説明

光磁気記録媒体の再生装置及び再生方法

【課題】レーザースポット内の温度分布を制御して良好な再生信号を得て、更なる高記録密度化を可能とする光磁気記録媒体の再生装置等を提供する。
【解決手段】記録トラックに対応する凸部と凸部の両側に凹部が形成された基板上に、レーザ光が入射される第1磁性層と、情報が記録される第2磁性層と、第1磁性層及び第2磁性層よりもキュリー温度が低い第3磁性層と、第3磁性層の凹部に形成され面内方向に磁気異方性を有する第4磁性層とが形成され、第1磁性層に第3磁性層を介して第2磁性層に記録された情報が転写される光磁気記録媒体の再生装置であって、ブルーレイ規格に準拠した405nm±5nmの波長のレーザ光を第1磁性層上から照射するときに、レーザ光のリム強度Rrimを、光磁気記録媒体のトラック方向のリム強度/光磁気記録媒体の半径方向のリム強度と定義した場合に、レーザ光が、(a)のように、Rrim>1なる条件を満たす。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光を照射することにより光磁気記録媒体に記録された情報の再生を行う光磁気記録媒体の再生装置及び再生方法に関する。
【背景技術】
【0002】
磁性膜を用いた光磁気記録媒体においては、情報記録密度の向上のために、記録マークの短縮化、すなわち情報磁区の微小化を図ることが必要となる。しかしながら、信号の再生分解能は、ほとんど再生光学系のレーザー光の波長λと対物レンズの開口数NAで決まり、空間周波数2NA/λが再生限界となる。
【0003】
これに対し、更なる記録密度を向上させる技術としては、下記の特許文献1に記載されたものが知られている。この特許文献1には、第1の磁性層、第2の磁性層、第3の磁性層が順次積層され、該第1の磁性層は、第3の磁性層に比べて相対的に磁壁抗磁力が小さく磁壁移動度大きく、第2の磁性層は該第1の磁性層および第3の磁性層よりもキュリー温度の低い光磁気記録媒体が記載されている。また、特許文献1には、レーザー光を光磁気記録媒体に対して相対的に移動させながら第1の磁性層の側から照射し、該媒体上に該光ビームのスポットの移動方向に対して勾配を有する温度分布を形成し、該温度分布を少なくとも第2の磁性層のキュリー温度よりも高い温度領域を有する温度分布とすることによって該第1の磁性層に形成されていた磁壁を移動させ、該光ビームの反射光の偏光面の変化を検出して記録情報を再生することが記載されている。
【0004】
また、記録密度を向上させる他の技術としては、下記の特許文献2、3に記載されたものが知られている。
【0005】
特許文献2には、ランド及びグルーブが形成された基板に、磁壁移動により磁区を拡大して読み出すための磁性層が少なくとも3層以上積層された光磁気記録媒体が記載されている。この光磁気記録媒体は、レーザー光が入射される第1磁性層、この第1磁性層の下層に位置する第2磁性層との間で、記録トラックの両側のみに面内磁気異方性を有する面内磁気異方性層が形成されている。
【0006】
特許文献3には、光磁気記録媒体に記録された情報再生時に、レーザービームスポットBLSのリム強度Rimを調整することが記載されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平6−290496号公報
【特許文献2】特開2007−102829公報
【特許文献3】特開2006−18943公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述した特許文献1−3に記載された技術は、レーザースポット内の温度分布、すなわち温度勾配を利用して磁壁を移動させ、短い幅に記録された情報を再生可能とするものである。このため、トラック方向の記録密度向上のためにレーザー光を短波長化し、レーザースポットサイズを小さくすると、レーザースポット内の温度勾配が変化するため、特許文献2の媒体構造では磁壁移動再生に最適な交換結合膜を作製することが困難となる。
【0009】
また、特許文献2に記載された光磁気記録媒体は、トラック方向のみならず、当該トラック方向と垂直な半径方向にもおよぶ磁壁移動(磁区拡大)再生を行うものであり、良好な再生信号を得るためには、レーザースポット内の温度分布を制御することが重要となる。
【0010】
そこで、本発明は、上述した実情に鑑みて提案されたものであり、レーザースポット内の温度分布を制御して良好な再生信号を得て、更なる高記録密度化を可能とする光磁気記録媒体の再生装置及び再生方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決する第1の発明に係る光磁気記録媒体の再生装置は、情報が記録される記録トラックに対応する凸部(101a)と前記凸部(101a)の両側に凹部(101b)が形成された基板(101)上に、少なくともレーザー光が入射される垂直方向に磁気異方性を有する第1磁性層(104)と、情報が記録される垂直方向に磁気異方性を有する第2磁性層(108)と、前記第1磁性層(104)及び前記第2磁性層(108)よりもキュリー温度が低い第3磁性層(106,107)と、前記第3磁性層(106,107)の凹部に形成され面内方向に磁気異方性を有する第4磁性層(105)とが形成され、前記第1磁性層(104)に前記第3磁性層(106,107)を介して前記第2磁性層(108)に記録された情報が転写される光磁気記録媒体(100)の再生装置であって、ブルーレイ規格に準拠した405nm±5nmの波長のレーザー光を前記第1磁性層上から照射する光照射部(40)を有し、前記レーザー光のリム強度Rrimを、前記光磁気記録媒体(100)のトラック方向のリム強度/前記光磁気記録媒体(100)の半径方向のリム強度と定義した場合に、前記光照射部(40)から照射されるレーザー光が、Rrim>1なる条件を満たすことを特徴とする。
【0012】
上記の課題を解決する第1の発明に係る光磁気記録媒体の再生方法は、情報が記録される記録トラックに対応する凸部(101a)と前記凸部(101a)の両側に凹部(101b)が形成された基板(101)上に、少なくともレーザー光が入射される垂直方向に磁気異方性を有する第1磁性層(104)と、情報が記録される垂直方向に磁気異方性を有する第2磁性層(108)と、前記第1磁性層(104)及び前記第2磁性層(108)よりもキュリー温度が低い第3磁性層(106,107)と、前記第3磁性層(106,107)の凹部に形成され面内方向に磁気異方性を有する第4磁性層(105)とが形成され、前記第1磁性層(104)に前記第3磁性層(106,107)を介して前記第2磁性層(108)に記録された情報が転写される光磁気記録媒体(100)の再生装置であって、ブルーレイ規格に準拠した405nm±5nmの波長のレーザー光を前記第1磁性層上から照射ときに、前記レーザー光のリム強度Rrimを、前記光磁気記録媒体(100)のトラック方向のリム強度/前記光磁気記録媒体(100)の半径方向のリム強度と定義した場合に、照射するレーザー光が、Rrim>1なる条件を満たすようにすることを特徴とする。
【発明の効果】
【0013】
本発明によれば、レーザー光のリム強度Rrimを、光磁気記録媒体のトラック方向のリム強度/光磁気記録媒体の半径方向のリム強度と定義した場合に、照射するレーザー光が、Rrim>1なる条件を満たすようにするので、小さく絞られたレーザースポット内でのトラック方向における急峻な温度分布(温度勾配)をレーザースポットのリム強度を調整して緩やかにでき、より高密度化に記録された情報を良好な再生信号で再生でき、更なる高記録密度化を可能とできる。
【図面の簡単な説明】
【0014】
【図1】本発明の一実施形態として示す光磁気記録媒体の記録再生装置により再生される光磁気記録媒体の構成を示す断面図である。
【図2】本発明の一実施形態として示す光磁気記録媒体の記録再生装置により再生される光磁気記録媒体の再生状態を示す斜視図である。
【図3】本発明の一実施形態として示す光磁気記録媒体の記録再生装置の構成を示すブロック図である。
【図4】(a)は本発明の一実施形態として示す光磁気記録媒体の記録再生装置により再生される光磁気記録媒体の磁化状態、(b)光磁気記録媒体の温度分布、(c)は磁壁移動を起こす力、を示した図である。
【図5】レーザービームスポットの移動方向前方側でのフロントプロセスを説明するために模式的に示した図である。
【図6】(a)は本発明の一実施形態として示す光磁気記録媒体の記録再生装置により再生される光磁気記録媒体の磁化状態、(b)光磁気記録媒体の温度分布、(c)は磁壁移動を起こす力、を示した他の図である。
【図7】レーザービームスポットの移動方向前方側でのリアプロセスを説明するために模式的に示した図である。
【図8】実施例の光磁気記録媒体の温度分布と比較例の光磁気記録媒体の温度分布とを示す図である。
【図9】(a)はRrim>1となる光磁気記録媒体の温度分布、(b)はRrim=1となる光磁気記録媒体の温度分布、(c)はRrim<1となる光磁気記録媒体の温度分布を示す図である。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態について図面を参照して説明する。
【0016】
本発明の実施形態として示す光磁気記録媒体の再生装置は、例えば図1及び図2に示す光磁気記録媒体100に記録された情報を再生する。
【0017】
先ず、光磁気記録媒体100の概要について説明する。この光磁気記録媒体100は、基板101上に、カバー層102、第1誘電体層103、第1磁性層104、第2磁性層105、第3磁性層106、第4磁性層107、第5磁性層108、第2誘電体層109が積層されている。
【0018】
基板101は、ガラス盤又はポリカーボネイト等からなる。基板101は、基板情報が記録される記録トラックに対応する凸部101aと、凸部101aの両側に凹部状の案内溝101bが形成されている。
【0019】
基板101は、例えば厚み1.1mm,外径120mm,中心孔径15mmで円盤状に形成されている。また、凸部101aは、記録トラックに対応し、レーザービームスポットの入射側に向かって僅かな高さで突出して所定のトラックピッチPで螺旋状又は同心円状に形成されている。更に、凸部101aの両側に案内溝101bが形成されていることによって、半径方向において基板101上では凸部101aと案内溝101bとが交互に形成されている。
【0020】
案内溝101bのピッチ(トラックピッチ)は、所謂ブルーレイディスク(Blu−rayDisc)のトラックピッチである320nmに対して半分程度(160nm程度)に設定されている。また、記録トラックのトラック幅W(図2参照)は、50nm程度に設定されて、狭トラック化が図られている。基板101上には、保護膜となる第2誘電体層109が形成されている。
【0021】
第2誘電体層109上には、第5磁性層108、第4磁性層107、第3磁性層106が順次形成されている。これらの第5磁性層108、第4磁性層107及び第3磁性層106は、真空中で例えば連続スパッタリング等により順次積層して、三層磁性膜として形成される。さらに、第3磁性層106上には、案内溝101b上にのみ、第2磁性層105を形成する。この第2磁性層105は、一旦全面に真空成膜した後、真空中でイオンリミングにより凸部101a上の磁性膜のみを除去することによって形成される。このイオントリミング工程は、磁性膜の成膜工程と連続して行うことが可能であり、フォトリソグラフィー等によるマスクを設けることなく凸部101a上に形成された磁性膜のみを除去することが可能である。
【0022】
第3磁性層106及び第2磁性層105上には、第1磁性層104が形成される。この第1磁性層104は、真空中で成膜され、第1磁性層104上に保護層及び光学的干渉層となる第1誘電体層103を真空中で形成し、第1誘電体層103上に、厚みが0.1mm程度で光透過性を有するカバー層102を形成する。なお、第1誘電体層103及び第2誘電体層109の膜厚は、20〜60nm程度とすることが望ましい。
【0023】
つぎに、上述した光磁気記録媒体100の各層について説明する。
【0024】
第2誘電体層109は、例えば14.4W/mK程度の高い熱伝導率を有するAlNのような透明な誘電材料を用いて成膜されている。この際、第2誘電体層109は、基板101上に交互に形成された凸部101aと凹状の案内溝101bにならって凸状と凹状に交互に形成されている。
【0025】
第2誘電体層109上に成膜される第5磁性層108は、記録時に青色レーザービームスポットを照射しながら図示しない磁気ヘッドからの外部磁界によって情報信号に応じた記録マークを垂直な方向に磁化容易軸を持った膜面に磁区(磁化反転領域)の形態で記録した後に、室温において記録した磁区を安定に保持するために充分な保磁力を有する。また、第5磁性層108は、情報信号を記録するために適したキュリー温度Tcを持つ膜であることが必要である。第5磁性層108は、情報を記録する記録層(メモリ層)として機能している。
【0026】
この第5磁性層108は、垂直方向(膜面に垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁化膜となる重希土類−鉄族金属から成るアモルファス薄膜として成膜されている。第5磁性層108は、例えばTb−Fe−Co膜又はDy−Fe−Co膜をベースとする材料が使用される。更に、第5磁性層108は、AlやCrなどの非磁性元素やCoを添加してキュリー温度Tcが調整されている。第5磁性層108も、第2誘電体層109を介して基板101上に交互に形成された凸部101aと案内溝101bにならって凸状と凹状に交互に形成されている。
【0027】
第4磁性層107及び第3磁性層106のうちで少なくとも第4磁性層107は、第5磁性層108から第1磁性層104に磁区(記録マーク)を転写する時の交換結合力を制御する交換結合力制御層として機能している。この第4磁性層107及び第3磁性層106は、垂直方向(膜面に垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁化膜である。第4磁性層107及び第3磁性層106は、重希土類−鉄族金属から成るアモルファス薄膜として成膜されており、Tb−Fe膜又はDy−Fe膜をベースとする材料を用いて希土類金属優勢(RE−rich)となっている。第4磁性層107及び第3磁性層106は、AlやCrなどの非磁性元素やCoを添加してキュリー温度がそれぞれ調節されている。第4磁性層107及び第3磁性層106のうちで第3磁性層106を極めて薄膜に成膜する。これにより、第3磁性層106は、磁壁移動可能な温度領域(約430K〜約490K)の青色レーザービームスポットの移動方向前方からの磁壁移動性能を向上させる機能を備える。これにより、後述する再生時における再生磁界の印加を省略することもできる。第4磁性層107及び第3磁性層106は、第2誘電体層109,第5磁性層108を介して基板101上に交互に形成された凸部101aと案内溝101bにならって凸状と凹状に交互に成膜されている。
【0028】
第2磁性層105は、周知の磁気テープの長手方向に磁化されて成膜される磁性層と同様である。第2磁性層105は、Fe、Co単体、希土類金属とFeの合金、希土類金属とCoの合金のいずれかが薄膜に成膜されている。
【0029】
第1磁性層104は、青色レーザービームスポットの入射側に位置しており、青色レーザービームスポットの照射によって作られた温度勾配特性により磁壁の移動を容易にするために磁気異方性の小さい膜であり、磁壁移動層として機能している。
【0030】
第1磁性層104は、垂直方向(膜面に垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁化膜である。第1磁性層104は、重希土類−鉄族金属から成るアモルファス薄膜として成膜されており、Gd−Fe膜又はGd−Fe−Co膜をベースとする材料が使用されている。第1磁性層104は、AlやCrなどの非磁性元素やCoを添加することで、キュリー温度が調節されている。
【0031】
第1誘電体層103は、記録層となる第5磁性層108に用いるTb−Fe−Co金属膜の熱伝導率28.8W/mKに近い熱伝導率で、例えば14.4W/mK程度の高い熱伝導率を有するAlNのような透明な誘電材料を用いて成膜されている。第1誘電体層103は、この上に厚さ0.1mm程度の光透過性を有するカバー層102が取り付けられている。
【0032】
上述の第1磁性層104、第3磁性層106、第4磁性層107、第5磁性層108に対して青色レーザービームスポットによる再生時の昇温状態を考慮して、第1磁性層104、第3磁性層106、第4磁性層107、第5磁性層108の各キュリー温度は、約480K,約430K,約420K,約590K近傍に設定することが望ましい。
【0033】
また、第1磁性層104、第3磁性層106、第4磁性層107、第5磁性層108の各膜厚は、それぞれ約30nm,約5nm,約10nm,約80nm近傍に設定することが望ましい。
【0034】
この光磁気記録媒体100は、所謂ブルーレイ規格に準拠した405nm±5nmの波長の青色レーザービームBLを用いて情報信号が記録される。このとき、光磁気記録媒体100は、青色レーザービームBLをカバー層102側から照射しながら、不図示の磁気ヘッドからの外部磁界が印加される。これにより、情報信号に応じた記録マークは、第5磁性層108に磁区の形態で記録される。この第5磁性層108の磁区は、再生時において、第4磁性層107及び第3磁性層106を介して第1磁性層104に交換結合される。この再生時において、青色レーザービームBLの照射による昇温により、少なくとも第4磁性層107の磁化が消失されて第1磁性層104内で交換結合した磁区を拡大させるように磁壁移動を第1磁性層104で生じさせて再生信号を得ている。
【0035】
特に、図2に拡大して示したように、青色レーザービームスポットBLSが入射する側の第1磁性層104と第3磁性層106との間で交換結合した時に、記録トラックTの両側に面内磁気異方性を有する第2磁性層105が存在するため、第1磁性層104における垂直磁化範囲である記録トラックTのマーク拡大方向が、トラック方向のみならず、半径方向にも及ぶ。これによって、記録トラックTのトラック幅Wを50nm程度と狭記録トラック化にして記録しても、ジッターのなく良好な再生信号が得られる。
【0036】
なお、青色半導体レーザー42の光軸に対して直角な2方向を光磁気記録媒体100の径方向(ラジアル方向)とこの径方向に略直交した光磁気記録媒体100の接線方向(タンジェンシャル方向,トラック方向)と定義する。
【0037】
更に詳細に説明すれば、記録トラックTの両側に設けた第2磁性層105と第1磁性層104とが交換結合すると、第1磁性層104は、図2中の矢印のように磁気スピンが面内方向を向いた面内磁化膜となる。そして、再生時において、第5磁性層108から第4磁性層107及び第3磁性層106を介して第1磁性層104に転写された再生マークの記録トラックTの両側の境界は、面内磁化から垂直磁化へスピン回転する領域、いわゆる90°磁壁となっている。
【0038】
従って、90°磁壁に蓄えられる磁壁エネルギーは、トラック方向に存在する垂直磁化膜内の180°磁壁(磁気スピンが180°回転する領域)に蓄えられるエネルギーより小さい。これにより、レーザービームスポットの照射によって作り出された温度勾配の下、よりエネルギー的に安定な高温側へ移動することが容易となる。この結果、狭トラック化がされた光磁気記録媒体100であっても、再生時に、再生マークの磁区拡大がトラック方向のみならず半径方向にもおよぶ。このため、磁壁移動検出動作をスムーズに実現できることになる。したがって、狭トラックに記録しても、ジッター量の小さい再生信号が良好に得られる。
【0039】
なお、記録領域は、第2磁性層105直下では、完全な状態で存在している必要はなく、図2中のトラック幅Wで示される最小幅が維持されていれば充分である。したがって、情報を記録する際、第2磁性層105直下の領域がクロスイレーズされても、記録情報の維持及び拡大再生には、何ら支障は生じない。
【0040】
つぎに、上述した光磁気記録媒体100の記録再生装置について、図3を参照して説明する。
【0041】
この光磁気記録媒体100の記録再生装置は、スピンドルモータ駆動回路31によって回転駆動するスピンドルモータ32の軸にターンテーブル33が固着されている。このターンテーブル33上に光磁気記録媒体100が装着される。光磁気記録媒体100は、ターンテーブル33と一体に、例えば3.0m/secで線速度一定(CLV)に回転される。
【0042】
また、光磁気記録媒体100の上面側には、磁界変調記録信号と再生磁界信号とを切り替えるためのスイッチ34を介して磁気ヘッド駆動回路35に接続した磁気ヘッド36が、光磁気記録媒体100の半径方向(ラジアル方向)に移動自在に設けられている。
【0043】
また、光磁気記録媒体100の下面側には、レーザー駆動回路37に接続した光ピックアップ40が配置されている。光ピックアップ40は、光磁気記録媒体100を挟んで磁気ヘッド36と常に対向しながら光磁気記録媒体100の径方向に移動自在に設けられている。この光ピックアップ40からの検出出力は、再生信号処理回路38で処理される。
【0044】
光ピックアップ40は、ピックアップ筐体41内に、青色半導体レーザー42、コリメータレンズ43、ビーム整形素子44、偏光ビームスプリッタ45、2次元アクチュエータ46、対物レンズ47、検光子48、検出レンズ49、光検出器50が収納されている。
【0045】
青色半導体レーザー42は、波長が405±5nm以下の青色レーザービームBLを出射する。この青色レーザービームBLの波長は所謂ブルーレイ規格に準拠したものであり、当該ブルーレイ規格に準拠した青色半導体レーザー42を光磁気記録媒体100の記録再生装置に利用したものである。
【0046】
コリメータレンズ43は、青色半導体レーザー42から発散光の状態で出射した青色レーザービームBLを平行光に変換する。
【0047】
ビーム整形素子44は、両面シリンドリカルレンズなどを用いて光磁気記録媒体100の接線方向のみを拡大して下記する対物レンズ47から光磁気記録媒体100上に照射した青色レーザービームスポットBLSのリム強度を調整する。詳細は後述するが、ビーム整形素子44は、青色レーザービームBLのリム強度を、トラック方向のリム強度/半径方向のリム強度=Rrimとしたとき、Rrim>1となるように設計されている。
【0048】
偏光ビームスプリッタ45は、ビーム整形素子44を通過した青色レーザービームBLと光磁気記録媒体100からの反射光とを分離するために偏光性を有する半透過反射誘電体多層膜45aを成膜してなる。
【0049】
対物レンズ47は、開口数NAが0.7以上であり、少なくとも1面が非球面に形成されている。この対物レンズ47は、偏光ビームスプリッタ45の半透過反射誘電体多層膜45aを透過した青色レーザービームBLを絞り込んで光磁気記録媒体100上に青色レーザービームスポットBLSを照射する。このため、対物レンズ47は、2次元アクチュエータ46によってフォーカス制御及びトラッキング制御される。
【0050】
検光子48、検出レンズ49及び光検出器50は、光磁気記録媒体100からの反射光が対物レンズ47を経て偏光ビームスプリッタ45の半透過反射誘電体多層膜45aで90°方向を変換された後に、反射光を検出する。
【0051】
この光磁気記録媒体100の記録再生装置は、光磁気記録媒体100に情報信号を記録する時には、入力データを所定のディスクフォーマットに従って変調した磁界変調記録信号をスイッチ34,磁気ヘッド駆動回路35を介して磁気ヘッド36に供給する。そして、青色半導体レーザー42からの記録用の青色レーザービームBLを光磁気記録媒体100に照射する。そして、光磁気記録媒体100を昇温させながら、磁界変調記録信号に従って磁気ヘッド駆動回路35が磁気ヘッド36から記録磁界を発生させ、光磁気記録媒体100に情報を記録する。
【0052】
一方、記録済みの情報信号を再生する時には、光磁気記録媒体100を回転させた状態で、レーザー駆動回路37によって光ピックアップ40内の青色半導体レーザー42から弱いレーザーパワーで再生用の青色レーザービームBLを出射させる。この再生用の青色レーザービームBLは、コリメータレンズ43で平行光に変換された後にビーム整形素子44で光磁気記録媒体100の接線方向(タンジェンシャル方向,トラック方向)のみ拡大して、偏光ビームスプリッタ45を通過させ、対物レンズ47で絞り込む。これにより、再生用の青色レーザービームスポットBLSを光磁気記録媒体100上に照射する。そして、光磁気記録媒体100により反射された戻り光を対物レンズ47,偏光ビームスプリッタ45,検光子48,検出レンズ49を介して光検出器50で検出して、再生信号処理回路38に送って情報信号を再生する。なお、再生磁界信号によって磁気ヘッド36から再生磁界を発生させても良い。
【0053】
つぎに、上述した光磁気記録媒体100の記録再生装置により光磁気記録媒体100の情報を再生する原理について、図4乃至図7を参照して説明する。なお、図4乃至図7において、第4磁性層107及び第3磁性層106を、第5磁性層108の情報を第1磁性層104に転写する単一の層として示している。
【0054】
図4,図6において、(a)は光磁気記録媒体100を示し、(b)は媒体温度分布を示し、(c)は磁壁移動を起こす力を示した図である。図5は、青色レーザービームスポットBLSの移動方向前方側でのフロントプロセスを説明する図であり、図7は、青色レーザービームスポットBLSの移動方向後方側でのリアプロセスを説明する図である。また、第5磁性層108、第4磁性層107及び第3磁性層106、第1磁性層104中の縦矢印は情報信号に応じた記録マークの“0”と“1”に対応した原子スピンの向きを表している。スピンの向きが相互に逆向きの領域の境界部には磁壁110が形成されている。
【0055】
図4(b)に示すように、一定速度で回転する光磁気記録媒体100に、集光された青色レーザービームスポットBLSを照射し光磁気記録媒体100を加熱すると、青色レーザービームスポットBLSの進行方向における前方と後方とで温度勾配の異なる楕円状の温度分布領域が光磁気記録媒体100に形成される。この温度勾配は、青色レーザービームスポットBLSの進行方向前方では、青色レーザービームスポットBLSの進行方向後方に比べより急峻な傾きとなっている。
【0056】
図4(a)に示すように、青色レーザービームスポットBLSの進行方向前方の温度勾配により、青色レーザービームスポットBLSの進行方向前方において、信号検出のための図中矢印Aで示すように、磁壁110の移動が第1磁性層104内で起こる。
【0057】
図中の第4磁性層107及び第3磁性層106に矢印の存在しない領域(領域Sとする)は、閾値温度Ts以上に加熱された領域を示している。ここで、閾値温度Ts>Tc4(第4磁性層107及び第3磁性層106のキュリー温度)であるため、第4磁性層107では磁化が消失している。それによって、第4磁性層107及び第3磁性層106を介した第5磁性層108と第1磁性層104の交換結合は、第1磁性層104における領域Sでは遮断された状態となる。
【0058】
記録信号は、第5磁性層108内に磁化反転領域(磁区)として形成され保存されている。図4において、ハッチングを施した下向き矢印の領域が磁化反転領域(磁区)にあたる。第4磁性層107及び第3磁性層106における領域Sの外側の領域において、第5磁性層108から第1磁性層104に第4磁性層107及び第3磁性層106を介した交換結合によって転写された記録マーク(磁区)が、光磁気記録媒体100の回転に伴って第4磁性層107の領域S内に進入した時、記録マークの片側に形成された磁壁が第4磁性層107の領域S内のピーク温度位置まで移動することになる(図4中の矢印A)。この磁壁移動の過程を、ここでは、フロントプロセスと呼ぶことにする。磁壁移動を起こす起源となる力Fは、下記式1に示すように、
F=−∂σ/∂χ (式1)
と表される。ここで、σは磁壁エネルギー、χは青色レーザービームスポットBLSの進行方向を正とするトラック方向の距離を表す。
【0059】
図5は、磁壁110の移動を検出する様子を示している。特定のマーク長の場合、青色レーザービームスポットBLSの進行方向後方の温度勾配によっても、図6の矢印Bで示すような磁壁110の移動が起こり得る。この磁壁移動の過程を、ここでは、リアプロセスと呼ぶことにする。
【0060】
フロントプロセスとリアプロセスが両方起こり得るマーク長は、650nm程度のレーザーを使用した場合には、0.25μm以上と考えられる。再生補助磁界を与えずに情報を再生する場合には、0.25μm以上のマークの再生信号は、両プロセスによる磁壁移動検出が生じて、一定の遅延時間をもって重畳された波形として検出されることになる。この重畳信号検出波形は、通常の信号再生処理において、不都合な状態を引き起こすことになる。そこで、図4、図5及び図7に示した様な再生補助磁界Hrを与えることで、この問題の解決を図ることになる。
【0061】
すなわち、再生補助磁界により、いかなる長さのマークを再生する場合にも、リアプロセスにおける磁壁移動を抑制する。上述のごとく、第4磁性層107における領域S内の温度勾配は、(フロントプロセスで利用する温度勾配)>(リアプロセスで利用する温度勾配)という関係であるため、この動作は、可能になる。それを説明する図が、図5及び図7である。図5及び図7は、それぞれ図4及び図6の磁壁移動動作部分を拡大して示している。図5中の矢印F1は、温度勾配による磁壁駆動力であり、上述の式1によって表される。同図中の白抜き矢印F2は、再生補助磁界によって発生するゼーマンエネルギーによる磁壁駆動力である。他方、図7中の矢印F4は、温度勾配による磁壁駆動力であり、下記式2のように、
F=∂σ/∂χ (式2)
と表される。また、図7における矢印F3は、再生補助磁界によって発生するゼーマンエネルギーによる磁壁駆動力である。
【0062】
さて、上述の温度勾配の差
(フロントプロセスで利用する温度勾配)>(リアプロセスで利用する温度勾配)
から、下記の式3のように、
F1>F2かつF3>F4 (式3)
を満たす再生補助磁界の強度が存在する。
【0063】
したがって、式3を満たすような再生補助磁界強度を選ぶことによって、リアプロセスの磁壁移動を抑制し、フロントプロセスの磁壁移動のみを引き起こすことが実現可能となる。
【0064】
光磁気記録媒体100において、上述したリアプロセスにおける磁壁移動を阻止する作用を、第1磁性層104と第4磁性層107の間に第3磁性層106を一層付加することにより実現させることもできる。光磁気記録媒体100は、第4磁性層107のキュリー温度が第3磁性層106のキュリー温度よりも低くなっている。したがって、青色レーザービームスポットBLSが移動しながら照射された場合に、第4磁性層107の方が先にキュリー温度に達し、その後に、第3磁性層106がキュリー温度に達する。このために、第4磁性層107における領域Sと第3磁性層106における領域Sとに段差を生じさせて、リアプロセスによって磁壁移動が生ずるタイミングを遅らせることができる。すなわち、磁壁の生成に充分な磁壁エネルギーが蓄えられるための時間差をつくり、その時間差の間に記録マークの後方磁壁が、リアプロセスエリアに進入するようにすることで、不必要なリアプロセスによる検出信号の発生を抑えている。
【0065】
したがって、光磁気記録媒体100においては、再生磁界Hrは不必要となる。しかしながら、このリアプロセスの抑制には、磁壁移動の起源となる温度勾配の状態が重要となる。したがって、本実施形態の405nm±5nmの波長の青色レーザービームBLを用いて超高密度に記録再生を行う場合、温度勾配曲線がより急峻なものとなる。このため、第3磁性層106を追加するのみでは、リアプロセスにおける磁壁移動の抑制は充分に達成することができない。
【0066】
そこで、本実施形態の光磁気記録媒体100の記録再生装置は、青色半導体レーザー42から出力され光磁気記録媒体100上に絞られた青色レーザービームスポットBLS内での温度分布(温度勾配)を、青色レーザービームスポットBLSのリム強度で調節する。これにより、レーザー照射により光磁気記録媒体100内に発生する温度勾配を制御し、リアプロセスによる不要な磁壁移動を防ぎ、良好な再生信号を得られるようにする。
【0067】
ここで、図8に、本実施形態及び比較例の光磁気記録媒体100内に発生するトラック方向の温度勾配を示す。図8において、横軸の位置は、青色レーザービームスポットBLS中心をゼロとし、ビームの進行方向を正とした位置座標で、ビームは線速3.0m/sで移動している。
【0068】
比較例では、短波長の青色レーザービームBLにより絞られたスポット内での温度分布(温度勾配)を青色レーザービームスポットBLSのリム強度で調節していない。一方、本実施形態の温度分布は、短波長の青色レーザービームBLにより絞られた青色レーザービームスポットBLS内での温度分布(温度勾配)を青色レーザービームスポットBLSのリム強度で調節している。
【0069】
上述したような再生時における光磁気記録媒体100の動作が行われる実効的な青色レーザービームスポットBLSのサイズは、約150℃以上の温度領域となるが、その温度領域において本実施形態の温度分布が、比較例での温度分布よりもなだらか曲線となる。この本実施形態の温度分布は、例えば650nmのレーザーを光磁気記録媒体100に照射した温度分布に近づいている。したがって、上述したように、光磁気記録媒体100に、第4磁性層107に加えて第3磁性層106を追加することにより、再生補助磁界なしでリアプロセスの抑制を実現できる。
【0070】
このように、青色レーザービームスポットBLSを照射したときの光磁気記録媒体100におけるトラック方向の温度勾配をなだらかにするための説明図を図9に示す。図9は、青色レーザービームスポットBLSのリム強度を変化させた場合の青色レーザービームスポットBLS内の温度勾配を模式的に示した図である。
【0071】
また、図9において、太線は、上述した光磁気記録媒体100の再生動作を生じさせる実効的な青色レーザービームスポットサイズを示し、細線は光磁気記録媒体100における等温度線を示す。この等温度線のうち、最も内側に描かれた領域が、図8における最も温度が高い領域に相当する。また、図中の点線は、トラック境界を示している。
【0072】
ここで、光磁気記録媒体100におけるトラック方向のリム強度/半径方向のリム強度=Rrimと定義する。(a)はRrim>1となる温度分布、(b)はRrim=1となる温度分布、(c)はRrim<1となる温度分布について示した。
【0073】
リム強度は、光ピックアップ40におけるビーム整形素子44(光学系のビーム成形プリズム(又はホモジナイザー))、コリメータレンズ43、対物レンズ47の設計によって調整可能である。
【0074】
図9(a)のように、Rrim>1となるようにレーザースポットのリム強度を設定した場合、光磁気記録媒体100における半径方向への熱の拡散が抑制され、かつ、光磁気記録媒体100におけるトラック方向の温度勾配がより緩やかになっている。一方、光磁気記録媒体100の半径方向は、温度勾配が急峻になっている。
【0075】
これに対し、図9(b)のようにRrim=1とした場合、光磁気記録媒体100のトラック方向の温度勾配は、Rrim>1の場合よりも急峻となる。同様に、図9(c)のようにRrim<1とした場合、光磁気記録媒体100のトラック方向の温度勾配は、Rrim=1の場合よりも更に急峻となる。このように、光磁気記録媒体100におけるトラック方向の温度勾配が急峻となると、リアプロセスにおける磁壁移動が抑制できなくなり、再生信号の品質が低下する。
【0076】
以上説明したように、本発明を適用した光磁気記録媒体100の記録再生装置によれば、青色レーザービームBLのリム強度を、トラック方向のリム強度/半径方向のリム強度=Rrimとしたとき、Rrim>1となるように設定する。これにより、この光磁気記録媒体100の記録再生装置によれば、光磁気記録媒体100におけるトラック方向における温度勾配を緩やかにして、第1磁性層104におけるリアプロセスでの磁壁移動を抑制できる。したがって、小さく絞られた青色レーザービームスポットBLS内でのトラック方向における急峻な温度分布(温度勾配)を青色レーザービームスポットBLSのリム強度を調整して緩やかにでき、より高密度化に記録された情報を良好な再生信号で再生でき、更なる高記録密度化を可能とできる。
【0077】
なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
【符号の説明】
【0078】
31 スピンドルモータ駆動回路
32 スピンドルモータ
33 ターンテーブル
34 スイッチ
35 磁気ヘッド駆動回路
36 磁気ヘッド
37 レーザー駆動回路
38 再生信号処理回路
40 光ピックアップ
41 ピックアップ筐体
42 青色半導体レーザー
43 コリメータレンズ
44 ビーム整形素子
45 偏光ビームスプリッタ
45a 半透過反射誘電体多層膜
46 次元アクチュエータ
47 対物レンズ
48 検光子
49 検出レンズ
50 光検出器
100 光磁気記録媒体
101 基板
101a 凸部
101b 案内溝
102 カバー層
103 第1誘電体層
104 第1磁性層
105 第2磁性層
106 第3磁性層
107 第4磁性層
108 第5磁性層
109 第2誘電体層
110 磁壁

【特許請求の範囲】
【請求項1】
情報が記録される記録トラックに対応する凸部と前記凸部の両側に凹部が形成された基板上に、少なくともレーザー光が入射される垂直方向に磁気異方性を有する第1磁性層と、情報が記録される垂直方向に磁気異方性を有する第2磁性層と、前記第1磁性層及び前記第2磁性層よりもキュリー温度が低い第3磁性層と、前記第3磁性層の凹部に形成され面内方向に磁気異方性を有する第4磁性層とが形成され、前記第1磁性層に前記第3磁性層を介して前記第2磁性層に記録された情報が転写される光磁気記録媒体の再生装置であって、
ブルーレイ規格に準拠した405nm±5nmの波長のレーザー光を前記第1磁性層上から照射する光照射部を有し、
前記レーザー光のリム強度Rrimを、前記光磁気記録媒体のトラック方向のリム強度/前記光磁気記録媒体の半径方向のリム強度と定義した場合に、前記光照射部から照射されるレーザー光が、
Rrim>1
なる条件を満たすことを特徴とする光磁気記録媒体の再生装置。
【請求項2】
情報が記録される記録トラックに対応する凸部と前記凸部の両側に凹部が形成された基板上に、少なくともレーザー光が入射される垂直方向に磁気異方性を有する第1磁性層と、情報が記録される垂直方向に磁気異方性を有する第2磁性層と、前記第1磁性層及び前記第2磁性層よりもキュリー温度が低い第3磁性層と、前記第3磁性層の凹部に形成され面内方向に磁気異方性を有する第4磁性層とが形成され、前記第1磁性層に前記第3磁性層を介して前記第2磁性層に記録された情報が転写される光磁気記録媒体の再生方法であって、
ブルーレイ規格に準拠した405nm±5nmの波長のレーザー光を前記第1磁性層上から照射するときに、
前記レーザー光のリム強度Rrimを、前記光磁気記録媒体のトラック方向のリム強度/前記光磁気記録媒体の半径方向のリム強度と定義した場合に、照射するレーザー光が、
Rrim>1
なる条件を満たすようにすることを特徴とする光磁気記録媒体の再生方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−221517(P2012−221517A)
【公開日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2011−83691(P2011−83691)
【出願日】平成23年4月5日(2011.4.5)
【出願人】(308036402)株式会社JVCケンウッド (1,152)
【Fターム(参考)】