説明

光渦リターダ・マイクロアレイ

【課題】光渦リターダのマイクロアレイが、異なる方向を有する複数の別個の配向パッチを有する配向層を形成することによって提供される。
【解決手段】液晶および液晶ポリマー前駆体材料のうちの1つを含む複屈折材料の層が、配向層に隣接して設けられる。複数の別個の配向パッチ中の各別個の配向パッチの配向方向および位置は、複屈折材料の層に、配向層の実質的無方向性領域に隣接した少なくとも1つの光渦リターダを形成させるように選択される。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、一般に、光渦リターダに関し、具体的には、光渦リターダのマイクロアレイ、およびそれを作製する方法に関する。
【背景技術】
【0002】
波長板は、偏光の光の場の2つの直交偏光成分の間に予め決められた位相シフトを追加することによって偏光の光を変える。従来から、追加の位相シフトは、波長板リターダンスと呼ばれており、垂直な入射光についての波長の数分の1で測定される。例えば、直交偏光の間にπの位相シフトを追加する波長板は1/2波長板と呼ばれており、一方、π/2の位相シフトを追加する波長板は1/4波長板と呼ばれている。
【0003】
波長板は、伝統的に一軸複屈折材料を用いて製造されてきた。一軸複屈折材料は、2つの主屈折率、すなわち常屈折率nおよび異常屈折率nを有し、ここで複屈折は、Δn=n−nとして定義される。波長板において、低屈折率を有する軸は、速軸と称され、一方、より高い屈折率を有する軸は、遅軸と称されると共に速軸に直角である。例えば、n>nである正の一軸複屈折材料については、異常軸は遅軸であるのに対して、常軸は速軸である。異常軸は光学軸でもあり、この光学軸は、その偏光状態に関わらず直線偏光の光が同じ速度で媒体を通って伝搬する向きであると理解される。必要な位相シフトをもたらすために、典型的には、従来の波長板の製造に用いられる一軸複屈折材料の光学軸は、波長板の面に垂直でない角度に向けられている。例えば、波長板はしばしば、波長板の面に平行なその光学軸を有する一軸複屈折材料(すなわち、Aプレートと称される)、または基板の平面に対し斜角にその光学軸を有する一軸複屈折材料(すなわち、Oプレートと称される)から製造される。代替として、波長板は、そのリターダンスが入射角(AOI)に伴い増大するように、波長板の面に垂直なその光学軸を有する一軸複屈折材料から製造できる(すなわち、Cプレートと称される)。
【0004】
波長板の重要な用途の1つは、波長板を通過する偏光の偏光状態を変えることである。例えば、1/2波長板は、直線偏光の方向を回転させるために使用でき、一方、1/4波長板は、直線偏光の光を円偏光の光に変換するために使用できる。前者に関しては、入射光の偏光の向きが波長板の面内の光学軸に対してθに向けられるとき、回転角は、2θである。後者に関しては、典型的には、入射光の偏光の向きは、波長板の面内の光学軸に対して45度に向けられる。いずれの場合も、入射の偏光状態がその断面にわたっても均一であるとすれば、均一な偏光ビーム(すなわち、偏光がビームの断面にわたって変化しない偏光した光放射のビーム)をもたらすために、波長板の光学軸が空間的に均一である(すなわち、波長板の表面全体が同じ光学軸方向を有するように波長板の表面にわたって変化しない)ことが好ましい。
【0005】
より最近になり、空間的な偏光の変化を均一偏光ビームにわたって誘起することは、極めて有益な波面整形ツールであることが認識されている。実際には、空間可変偏光を伴うそうしたビームが直線偏光子を用いて解析される場合、正味の効果は、パンチャラトナム・ベリー位相(Pancharatnam−Berry phase)として知られている、ビームの断面にわたっての空間的可変位相シフトの追加である。空間的に変化する直線偏光を有する光ビームのいくつかの例は、半径方向に偏光した光ビーム、および方位角方向に偏光した(すなわち、接線方向に偏光した)光ビームであり、ここで偏光の局所軸は、半径方向、すなわち局所点と中心点を結ぶ線に平行であり、または接線方向、すなわちこの線に垂直である。これらビームの偏光パターンは図1に示されており、ここで矢印はビームの偏光の局所的な方向を概略的に示している。
【0006】
このビームが半径方向に偏光していようと方位角方向に偏光していようと、その偏光の向きは、ある特定の空間位置の方位角度に依存し、中心点からの半径方向距離に依存しない。これらのタイプの偏光ビームは、円柱ベクトル・ビームまたは偏光渦ビームと呼ばれることもある。「偏光渦」なる用語は、「光渦(optical vortex)」なる用語に関連している。光渦は、位相異常を示すビームの断面内の点であり、したがってビーム放射の電場は、その点周りに描かれる任意の閉路内でπの倍数によって展開する。同様に、偏光渦は、直線偏光状態であり、この状態において偏光の向きは、ビーム軸周りにπの倍数によって展開する。そのようなビームに注目すると、そのようなビームは、(例えば、渦がビーム内に中心を置く場合には、ビームの軸に沿って)中心点でゼロ強度をとる。偏光渦ビームは、粒子捕獲(光ピンセット)、顕微鏡の分解能向上、およびフォトリソグラフィなどの様々な実際の用途に用いられると有利であり得るいくつかの特有の性質を有する。
【0007】
偏光渦ビームを得る一方法は、均一に偏光した光学ビームを光渦リターダに貫通させることである。光渦リターダは、本明細書では単に渦リターダと呼ばれてもいるが、ある点周りに回転する空間的に変化する速軸を有する波長板の類に関する。より詳細には、速軸の方位角度は、ある点周りに回転する。光リターダが色消しリターダ(例えば、2つ以上のリターダが光リターダを色消しにさせるためにスタックまたはラミネートされている多層設計)である場合は、空間的に変化する速軸が、有効速軸(すなわち、多層リターダを複屈折材料からなる単一層と仮定するならば速軸であるように見える方向)である。「方位角度」なる語は、光リターダの平面に投影される軸の方位角方向に言及するものであり、ある任意の基準点に対して測定される。渦リターダの速軸の方位角度は、ある点周りに回転するが、速軸の極角は典型的には、リターダの表面にわたって一定である(すなわち、渦リターダは典型的には、空間的に均一なリターダンスを有する)ことに留意されたい。「極角」なる語は、速軸のプレート外傾斜(out−of−plate tilt)に言及するものである。
【0008】
概して、渦リターダの空間的に変化する速軸の方位角は、予め決められた関係で渦リターダ上の方位角位置に伴って変化することになる。例えば、図2を参照すると、典型的には、空間的に変化する速軸の方位角θは、以下の式に従って方位角位置φに伴って変化する。
θ(φ)=αφ+θ(0) (1)
ここでαは、方位角位置に対する速軸の方位角の変化の割合に等しい定数である。速軸の方位角θと方位角位置φは共に、(例えばx軸として示されている)予め決められた基準点に対して測定されることに留意されたい。この基準点での速軸の方位角はθ(0)である。図3Aに示すようにθ(0)=90度のときには、速軸は、接線方向に配向されると考えられている。図3Bに示すように、θ(0)=0度であるときには、速軸は、半径方向に配向されると考えられている。
【0009】
再び式(1)を参照すると、α=m/2の場合は、空間的に変化する速軸θは、すべてのφでひたすら連続となり、ここでmは、渦リターダのモードと呼ばれている整数である。実際には、渦リターダはしばしば、渦リターダのモードによって特徴付けられる(例えば、m=2α)。例えば、図3Aおよび図3Bに示す渦リターダは、m=2の渦リターダである。とりわけ、m=2の渦リターダ(例えば、そこではα=1)は、方位角位置における1度の反時計回りが、速軸の方位角方向における1度の増加量に対応する特別な場合に相当する。対照的に、m=−2の渦リターダ(例えば、そこではα=−1)においては、方位角位置における1度の反時計回りは、速軸の方位角方向における1度の減少量に対応する。図4は、1、−1、2および−2に等しいモードを有する渦リターダの例を示す。
【0010】
渦リターダは、一連の複屈折結晶、応力誘起複屈折、ナノ構造、液晶(LC)、および液晶ポリマー(LCP)を用いて製造されてきた。結果として生じる渦リターダは可視波長範囲内で有用であると共に連続的に変化する速軸を有するので、渦リターダを製造するためにLCおよびLCPを使用することは、有利である。また、LC材料とLCP材料は共に、直線偏光紫外(LPUV:linearly polarized ultraviolet)光に対して感光性である直線光重合可能ポリマー(LPP:linear photopolymerizable polymer)層を用いて配向できる。より詳細には、LPP層は、LPUV光に平行な向きに選択的に重合されている。したがって、渦リターダは、LPP層を支持する基板およびLPUV光の方向のうちの少なくとも1つを回転させることによって製造することができる。例えば、LCPを用いた渦リターダの製造は、S.C.McEldowney、D.M.Shemo、R.A.Chipman、およびP.K.Smith、「Creating vortex retarders using photoaligned liquid crystal polymers」、Opt.Lett.Vol.33、134〜136頁(2008年)、ならびにScott C.McEldowneyl、David M.Shemo、およびRussell A.Chipman、「Vortex retarders produced from photo−aligned liquid crystal polymers」、Vol.16、7295〜7308頁、2008年に記載されており、それらの両者は、参照により本明細書に組み込まれる。
【0011】
改良された渦リターダを提供するために、LPP層を照射しながら基板および/またはLPUV光の方向を回転させることが示されているが、この方法は、単一渦リターダ(single vortex retarder)の作製に限定される。
【0012】
J.N.EakinおよびG.P.Crawford、「Single step surface alignment patterning in liquid crystals using polarization holography exposure」、SID 06、875頁においては、ホログラフィック露光技術を使用して、複数の比較的小さい渦リターダであって、各渦リターダが、異なる点周りに回転する空間的に変化する速軸を有する複数の比較的小さい渦リターダを生成する。より具体的には、2次元アレイとして構成されるこの複数の比較的小さい渦リターダは、ホログラフィック露光によって発生する干渉縞を用いてLPP層をパターニングすることによって生成される。LPP層の2次元パターニングは、単一ステップで行われるのが好都合であるが、そのパターンニングはあいにく、同一平面にない4つのコヒーレント・レーザ・ビームの干渉に頼っている比較的複雑な手順である。加えて、この干渉縞を用いて2次元パターニングをもたらすので、このプロセス、具体的には、レーザのスポット・サイズおよび光学的特性によって制限されるアレイのサイズを制御および最適化することが難しい。また、2次元パターニングをもたらすために干渉縞を使用することにより、空間的に変化する速軸の空間的に均一な面外傾斜に悪影響を与え得る強度変調が導入される。
【先行技術文献】
【非特許文献】
【0013】
【非特許文献1】S.C.McEldowney、D.M.Shemo、R.A.Chipman、およびP.K.Smith、「Creating vortex retarders using photoaligned liquid crystal polymers」、Opt.Lett.Vol.33、134〜136頁(2008年)
【非特許文献2】Scott C.McEldowneyl、David M.Shemo、およびRussell A.Chipman、「Vortex retarders produced from photo−aligned liquid crystal polymers」、Vol.16、7295〜7308頁、2008年
【非特許文献3】J.N.EakinおよびG.P.Crawford、「Single step surface alignment patterning in liquid crystals using polarization holography exposure」、SID 06、875頁
【発明の概要】
【課題を解決するための手段】
【0014】
本発明は、光渦リターダのマイクロアレイ、およびそれを作製する方法に関するものであり、この光渦リターダは、実質的無配向エリア内に点在している複数の別個の配向領域(例えば、パッチ)を有する配向層を用いて形成される。別個の配向エリアすなわちパッチのそれぞれは、隣接したLC層またはLCP層に光渦リターダの周期的配列の形成を起こさせるように、戦略的に向けられ、所定の大きさに作製され、成形され、および/または配置される。各光渦リターダは、別個の配向パッチ間の格子間領域の隣のLC層またはLCP層に形成される。
【0015】
本発明の一態様によれば、光渦リターダを作製する方法であって、第1の複数の別個の配向パッチを有する配向層を形成するステップを備え、この第1の複数の別個の配向パッチが第1の配向方向を有する第1の配向パッチおよび第2の他の配向方向を有する第2の配向パッチを含むものであり、および配向層に隣接した複屈折材料の層を設けるステップを備え、この複屈折材料の層が液晶および液晶ポリマー前駆体材料のうちの1つを含むものであり、第1の複数の別個の配向パッチ中の各別個の配向パッチの配向方向および位置が、複屈折材料の層に、配向層の実質的無方向性領域に隣接した少なくとも1つの光渦リターダを形成させるように選択される方法が提供される。
【0016】
本発明の別の態様によれば、光渦リターダ・アレイであって、配向層に隣接して配置される複屈折材料の層を備え、この複屈折材料が、液晶および液晶ポリマー前駆体材料のうちの1つを含み、配向層が複数の別個の配向パッチを有し、複数の別個の配向パッチが第1の配向方向を有する第1の配向パッチおよび第2の他の配向方向を有する第2の配向パッチを含むものであり、複数の別個の配向パッチ中の各別個の配向パッチの配向方向および位置が、複屈折材料の層に、光渦リターダ・アレイを形成させるように選択される光渦リターダ・アレイが提供される。
【0017】
本発明の一態様によれば、光渦リターダのマイクロアレイを作製する方法であって、a)基板を用意するステップと、b)配向層をこの基板上に配置するステップと、c)配向層に配向パッチのアレイをパターニングするステップと、d)液晶層を、アレイの配向パッチを含む配向層上に配置するステップとを備え、アレイ中の各配向パッチは、上に重なっている液晶層の液晶配向子(director)を局所的に向ける傾向がある予め決められた配向の向きを有し、配向パッチのアレイが、配向層の実質的無方向性領域内に点在し、局所方向性液晶配向子が、液晶層に、配向層の実質的無方向性領域の上方に渦リターダのマイクロアレイの形成を起こさせるように選択される周期性で配向パッチのアレイが配置されている方法が提供される。
【0018】
本発明のさらなる特徴および利点は、添付図面を併用すると以下の詳細な説明から明らかになろう。
【図面の簡単な説明】
【0019】
【図1】放射方向偏光の光ビーム(左)および方位角方向偏光の光ビーム(右)を示す概略図である。
【図2】ある方位角位置φでの光渦リターダの速軸の方位角方向θを示す概略図である。
【図3】図3Aは接線方向に配向した速軸を有する光渦リターダの概略図である。図3Bは半径方向に配向した速軸を有する光渦リターダの概略図である。
【図4】1、2、−1および−2に等しいモードを有する光渦リターダの例を示す図である。
【図5】図5Aは各パッチの方向がパッチ内に描かれた線によって示されている、m=+/−1の渦のアレイを製作するための配向パターンの一実施形態を示す図である。図5Bは「ベクトル線」が複屈折材料(例えば、LC層またはLCP層)の軸(すなわち、速軸または遅軸)を表すと共に、基礎をなす配向パターンが参考のために示されている、図5Aに示す配向パターンを用いてLC層またはLCP層に形成されるm=+/−1の光渦リターダのアレイのある実施形態を示す図である。
【図6】図6Aは各パッチの方向がパッチ内に描かれた線によって示されている、m=+/−2の渦のアレイを製作するための配向パターンの一実施形態を示す図である。図6Bは「ベクトル線」が複屈折材料(例えば、LC層またはLCP層)の軸(すなわち、速軸または遅軸)を表すと共に、基礎をなす配向パターンが参考のために示されている、図6Aに示す配向パターンを用いてLC層またはLCP層に形成されるm=+/−2の光渦リターダのアレイのある実施形態を示す図である。
【図7】図7Aは各パッチの方向がパッチ内に描かれた線によって示されている、配向パッチの2次のセットを含むm=+/−2の渦のアレイを製作するための配向パターンの一実施形態を示す図である。図7Bは「ベクトル線」が複屈折材料(例えば、LC層またはLCP層)の軸(すなわち、速軸または遅軸)を表すと共に、基礎をなす配向パターンが参考のために示されている、図7Aに示す配向パターンを用いてLC層またはLCP層に形成されるm=+/−2の光渦リターダのアレイのある実施形態を示す図である。
【図8】図8Aは各パッチの方向がパッチ内に描かれた線によって示されている、配向パッチの2次のセットを含むm=+/−3の渦のアレイを製作するための配向パターンの一実施形態を示す図である。図8Bは「ベクトル線」が複屈折材料(例えば、LC層またはLCP層)の軸(すなわち、速軸または遅軸)を表すと共に、基礎をなす配向パターンが参考のために示されている、図8Aに示す配向パターンを用いてLC層またはLCP層に形成されるm=+/−3の光渦リターダのアレイのある実施形態を示す図である。
【図9】図9Aは各パッチの方向がパッチ内に描かれた線によって示されている、配向パッチの2次のセットを含むm=+/−4の渦のアレイを製作するための配向パターンの一実施形態を示す図である。図9Bは「ベクトル線」が複屈折材料(例えば、LC層またはLCP層)の軸(すなわち、速軸または遅軸)を表すと共に、基礎をなす配向パターンが参考のために示されている、図9Aに示す配向パターンを用いてLC層またはLCP層に形成されるm=+/−4の光渦リターダのアレイのある実施形態を示す図である。
【図10】図10Aは図5Aに示す、向けられた配向パッチの配列の単位セルを示す図である。図10Bは図5Aおよび図5Bにそれぞれ示す配向層および隣接するLC層またはLCP層の断面図である。
【図11】5〜20ミクロンにわたるLCP材料の45度の変化を示す図である。
【図12】混成のm=+/−2の光渦リターダの2つの異なる実施形態を示す図である。
【図13】混成のm=+/−4の光渦リターダの2つの異なる実施形態を示す図である。
【図14】図10Aに示す単位セルの3×3アレイのモデル化された渦の配向を示す図である。
【発明を実施するための形態】
【0020】
添付図面すべてにわたって、同様の特徴は、同様の参照符号によって識別されることに留意されたい。
【0021】
図5Aを参照すると、本発明の一実施形態による隣接したLC層またはLCP層内に光渦リターダのアレイを生成するための配向層の概略図が示されている。配向層110は、実質的無方向性領域130内に点在している複数の別個の配向エリアすなわちパッチ120A、120B、120C、120Dを含む。各配向パッチ120A、120B、120C、120Dは、1つまたは複数の他の配向パッチの一定の配向方向とは異なる一定の配向方向を有する。具体的には、複数の別個の配向パッチ120A、120B、120C、120Dは、4つの異なる配向方向を含む。例えば、配向パッチ120Aは、一定の配向方向を有しその方向は0度であり、一方、配向パッチ120Cは、90度の一定の配向方向を有しており、それぞれはx軸に対して測定されている。複数の別個の配向パッチ120A、120B、120C、120Dは、一定の配向方向がある周期状に交互になるように予め決められた微細ピッチの2Dパターンで配列される。例えば、別個の配向パッチ120Bおよび120Dを参照すると、一定の配向方向は、x軸に平行な向きに直交する方向の間で交互になっている。とりわけ、格子間領域140を含む別個の配向パッチ同士の間のエリア(例えば、実質的無方向性領域130)は、好ましい配向方向を有さない。
【0022】
図5Bも参照すると、別個の配向パッチ120A、120B、120C、120Dのそれぞれは、配向層110の上方に配置されたLCまたはLCP前駆体層150に光渦リターダのアレイを生成させるように、戦略的に向けられ、所定の大きさに作製され、成形され、および/または配置される。具体的には、各別個の配向パッチ120A、120B、120C、120Dを使用して、上に重なっている/隣接したLCまたはLCP前駆体層150の配向を局所的に固定し、無方向性格子間領域140に隣接したLCまたはLCP材料に渦リターダ160の形成を起こさせる。各配向パッチ120A、120B、120C、120Dの上のLCまたはLCP材料150は、基礎をなす配向パッチと同じ方向を概して有するが、パッチの境界で滑らかな速軸の変化があるように、多少の逸脱がパッチの縁部近くで予想される。とりわけ、配向パッチのこのパターンは、m=1およびm=−1の光渦リターダのアレイを生成するために示されている。例えば、光渦リターダ160は、m=−1の渦リターダであり、一方、光渦リターダ170は、m=1の光渦リターダである。
【0023】
図6Aを参照すると、本発明の別の実施形態による隣接したLC層またはLCP層内に光渦リターダのアレイを生成するための配向層の概略図が示されている。配向層210は、実質的無方向性領域230内に点在している複数の別個の配向エリアすなわちパッチ220A、220B、220C、220Dを含む。各配向パッチ220A、220B、220C、220Dは、1つまたは複数の他の配向パッチの一定の配向方向とは異なる一定の配向方向を有する。具体的には、複数の別個の配向パッチ220A、220B、220C、220Dは、2つの異なる配向方向を含む。例えば、配向パッチ220Aは、一定の配向方向を有しこの方向は0度であり、一方、配向パッチ220Bは、90度の一定の配向方向を有する。複数の別個の配向パッチ220A、220B、220C、220Dは、一定の配向方向がある周期状に交互になるように予め決められた微細ピッチの2Dパターンで配列される。具体的には、一定の配向方向は、市松模様状に交互になる。とりわけ、格子間領域240を含む別個の配向パターン同士の間のエリア(例えば、実質的無方向性領域230)は、好ましい配向方向を有さない。
【0024】
図6Bも参照すると、別個の配向パッチ220A、220B、220C、220Dのそれぞれは、配向層210の上方に配置されたLCまたはLCP前駆体層250に光渦リターダのアレイを生成させるように、戦略的に向けられ、所定の大きさに作製され、成形され、および/または配置される。例えば、別個の配向パッチ220A、220B、220C、220Dのそれぞれを使用して、格子間領域240の上の/に隣接したLCまたはLCP材料の方向が渦リターダ260の生成を強いられるように、上に重なっている/隣接したLCまたはLCP前駆体層250の配向を局所的に固定する。各配向パッチ220A、220B、220C、220D上のLCまたはLCP材料250は、基礎をなす配向パッチと同じ方向を概して有するが、パッチの境界で滑らかな速軸の変化があるように、多少の逸脱がパッチの縁部近くで予想される。とりわけ、配向パッチのこのパターンは、m=2およびm=−2の光渦リターダのアレイを生成するために示されている。例えば、光渦リターダ260は、m=−2の渦リターダであり、一方、光渦リターダ270は、m=2の光渦リターダである。
【0025】
図7Aを参照すると、本発明のさらに別の実施形態のよる隣接したLC層またはLCP層内に光渦リターダのアレイを生成するための配向層の概略図が示されている。上記の第1の複数の別個の配向エリアすなわちパッチ220A、220B、220C、220Dに加えて、配向層210は、第2の複数の別個の配向エリアすなわちパッチ225A、225B、225C、225Dをさらに含んでおり、この第2の複数の別個の配向エリアすなわちパッチ225A、225B、225C、225Dは、第1の複数の220A、220B、220C、220Dより小さいと共に、実質的無方向性領域230内にやはり点在している。
【0026】
図7Bも参照すると、別個の配向パッチ220A、220B、220C、220D、225A、225B、225C、225Dのそれぞれは、配向層210の上方に/配向層210に隣接して配置されたLCまたはLCP前駆体層250にm=2、m=−2の光渦リターダのアレイを生成させるように、戦略的に向けられ、所定の大きさに作製され、成形され、および/または配置される。具体的には、第2の複数の別個の配向エリアすなわちパッチ225A、225B、225C、225Dは、各渦リターダ内の配向の回転の正しい向きを起こさせるように配置され、このようにしてアレイ内のフラストレーションを防ぐ(例えば、そこでは速軸の回転の向きが、渦リターダの部分内で反対にされる)。
【0027】
図8Aを参照すると、本発明の別の実施形態による隣接したLC層またはLCP層内に光渦リターダのアレイを生成するための配向層の概略図が示されている。配向層310は、第1の複数の別個の配向エリアすなわちパッチ320A、320B、320C、320Dと、第2の複数の別個の配向エリアすなわちパッチ325A、325B、325C、325Dとを含み、それらのそれぞれは、実質的無方向性領域330内に点在している。各配向パッチは、1つまたは複数の他の配向パッチの一定の配向方向とは異なる一定の配向方向を有する。具体的には、第1の複数の別個の配向パッチ320A、320B、320C、320Dは、4つの相違した配向方向を含み、一方、第2の複数の別個の配向パッチ325A、325B、325C、325Dは、4つのより相違した配向方向を含む。とりわけ、別個の配向パッチ同士の間の格子間領域340を含む別個の配向パターン同士の間のエリア(例えば、実質的無方向性領域330)は、好ましい配向方向を有さない。
【0028】
図8Bも参照すると、別個の配向パッチ320A、320B、320C、320D、325A、325B、325C、325Dのそれぞれは、配向層310の上方に配置されたLCまたはLCP前駆体層350に光渦リターダのアレイを生成させるように、戦略的に向けられ、所定の大きさに作製され、成形され、および/または配置される。例えば、別個の配向パッチ320A、320B、320C、320Dのそれぞれを使用して、上に重なっている/隣接したLCまたはLCP前駆体層350の配向を局所的に固定し、無方向性格子間領域340の上方の/に隣接したLCまたはLCP材料に渦リターダ360を形成させる。各配向パッチ320A、320B、320C、320D上のLCまたはLCP材料350は、基礎をなす配向パッチと同じ方向を概して有するが、パッチ同士の境界で滑らかな速軸の変化があるように、多少の逸脱がパッチの縁部近くで予想される。第2の複数の別個の配向エリアすなわちパッチ325A、325B、325C、325Dは、各渦リターダ内の配向の回転の正しい向きを起こさせるのに役立ち、このようにしてアレイ内のフラストレーションを防ぐ(例えばそこでは速軸の回転の向きが、渦リターダの部分内で反対にされる)。とりわけ、配向パッチのこのパターンは、m=3およびm=−3の光渦リターダのアレイを生成するために示されている。例えば、光渦リターダ360は、m=−3の光渦リターダであり、一方、光渦リターダ370は、m=3の光渦リターダである。
【0029】
図9Aを参照すると、本発明の別の実施形態による隣接したLC層またはLCP層内に光渦リターダのアレイを生成するための配向層の概略図が示されている。配向層410は、第1の複数の別個の配向エリアすなわちパッチ420と、第2の複数のより小さい別個の配向エリアすなわちパッチ425とを含み、それらの両方は、実質的無方向性領域430内に点在している。第1の420および第2の425の複数の各配向パッチは、1つまたは複数の他の配向パッチの一定の配向方向とは異なる一定の配向方向を有する。第1の複数の別個の配向パッチ同士の間の格子間領域を含む別個の配向パターン同士の間のエリア(例えば、実質的無方向性領域430)は、好ましい配向方向を有さない。
【0030】
図9Bも参照すると、第1の420および第2の425の複数の別個の配向パッチのそれぞれは、配向層410に対して上方に/隣接して配置されたLCまたはLCP前駆体層450に光渦リターダのアレイを生成させるように、戦略的に向けられ、所定の大きさに作製され、成形され、および/または配置される。具体的には、第1の複数の別個の配向パッチ420内の別個の配向パッチのそれぞれを使用して、上に重なっている/隣接したLCまたはLCP前駆体層450の配向を局所的に固定し、第1の複数の別個の配向パッチの間の無方向性格子間領域の上方の/に隣接したLCまたはLCP材料に渦リターダ460の形成を起こさせる。第2の複数の別個の配向エリア425内の別個の配向パッチのそれぞれは、各渦リターダ内の配向の回転の正しい向きを起こさせるのに役立ち、このようにしてアレイ内のフラストレーションを防ぐ(例えば、そこでは向きまたは回転が、渦リターダの部分内で反対にされる)。とりわけ、配向パッチのこのパターンは、m=4およびm=−4の光渦リターダのアレイを生成するために示されている。例えば、光渦リターダ460はm=−4の渦リターダであり、一方、光渦リターダ470は、m=4の光渦リターダである。
【0031】
2次の配向パッチ325Aおよび425は、上記の各実施形態においてアレイ中のフラストレーションを低減させるのに役立ち得るが、マイクロアレイ内またはマイクロアレイの周囲に不規則な配向、ランダムな配向、均一な配向、欠陥、食い違い(dislocation)、等方性のLC相、またはLC材料の欠如を示すエリアが存在し得ることに留意されたい。
【0032】
有利には、図5B、図6B、図7B、図8Bおよび図9Bに示す光渦リターダ・アレイのそれぞれは、別個の配向パッチの方向を単に変更することによって容易に制御および最適化される設計を含む。言い換えれば、光渦リターダのアレイを生成するこの方法は、アレイの設計/モードに関わらず制御および最適化が容易である。
【0033】
さらに有利には、図5B、図6B、図7B、図8Bおよび図9Bに示す光渦リターダ・アレイは、交互の+/−モードの渦を含む。例えば、図5Bは、交互の+1/−1のモードの光渦リターダを示し、一方、図6Bは、交互の+2/−2のモードの光渦リターダを示す。+/−モードの中立の維持は、配向のコンフリクトおよび/またはフラストレーションのない安定した渦アレイをもたらすと考えられている。
【0034】
とりわけ、図5A、図6A、図7A、図8Aおよび図9Aに示す配向パターンは、光渦リターダ・アレイの性質を利用する。例えば、これらの配向パターンは、各別個の配向パッチを使用して4つの異なる渦の生成を助けるように設計される(例えば、各パッチの位置で、4つの近接する渦は、共通の配向方向へ向かう傾向がある)。加えて、速軸の方向が実質的に不定である各渦リターダの特異点は、各格子間領域の中心に(例えば、各格子間の点に)中心があるのが好都合である。
【0035】
図5Aに示す配向パターンのより大きいエリアを示す図10Aを参照すると、複数の別個の配向パッチ120がグリッドに沿って配置されていることが明らかである。より詳細には、複数の別個の配向パッチ120は、各別個の配向パッチが最も近い4つの隣り合ったものによって囲まれるように正方格子の格子点に対応する周期的な間隔で配置されている。加えて、複数の別個の配向パッチ120の方向も、予め決められたパターンを有することが図10Aから明らかである。この2Dパターンの単位セル180は、0°、90°、−45°(または135°)、および45°の間の配向方向で交互になる正方形状パッチの配列を含む。上記の通り、方向の向きがパッチ内のハッチ線によって示されているこの2Dパターンは、続いて堆積されるLC層またはLCP層が、格子間の点190に中心がある交互のm=−1およびm=+1の渦リターダのアレイを生成するための境界条件をもたらすように選択された。より詳細には、このパターンは、(明色の点190Aに中心がある)m=−1の渦が、(薄暗色の点190Bに中心がある)m=1の渦と市松模様状に交互となる交互の渦の配列をもたらす。
【0036】
光渦リターダのアレイの特色は、単位セル180の幾何学的形状によって少なくとも部分的に決定されることになる。最も近い4つの正方形配向パッチの角によって境界付けられる円形の格子間領域140の直径が渦の直径Vと称され、各正方形配向パッチの寸法(すなわち、長さおよび幅)がPであり、各正方形配向パッチの対角線寸法がDであり、および各単位セルの寸法(すなわち、長さおよび幅)がUである場合には、単位セルの幾何学的形状は、以下のように定めることができる。
D=3*((V/2)/(cos(45*π/180))−(V/2)) (2)
U=3*V+2*D (3)
P=D/√2 (4)
【0037】
例えば、20ミクロンの直径Vを有する渦リターダが所望される場合は、各配向パッチの対角線寸法Dは、典型的には約8.2ミクロンであり、単位セルの長さおよび幅Uは、典型的には約56.6ミクロンとなり、各配向パッチの長さおよび幅Pは、典型的には約5.8ミクロンとなる。
【0038】
概して、格子間領域のサイズ、V、したがって渦リターダのサイズは、やや制限されることになる。格子間領域が大きすぎる場合、配向パッチは、LCまたはLCPを所望の配向に強いることはできない。例えば、この場合、LCまたはLCP材料は、所望の渦の配向から逸脱する自由を有することになり、場合により不規則に配向する、または隙間ごとに2つ以上の渦を形成する。格子間領域が小さすぎる場合、LCまたはLCPは方向の急な変化を行うことができないので、LCは、強いられるように試みている配向パターンに従うことができない可能性がある。
【0039】
渦リターダのあり得るサイズの正確な範囲は、使用されるLCまたはLCP材料のタイプを含む様々なパラメータに依存することになる。例えば、(例えば、図11に示すように)5〜20ミクロンにわたって配向の向きが45度だけ異なっている2つの隣り合う配向領域の間で変化するLCP材料に基づく渦リターダ・アレイは、(V+D)/2によって定められるパラメータを約5ミクロン〜約20ミクロンの範囲で有するようにモデル化されている。実験的には、各渦リターダが約15ミクロン〜約30ミクロンの直径を有する同じLCP材料に基づいた渦リターダの1Dアレイが観察されている。
【0040】
加えて、渦リターダのサイズは、LC材料の粘性および層の厚さに依存することになる。層の厚さが大きすぎる場合、LC配向は、垂直の向きの理想から逸脱する可能性がある。粘性が低すぎる場合、パッチ同士の間のLCは、所望の配向の挙動からより自由に逸脱することになる。粘性が高すぎる場合、LCは、それぞれの位置で好ましい向きに組織化するのを動力学的に妨げられる可能性がある。概して、層の厚さは、光渦リターダが必要なリターダンス(例えば、Γ=Δnd、ここでdは層の厚さである)をもたらすように選択されることになる。例えば、一実施形態では、光渦リターダのアレイは、光波長540nmで1/2波長板として構成される。
【0041】
とりわけ、上記の実施形態における1次の配向パッチ(すなわち、120A〜D、220A〜D、320A〜D、および420を含むより大きい正方形)は、正方格子の格子点に対応する周期的な間隔で配置されていることが示されたが、これら別個の配向パッチを別の2D格子タイプに対応する周期的な間隔で配置することも本発明の範囲内である。例えば、一実施形態では、1次の配向パッチは、六方格子の格子点に対応する周期的な間隔で配置されている。この実施形態では、各光渦リターダは、格子点にやはり中心があり、その結果各光渦リターダは、等距離の6つの別個の配向パッチによって囲まれている。実際には、配向パッチが、正方グリッド(例えば、市松模様)、三角グリッド、六角グリッド、または2つ以上のタイプの正多角形(すなわち正方形および八角形)をタイルのように並べることで構成されたグリッドを中心としている様々な実施形態が想像される。
【0042】
加えて、1次の配向パッチ(すなわち、120A〜D、220A〜D、320A〜D、および420を含むより大きい正方形)が、正方形状を有するものとして示されてきたが、1次の配向パッチが他の形状で設計されることも本発明の範囲内である。例えば、他の実施形態では、1次の配向パッチは、十字形、円形、4つ尖った星形、またはそれらの組合せとして設計される。当業者には、単位セルの寸法、パッチの寸法、および格子間領域に関する幾何学的関係は、選択したパッチの形状およびLCまたはLCP材料に基づいて再評価されてよいことが理解されよう。
【0043】
また、反対向きで同じモードの渦の交互の列(例えば、m=1の渦の列と交互となるm=−1の渦の列)を有する図5B、図6B、図7B、図8Bおよび図9Bに示す光渦リターダのマイクロアレイを示してきたが、他の組合せを与えることも本発明の範囲内である。例えば、一実施形態では、光渦リターダのマイクロアレイは、m=−1の渦、m=+1の渦、および混成のm=+/−1の渦を含む。混成のm=+/−1の渦は、4つの象限のうちの2つの象限においてm=+1であると共に、他の2つの象限においてm=−1である渦リターダとして定められる。
【0044】
図12および図13を参照すると、混成のm=+/−2およびm=+/−4の光渦リターダの実施形態がそれぞれ示されており、そこで描かれた矢印は、複屈折材料の軸(例えば、速軸または遅軸)を表す。図12の上半分に示す本実施形態では、渦リターダの上半分はm=+2であり、一方、渦リターダの下半分はm=−2である。図12の下半分に示す本実施形態では、混成の渦リターダの4つの象限は、m=+2とm=−2の間で交互になる。同様に、図13の上半分に示す本実施形態では、渦リターダの上半分はm=+4であり、一方、渦リターダの下半分はm=−4である。図13の下半分に示す本実施形態では、混成の渦リターダの4つの象限は、m=+4とm=−4の間で交互になる。
【0045】
有利には、上記の図5A、図6A、図7A、図8A、図9Aおよび図10に示す2Dパターンは、光渦リターダの比較的大きいアレイをもたらすことができる。例えば、図14を参照すると、図10Aに示す単位セル180の3×3アレイが示されている。これらの大きく比較的複雑なパターンは、比較的簡単な製造プロセスを用いて形成されることが注目される。具体的には、複数の別個の配向パッチは、配向層内に直線状の配向をもたらす簡単だが正確な方法を用いて製造される。より複雑な光渦リターダは、これら直線配向パッチを用いて、配向層上に配置されたLCまたはLCP材料が、別個の配向パッチによっておよび/またはそこから結果として生じる任意の方向によって影響を受ける方向をとることを可能にすることよって製造される(例えば、無方向性領域の上の/に隣接したLCまたはLCP材料の方向は、横方向に近接するLCまたはLCP材料の方向によって影響を受けることになる)。したがって、比較的複雑なパターンは、比較的簡単な製造プロセスを用いてもたらされる。
【0046】
上記配向層を作成する一方法は、フォトリソグラフィ光配向技術(photolithographic photoalignment technique)を使用することである。例えば、一実施形態では、配向層は、以下の通り作成される。
【0047】
まず、直線重合可能フォトポリマー(LPP:linearly polymerizable photopolymer)の層が、透明基板(例えば、2×2インチのガラス基板)上にコーティングされる。例えば、一実施形態では、LPP層は、シクロペンタノン中LPP2重量%溶液をガラス基板上に(例えば、3000回転/分(RPM)で60秒間)スピン・コーティングすることによって形成され、それによって50nmの厚さの配向層を得る。他の実施形態では、LPP層は、ワイヤ・コーティング、グラビア・コーティング(gravur−coating)、スロット・コーティング等などの別のコーティング法を用いて形成される。このLPPは、直線偏光紫外(LPUV)光に露光されると、ポリマーの分子配向が入射偏光に平行である(すなわち、分子配向が入射光の方向によって決定される一様な向きに設定される)ように重合する材料である。ケイ皮酸誘導体および/またはフェルラ酸誘導体をしばしば含むLPP層が、当技術分野でよく知れられている。適したLPPの一例は、ROLIC Technologies社から入手可能なROLIC LPP ROP108/2CPである。LPP材料の別な例は、ポリビニル4−メトキシ−シンナマート(「PVMC:PolyVinyl 4−Methoxy−Cinnamate」)である。LPPがコーティングされた基板は適宜、温度摂氏150度〜200度で数分間焼かれて(すなわち、アニールされて)LPP層を安定させ、および/または余分な溶剤をスピン・コーティング・プロセスから除去する。適宜、シラン・カップリング剤などの接着促進剤が、LPPが基板上にコーティングされる前に基板に施される。さらに適宜、LPP層を支持する透明基板は、その背面上に広帯域の反射防止(AR)膜を含むことになる。
【0048】
次に、LPPがコーティングされた基板は、LPP層を選択的に重合するのに適した波長で(例えば、LPPが、ROLIC LPP ROP108/2CPである場合には、波長280〜365nmで)LPUVを用いて固定したフォトマスクを通して照射される。例えば、一実施形態では、50nmの厚さのROLIC LPP ROP108/2CP層でコーティングされた基板は、LPUV光を約300〜340nmで、垂直入射で、エネルギ密度12mJ/cmで10秒間用いて照射される。概して、フォトマスクは、グリッド・パターンに配列された複数の開口を有することになり、各開口の形状は、所望の別個の配向パッチの形状(例えば、図5Aに示すパターンについては正方形)を与えるように選択される。例えば、一実施形態では、フォトマスクは、複数の正方形の切り抜きを含む固体金属板である。別の実施形態では、フォトマスクは、複数の開口を設けるために、その上にコーティング/スパッタされ、エッチングによって予め決められたパターンにパターン化されたクロムなどの不透明層を有する透明基板を含む。LPP層がフォトマスクを通して照射される際に、配向層の小さいパッチは、そこに設定される方向を有することになり、一方、露光しないエリア(すなわち、マスクしたエリア)は、無方向性のままである。異なる方向を有する配向層の小さいパッチを得るために、照射したLPPがコーティングされた基板は、異なる偏光方向を有するLPUV光を用いて別の照射段階に受ける。第2の照射段階は、異なるフォトマスクを通して、または(例えば、直線状の平行移動を与えるために)フォトマスクが横方向へシフトされた後に同じフォトマスクを通して行われる。例えば、一実施形態では、LPPがコーティングされた基板は、フォトマスクを通して第1の偏光を有するLPUV光を用いて照射され、このマスクは、複数の開口の位置が予め決められた量だけオフセットされるように動かされ、次いでLPP層が、第2の偏光方向を有するLPUV光で照射される(例えば、このマスクは、露光と露光の間にXの向きおよびYの向きに予め決められたマイクロメートルだけオフセットされる)。所望の配向パターンに応じて、LPUV光の偏光を回転させる段階およびフォトマスクをシフトする段階は、何度も繰り返されることになる。例えば、図5Aに示す配向パターンを与えるためには、フォトマスクが4回シフトされると共に、LPUV光の方向が(例えば、波長板および/または偏光子を用いて)4回回転される必要がある。対照的に、図6Aに示す配向パターンを与えるためには、LPUV光の方向およびフォトマスクの位置のそれぞれは、2回スイッチされさえすればよい。代替として、異なる方向を有する配向層の小さいパッチは、照射段階と照射段階の間に基板が回転されると共に、固定したマスクおよびLUVP光源を用いて得られる(例えば、図6Aに示す2Dパターンを形成するためには、ただ1回、基板を90度回転させることが必要となる)。
【0049】
複数の別個の配向パッチを有する配向層を作成する別の方法は、直接レーザ書き込み(DLW:direct laser writing)技術を使用することである。例えば、一実施形態では、LPP層は、上記の通り透明基板上にコーティングされるが、フォトマスクを通してそれを照射するのではなく、LPP層は、偏光UVレーザ・ビームがLPP層を適当な偏光の向きで各パッチの位置で選択的に露光するために使用されるマスクレス直接レーザ書き込み技術を受ける。
【0050】
複数の別個の配向パッチを有する配向層を作成するさらに別の方法は、ラビング技術を使用することである。機械的に擦られるときにラビングの向きに向く配向材料の一例は、ポリイミドである。ポリイミド配向層は、当技術分野でよく知られており、スピン・コーティング、ワイヤ・コーティング、グラビア・コーティング、スロット・コーティングなどによって堆積されてよい。適宜、ポリイミド層は、機械的ラビングの前に(例えば、摂氏180〜220度で約1時間)焼かれる。一実施形態では、複数の別個の配向パッチが、マイクロラビング技術を用いて形成され、配向パッチは、小さいラビング・ツールを用いて個々に擦られる。別の実施形態では、複数の別個の配向パッチは、予め決められた2Dパターンで配置されている複数の開口を有するレジスト層を配向層の上部に形成し、合成フェルト布を用いてレジストで覆った配向層を擦り、レジスト層を除去することによって生成される。
【0051】
複数の別個の配向パッチを有する配向層が形成されたら、次いで配向層は、所望のリターダンスを得るためにある特定の厚さまでLCまたはLCP前駆体材料でコーティングされる。非ポリマーLC材料が用いられる場合は、典型的には、カウンタ基板(counter substrate)を使用してLCセルを形成することになる。例えば、一実施形態では、このカウンタ基板は、第1の基板のものを反映する別個の配向パッチの2Dパターンを有する配向層も含む。液晶性モノマー、オリゴマー、または架橋性基を有するポリマーを含み得るLCP前駆体材料が用いられる場合は、典型的には単一基板が使用されることになる。加えて、LCP前駆体が用いられる場合は、さらなる処理段階は、アニーリング、UV(紫外線)硬化、ベーキング、積層、および/または追加の層のコーティングを含んでよい。LC前駆体材料およびLCP前駆体材料は共に、当技術分野で知られており、ネマチック相、スメクチック相、またはコレステリック相を示し得る。例えば、LCP材料の架橋性液晶材料は、ネマチック相、スメクチック相、またはコレステリック相を示し得る。適したLCP前駆体材料の一例には、架橋性ジアクリレート・ネマチック液晶性化合物が含まれ、この化合物は、熱的におよび/またはUV照射で重合および/または架橋される(必ずしも偏光されない)。ROLIC LPP ROP108/2CPを用いて形成されるLPP層を用いての使用に特によく適しているLCP前駆体の1つは、やはりRolic社から入手可能なROF5151であり、これをUV光で硬化してLCP前駆体を架橋し、LCP層を形成する(すなわち、LCP渦アレイの方向を固定する)。
【0052】
Δnが面内複屈折であるとするときに、LCまたはLCP材料が、対象となっている波長λでΔn*dの積が0.5であるように厚さdで施される場合、アレイ中の各渦リターダは、1/2波長渦リターダである。この場合、LCまたはLCP材料は、Aプレートとして構成される。もちろん、Oプレート型LC材料を用いることも本発明の範囲内である。
【0053】
上記の光渦リターダ・マイクロアレイは、マイクロリソグラフィ、マイクロオプトメカニカル・ポンプの駆動、および量子情報の処理に用いられる可能性を有する。例えば、渦のネットワークは、回転角、小さい直線変位の測定において、および超分解能顕微鏡法、3D走査干渉法において有用であると期待される。加えて、渦リターダ・アレイによってもたらされる構造光のポテンシャル・エネルギ・ランドスケープ(structured light potential energy landscape)は、新規なタイプの光トラップを提供できる。
【0054】
渦リターダのある特に有用な用途は、光ビームの軌道角運動量状態の情報を符号化することであり、この符号化は、所与のオーダ(order)の偏光渦を生成し、次いでビームを伝播させることによってなされる。ビームのオーダは、かなりの伝搬距離にわたって維持することができ、容易に復元される。渦リターダの周期的アレイについてのアレイの場合には、情報は、各渦リターダの位置において符号化できる。これは、2つのオーダ(例えば+1および−1)を有する周期的アレイに役立ち得る。複数のオーダが生成できる場合については、単一ビームで伝播できる情報量が、指数的に増大する。
【0055】
光渦リターダ・アレイの別の用途には、小粒子の操作が含まれる。光渦が角運動量を生成することはよく知られている。したがって、光渦のアレイは、それが正確に設計されると、小粒子を輸送するために使用できる。一例は、光トラップのアレイに基づいた微小流体ポンプの作成であり、この微小流体ポンプでは、それぞれの渦は、高開口数レンズと組み合わされ、微視的に流体を輸送できるトラップ領域を生成する。
【0056】
もちろん、上記の実施形態および用途は、単に例として与えられたものである。様々な変更例、代替の構成、および/または均等物が、本発明の精神および範囲から逸脱することなく用いられることが当業者によって理解されよう。例えば、様々な周期的な2Dパターンおよび規則的な2Dパターンを示してきたが、非規則的なパターンを使用することも本発明の範囲内である。加えて、上記の渦リターダは、光渦リターダの2Dアレイの一部であったが、1Dアレイを形成すること、または単一のマイクロサイズの渦リターダを形成することさえもやはり本発明の範囲内である。よって、本発明の範囲は、したがって添付の特許請求の範囲によってもっぱら限定されるものである。
【符号の説明】
【0057】
110 配向層
120 複数の別個の配向パッチ
120A 配向パッチ
120B 配向パッチ
120C 配向パッチ
120D 配向パッチ
130 実質的無方向性領域
140 格子間領域
150 LCまたはLCP前駆体層
160 光渦リターダ
170 光渦リターダ
180 単位セル
190 格子間の点
190A 明色の点
190B 薄暗色の点

【特許請求の範囲】
【請求項1】
光渦リターダを作製する方法であって、
第1の複数の別個の配向パッチを有する配向層を形成するステップを備え、前記第1の複数の別個の配向パッチが第1の配向方向を有する第1の配向パッチおよび第2の他の配向方向を有する第2の配向パッチを含むものであり、および
前記配向層に隣接した複屈折材料の層を設けるステップを備え、前記複屈折材料の層が液晶および液晶ポリマー前駆体材料のうちの1つを含むものであり、
前記第1の複数の別個の配向パッチ中の各別個の配向パッチの配向方向および位置が、前記複屈折材料の層に、前記配向層の実質的無方向性領域に隣接した少なくとも1つの光渦リターダを形成させるように選択される、方法。
【請求項2】
前記第1の複数の別個の配向パッチ中の各別個の配向パッチの位置は、各別個の配向パッチが2次元格子の格子点に配置されるように選択され、
前記第1の複数の別個の配向パッチ中の各別個の配向パッチの配向方向は、前記複屈折材料の層の速軸が前記2次元格子の格子間の点の少なくとも1つの周りに前記点周りに描かれる格子間領域内の閉路のために回転するように選択される、請求項1に記載の方法。
【請求項3】
前記少なくとも1つの光渦リターダが、光渦リターダの2次元アレイを含む、請求項2に記載の方法。
【請求項4】
前記光渦リターダの2次元アレイが、反対向きで同じモードの光渦リターダの交互の列を含む、請求項3に記載の方法。
【請求項5】
前記2次元格子が正方格子であり、各光渦リターダが、前記第1の複数の配向パッチ中の4つの別個の配向パッチの間に中心がある前記配向層の実質的無方向性領域に隣接して配置され、前記4つの別個の配向パッチのそれぞれが、4つの異なる配向の向きのうちの1つを有する、請求項3に記載の方法。
【請求項6】
前記2次元格子が正方格子であり、各光渦リターダが、前記第1の複数の配向パッチ中の4つの別個の配向パッチの間に中心がある前記配向層の実質的無方向性領域に隣接して配置され、前記4つの別個の配向パッチのそれぞれが、2つの異なる配向の向きのうちの1つを有する、請求項3に記載の方法。
【請求項7】
前記複屈折材料が液晶ポリマー前駆体であり、液晶ポリマー層を形成するために前記配向層に隣接した前記複屈折材料に紫外光を照射するステップをさらに含む、請求項1に記載の方法。
【請求項8】
前記少なくとも1つの渦リターダが、約5ミクロン〜約30ミクロンである直径を有する渦リターダを含む、請求項1に記載の方法。
【請求項9】
前記少なくとも1つの渦リターダが、混成の渦リターダを含む、請求項1に記載の方法。
【請求項10】
前記配向層において第2の複数の別個の配向パッチを形成するステップをさらに含み、前記第2の複数の別個の配向パッチのそれぞれが、前記少なくとも1つの光渦リターダに正しい回転を起こすように選択される配向方向および位置を有する、請求項1に記載の方法。
【請求項11】
前記第1の複数の別個の配向パッチ中の各別個の配向パッチの配向方向および位置が、マイクロリソグラフィ、顕微鏡法、粒子捕獲/操作、マイクロオプトメカニカル・ポンプの駆動、回転角の測定、小さい直線変位の測定、超分解能顕微鏡法、および3次元走査干渉法のうちの少なくとも1つに用いられる光渦リターダのアレイを形成するように選択される、請求項1から10のいずれかに記載の方法。
【請求項12】
前記第1の複数の別個の配向パッチを有する配向層を形成するステップが、
前記第1の配向方向を有する第1の配向パッチを設けるために、複数の開口を有するフォトマスクを通して直線重合可能フォトポリマー材料に第1の偏光を有する直線偏光の光を照射するステップと、
前記フォトマスクを、前記直線重合可能フォトポリマー材料を支持する基板に対して動かすステップと、
前記第2の配向方向を有する第2の配向パッチを設けるために、前記フォトマスクおよび複数の開口を有する異なるフォトマスクのうちの1つを通して前記直線重合可能フォトポリマー材料に第2の他の偏光を有する直線偏光の光を照射するステップと
を備えた、請求項1から10のいずれかに記載の方法。
【請求項13】
前記第1の複数の別個の配向パッチを有する配向層を形成するステップが、
前記第1の複数の別個の配向パッチを設けるようにポリイミド層を擦るステップを含む、請求項1から10のいずれかに記載の方法。
【請求項14】
前記第1の配向パッチが、前記配向層の実質的無方向性領域によって前記第2の配向パッチから空間的に分離されており、第1の配向の向きが、第2の配向の向きに垂直である、請求項1から10のいずれかに記載の方法。
【請求項15】
光渦リターダ・アレイであって、
配向層に隣接して配置される複屈折材料の層を備え、前記複屈折材料が、液晶および液晶ポリマー前駆体材料のうちの1つを含み、前記配向層が複数の別個の配向パッチを有し、前記複数の別個の配向パッチが第1の配向方向を有する第1の配向パッチおよび第2の他の配向方向を有する第2の配向パッチを含むものであり、
前記複数の別個の配向パッチ中の各別個の配向パッチの配向方向および位置が、前記複屈折材料の層に、光渦リターダ・アレイを形成させるように選択される、光渦リターダ・アレイ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−66765(P2010−66765A)
【公開日】平成22年3月25日(2010.3.25)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−206696(P2009−206696)
【出願日】平成21年9月8日(2009.9.8)
【出願人】(502151820)ジェイディーエス ユニフェイズ コーポレーション (90)
【氏名又は名称原語表記】JDS Uniphase Corporation
【住所又は居所原語表記】430 N. McCarthy Boulevard, Milpitas, California, 95035, USA
【Fターム(参考)】