層)14、陰極15を配置し、最外周に絶縁層16を形成して構成されたものである。陽極12と陰極15には電源17を接続して電圧を印加できる構成とすることで、発光層14から印加電圧の大きさに応じて発光が生じる。また、図10に示す光機能性薄膜素子(有機EL素子)18は、基材19を芯材として、この基材19の外周を屈折率整合処理して、屈折率調整層20を形成し、この屈折率調整層20の外周に、順次、陽極21、光機能性薄膜(発光層)22、陰極23を配置し、最外周面に絶縁層24を形成して構成されたものである。陽極21と陰極23には電源25を接続して電圧を印加可能な構成とすることで、発光層22から印加電圧の大きさに応じて発光するようになる。
【0066】
なお、図9には、基材を芯材とした例を挙げたが、陽極を芯材とし、その外周に屈折率整合処理をして、処理面に、光機能性薄膜、陰極、さらに最外周に絶縁層を形成しても良い。また、図10も同様に、基材のない構成としても良い。
【0067】
上記構成とすることで繊維状にすることが可能となり、通常の繊維と同様に織り又は編むことで、各種の織編物にすることができる。なお、ここで、「繊維状」とは、繊維(ファイバ)そのものを意味するものではなく、繊維状の長尺構造としたものを含む。長尺構造とした場合には、その断面形状は、円形、楕円形、矩形、扁平又は多角形であっても良く、その形状は限定されない。
【0068】
また、このような繊維状とすることで、フレキシブル、かつ意匠性に富む光機能性薄膜素子が得られ、各種の表示体、調光体、照明体、太陽電池などの物品に応用することが可能になる。
【0069】
なお、例示した用途以外にも、従来にないフレキシビリティを提供できることから、通常繊維と組み合わせた撚糸、織物、編物、不織布、さらに立体織編物等も提供できるようになる。
【0070】
以上説明したように、本発明に係る光機能性薄膜素子、その製造方法、及びそれを用いた物品は、各層の界面の少なくともいずれかに屈折率整合処理をしたものであり、光機能性薄膜の内部で生成した光の素子端部への導波又は漏出を防ぎ、また、繰返し反射による吸収を軽減することで、効率良く外部に出射できるようにしたものである。
【実施例】
【0071】
以下、さらに具体的に実施例に基づき説明するが、例示した実施例に限定されない。
【0072】
〔実施例1〕
実施例1では、積層構造型の光機能性薄膜素子を形成するために、各層に以下の材料を選択した。光透過性を有する基材として石英ガラス、光透過性を有する第1の電極(陰極)としてポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)、発光層用溶液としてトルエンによって希釈されたポリフェニレンビニレン(PPV)溶液、第2の電極(陽極)として、前述したポリエチレンジオキシチオフェン(PEDOD)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)を準備した。
【0073】
次に、基材となる石英ガラスを、0.1N硫酸溶液中に、処理温度を室温、処理時間を600秒の条件にして浸漬した後、超純水によってリンス処理をして、その後、80℃にして乾燥した。その後、第1の電極(陰極)としてポリエチレンジオキシチオフェン(PEDOD)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)をスピンコート法により膜厚が100nmとなるように薄膜を形成した後、200℃にして乾燥させた。
【0074】
その後、トルエンにより希釈したポリフェニレンビニレン(PPV)溶液を、スピンコート法により膜厚100nmとなるように薄膜を形成した後、80℃にして乾燥し、硬化させた。なお、PPV薄膜からは直流電圧の印加によって、波長530nm(緑色)の光を発光させることが可能になる。最後に、第2の電極(陽極)として、ポリエチレンジオキシチオフェン(PEDOD)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)をスピンコート法によって、膜厚100nmに形成した。
【0075】
〔実施例2〕
実施例2では、積層構造型の光機能性薄膜素子を形成するために、各層として次の材料を選択した。光透過性を有する基材として石英ガラス、光透過性を有する第1の電極(陰極)としてポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)、発光層用溶液としてトルエンによって希釈したポリフェニレンビニレン(PPV)溶液、第2の電極(陽極)として前述のポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)を準備した。
【0076】
次に、基材となる石英ガラスを0.1N硫酸溶液中に、処理温度を室温、処理時間を600秒として浸漬した後、超純水によってリンス処理を行い、80℃にして乾燥した。その後、第1の電極として、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)をスピンコート法により膜厚が100nmとなるように薄膜を形成し、同薄膜を200℃にして乾燥処理をした。
【0077】
第1の電極を形成した後、その面を、1N硫酸溶液中に、処理温度を室温、処理時間を600秒にして浸漬し、さらに超純水によりリンス処理をした後、80℃にして乾燥した。その後、トルエンによって希釈したポリフェニレンビニレン(PPV)溶液を、スピンコート法により膜厚が100nmとなるように薄膜を形成した後、80℃にして、乾燥、硬化させた。なお、PPV薄膜からは直流電圧の印加によって、波長530nm(緑色)の光を発光させることが可能になる。最後に、第2の電極(陽極)として、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)を用いて、スピンコート法を用いて膜厚が100nmとなるように形成した。
【0078】
〔実施例3〕
実施例3では、屈折率整合処理時に0.01N硫酸溶液を使用した以外は、実施例2と同様にして光機能性薄膜素子を作製した。
【0079】
〔実施例4〕
実施例4では、屈折率整合処理時に1N硫酸溶液を使用した以外は、実施例2と同様にして光機能性薄膜素子を作製した。
【0080】
〔実施例5〕
実施例4では、発光層用溶液として、トルエンによって希釈したポリフルオレン(PFO)溶液を用いた以外は、実施例2と同様にして光機能性素子を作製した。なお、PFO薄膜からは直流電圧を印加することで、波長470nm(青色)の光を発光することが可能になる。
【0081】
〔実施例6〕
実施例6では、屈折率整合処理時に0.01N硫酸溶液を用いた以外は、実施例5と同様にして光機能性素子を作製した。
【0082】
〔実施例7〕
実施例7では、屈折率整合処理時に1N塩酸溶液を用いた以外は、実施例2と同様にして光機能性薄膜素子を作製した。
【0083】
〔実施例8〕
実施例8では、屈折率整合処理時に1N水酸化ナトリウム溶液、処理温度を室温、処理時間を30秒とした以外は、実施例2と同様にして光機能性薄膜素子を作製した。
【0084】
〔比較例1〕
比較例1では、積層構造型の光機能薄膜素子を形成するために、各層の材料として次のものを選択した。光透過性を有する基材として石英ガラス、光透過性を有する電極としてポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)、発光層用溶液として、トルエンによって希釈したポリフェニレンビニレン(PPV)溶液、電極として、前述のポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)を準備した。
【0085】
次に、基材となる石英ガラスを超純水により洗浄し、80℃にして乾燥した。その後、第1の電極(陰極)としてポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)をスピンコート法によって膜厚100nmとなるように薄膜を形成し、さらに同薄膜を200℃にして乾燥処理をした。
【0086】
その後、トルエンにより希釈したポリフェニレンビニレン(PPV)溶液を、スピンコート法により膜厚が100nmとなるように薄膜を形成した後、80℃にして、乾燥、硬化させた。なお、PPV薄膜からは直流電圧の印加により、波長530nm(緑色)の光を発光させることが可能になる。最後に、第2の電極(陽極)として、ポリエチレンジオキシチオフェン(PEDOD)とポリスチレンスルフォン酸(PSS)の水分散複合溶液(PEDOT/PSS=1/1.6)をスピンコート法によって膜厚100nmに形成した。
【0087】
〔比較例2〕
比較例2では、発光層用溶液として、トルエンによって希釈したポリフルオレン(PFO)溶液を用いた以外は、比較例1と同様にして光機能性薄膜素子を作製した。なお、PFO薄膜からは直流電圧を印加すると、波長4700nm(青色)の光を発光することが可能になる。
【0088】
実施例1〜実施例8及び比較例1、2から得られた各光機能性薄膜素子をクライオスタット内に設置し、真空度10-3 Torrの条件下、直流電圧12Vを印加して発光輝度を測定した。表1に測定結果を示す。
【表1】

【0089】
表1に示すように、屈折率整合処理をして屈折率調整層を形成した実施例1から実施例8までの光機能性素子は、いずれも屈折率調整層を形成していない比較例1、2の光機能性素子に比べて、輝度の値が高く、発光性能が向上していることが判明した。各実施例では、硫酸濃度をそれぞれ変えて屈折率整合処理をしたが、硫酸濃度を0.1Nとした実施例2の場合に、輝度の値が最も高くなっており、硫酸の濃度を所定の範囲とすることで発光性能が高くなることが判明した。
【図面の簡単な説明】
【0090】
【図1】図1は、本発明の実施の形態に係る光機能性薄膜素子の一例である有機EL素子の断面図である。
【図2】図2は、陽極である無機系透明導電体(ITO)と有機系透明導電体(PEDOT/PSS(=1/6)膜)とに対して、硫酸溶液により浸漬処理をした場合又は未処理の場合の屈折率の変化を調べた結果である。
【図3】石英ガラス基板上に形成した電極(PEDOT/PSS)に対して、飛行時間型二次イオン質量分析法によりOHイオンの挙動を調べた結果であり、(a)は未処理の場合、(b)はH2SO4により酸処理をした場合の結果である。
【図4】図4は、陽極(未処理のPEDOT:PSS薄膜)に対して硫酸溶液(H2SO4)により浸漬処理をした場合の屈折率の波長依存性曲線を示す図である。
【図5】図5は、図4に示した石英ガラス(基材)と、処理濃度0.1Nで硫酸処理をした陽極(PEDOT:PSS薄膜)の波長依存性曲線を示す図である。
【図6】図6は、発光層から放射される発光スペクトルの説明図である。
【図7】図7は、屈折率整合処理をした陽極と発光層の屈折率の波長依存性曲線が交差する波長λ1と、発光層から放射される発光スペクトルピークの波長λemとの差|λ1 − λem|と、λemとの関係を説明する図である。
【図8】(a)はxy色度図であり、(b)は、(a)の説明図である。
【図9】図9は、本発明の他の実施の形態に係る繊維状の光機能性薄膜素子の斜視図であり、断面を円形とした例である。
【図10】図10は、本発明の他の実施の形態に係る繊維状の光機能性薄膜素子の斜視図であり、断面を矩形とした例である。
【符号の説明】
【0091】
1…有機EL素子,
2…基材,
3…陽極,
4…発光層,
5…陰極,
6,7,8…屈折率調整層,
9…電源,

【特許請求の範囲】
【請求項1】
第1の電極と第2の電極との間に光機能性薄膜を挟む光機能性薄膜素子であって、前記第1の電極と前記光機能性薄膜との間である第1の界面、前記光機能性薄膜と前記第2の電極との間である第2の界面、及び前記第1の電極と空気との間である第3の界面の少なくともいずれかに屈折率整合処理をして形成された屈折率調整層を備えることを特徴とする光機能性薄膜素子。
【請求項2】
前記屈折率調整層は、前記第1の電極、前記第2の電極及び前記光機能性薄膜の少なくともいずれかの面に対して屈折率整合処理をして形成されることを特徴とする請求項1記載の光機能性薄膜素子。
【請求項3】
前記屈折率調整層は、前記第1の電極、前記第2の電極及び前記光機能性薄膜の少なくともいずれかを酸溶液又はアルカリ溶液により浸漬し、純水によりリンスをした後、乾燥することを特徴とする請求項1又は2記載の光機能性薄膜素子。
【請求項4】
前記第1の電極又は前記第2の電極の少なくとも一方は、光透過性を有することを特徴とする請求項1又は2記載の光機能性薄膜素子。
【請求項5】
前記光機能性薄膜は、第1の電極及び第2の電極の間に印加される電圧によって発光する発光層であることを特徴とする請求項1乃至4のいずれか1項に記載の光機能性薄膜素子。
【請求項6】
前記第1の界面において、前記屈折率整合処理をした第1の電極及び光機能性薄膜の少なくとも一方は、可視光線領域において屈折率の波長依存性を示し、その屈折率の波長依存性曲線において、第1の電極と光機能性薄膜の波長380nmにおける屈折率をそれぞれ、n1(380)、nf(380)、また、波長780nmにおける同屈折率をそれぞれ、n1(780)、nf(780)としたとき、波長380nmにおける両者の差{ n1(380) − nf(380) }及び波長780nmにおける両者の差{ n1(780) − nf(780) }が、0.3以下であることを特徴とする請求項1乃至5のいずれか1項に記載の光機能性薄膜素子。
【請求項7】
前記屈折率整合処理をした第1の電極と、発光層の屈折率の波長依存性曲線が、可視光線領域において交差し、その交差点の波長をλ1、また、発光層から発せられる発光のスペクトルピーク波長をλemとすると、|λ1 − λem|が100 nm以下であることを特徴とする請求項1乃至6のいずれか1項に記載の光機能性薄膜素子。
【請求項8】
前記第3の界面において、屈折率整合処理がなされた第1の電極及び空気の少なくとも一方が、可視光線領域において屈折率の波長依存性を示し、その屈折率の波長依存性曲線において、第1の電極と空気の波長380nmにおける屈折率をそれぞれ、n1(380)、nair(380)、また、波長780nmにおける同屈折率をそれぞれ、n1(780)、nair(780)としたとき、波長380nmにおける両者の差{ n1(380) − nair(380) }及び波長780nmにおける両者の差{ n1(780) − nair(780) }が、0.3以下であることを特徴とする請求項1乃至7のいずれか1項に記載の光機能性薄膜素子。
【請求項9】
前記屈折率整合処理をした第1の電極と、空気の屈折率の波長依存性曲線が、可視光線領域において交差し、その交差点の波長をλ2、また、発光層から発せられる発光のスペクトルピークの波長をλemとすると、|λ2 − λem|≦100 nmを満たすことを特徴とする請求項1乃至8のいずれか1項に記載の光機能性薄膜素子。
【請求項10】
前記光機能性薄膜は、π共役系材料から成ることを特徴とする請求項1乃至9のいずれか1項に記載の光機能性薄膜素子。
【請求項11】
前記π共役系材料は、キノリノール誘導体、フルオレン誘導体、フタロシアニン誘導体、トリフェニルジアミン誘導体、ポリパラフェニレン誘導体、ジスチリスアリーレン誘導体、オキサジアゾール誘導体、ピラゾリン誘導体、ポリチオフェン誘導体、ポリ(N-アルキルカルバゾール)誘導体、ポリフェニルアセチレン誘導体、ポリフェニレンエチニレン誘導体、ポリフェニレンブタジイニレン誘導体の群から選択された一種、又はこれらの群から選択された一種を含む混合物であることを特徴とする請求項10記載の光機能性薄膜素子。
【請求項12】
前記第1の電極、前記光機能性薄膜及び前記第2の電極は、水又は溶剤に可溶性を有する材料から成ることを特徴とする請求項1乃至11のいずれか1項に記載の光機能性薄膜素子。
【請求項13】
前記第1の電極又は前記第2の電極の少なくとも一方は、ドーピングされたポリピロール、ドーピングされたポリアニリン、ドーピングされたポリチオフェン、ドーピングされたポリアセチレン、ドーピングされたポリイソチアナフテン及びこれらの誘導体の中から選択された少なくとも一種を含むことを特徴とする請求項10記載の光機能性薄膜素子。
【請求項14】
前記第1の電極又は前記第2の電極の少なくとも一方は、ポリエチレンジオキシチオフェン、ポリプロピレンオキシド及びこれらの誘導体の中から選択された少なくとも一種を含むことを特徴とする請求項10記載の光機能性薄膜素子。
【請求項15】
第1の電極、第2の電極及び光機能性薄膜の少なくともいずれかの表面を酸溶液又はアルカリ溶液に浸漬し、浸漬した面を純水によりリンスして、乾燥させて屈折率調整層とし、第1の電極、第2の電極及び光機能性薄膜を接合して光機能性薄膜とすることを特徴とする光機能性薄膜素子の製造方法。
【請求項16】
請求項1乃至14のいずれか1項に記載の光機能性薄膜素子を用いた表示体又は照明体のいずれかの物品。
【請求項17】
請求項1乃至14のいずれか1項に記載の光機能性薄膜素子を用いた表示体又は照明体のいずれかの物品。
【請求項18】
請求項1乃至14のいずれか1項に記載の光機能性薄膜素子を用いた太陽電池の物品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−78039(P2008−78039A)
【公開日】平成20年4月3日(2008.4.3)
【国際特許分類】
【出願番号】特願2006−257673(P2006−257673)
【出願日】平成18年9月22日(2006.9.22)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】