説明

入力デバイス

【課題】光源と光導波路コアとの間の調芯に高い精度が必要なく、この光源からの光を、枠状の光導波路の2辺に均等に分配することのできる入力デバイスを提供する。
【解決手段】入力デバイスの矩形状の検知空間Sの周りに配置された枠状の光導波路10における発光側の光導波路コア1を、角部10aに設けられた発光素子3に接する光入射側の共通部1aと、共通部1aから発光素子3の発光の光軸に沿った枠の一辺方向に直線状に延びる第1のコア部1bと、共通部1aの分岐点Jから所定の曲率で湾曲しそれより光出射側が上記光軸に直交する枠の他辺方向に延びる第2のコア部1cとから形成するとともに、上記発光側光導波路コア1の分岐点Jにおける、上記第1のコア部1bのコア幅(W1)に対する上記第2のコア部1cのコア幅(W2)の比を1以上〔(W2/W1)≧1〕とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、枠状の光導波路の内側に形成された光の格子の遮蔽により、指やペン等の入力体の位置を検出する入力デバイスに関するものである。
【背景技術】
【0002】
従来、コンピュータや各種機器に、指示や座標情報等を入力する手段(入力インターフェース)として、光導波路を用いて指やペン等の位置を光学的に検出する入力デバイスが用いられている(特許文献1,2を参照)。
【0003】
図5は、光導波路を用いた従来の入力デバイスの構成を示す図である。なお、図中の符号20は、この入力デバイスのフレームを兼用する枠状の光導波路(クラッド層を含む)であり、その内側の空間には、入力体の検出を行うための検知空間Sが形成されている。また、図では、検知空間Sに光を出射するための発光側の光導波路コア11を点線で表示するとともに、受光側の光導波路コア12を二点鎖線で表示している。
【0004】
この光導波路式の入力デバイスは、図5に示すように、幅をもった四角枠状の光導波路20と、この枠状光導波路20の外縁に取り付けられた光学素子(発光素子13および受光素子14)とから構成されており、上記枠状光導波路20の2辺(この例では上側の辺20Xと右側の辺20Y)の内縁に、発光素子13に繋がる発光側光導波路コア11の光出射側端部(出光部11a)が配置されている。また、発光素子13から出た光は、上記発光側光導波路コア11の出光部11aを通じて、多数の略平行な光としてそれぞれの辺20X,20Yに対向する辺(この例では辺20X’と辺20Y’)に向かって出射(投射)され、この枠で囲まれた空間(検知空間S)内に光の格子を形成するようになっている。そして、上記格子状の光は、上記枠状光導波路20の対向する内縁に上記各出光部11aにそれぞれ対応して配設された、受光側光導波路コア12の入射側端部(受光部12a)に入射した後、これに繋がる受光素子14に導かれるようになっている。
【0005】
上記枠状光導波路20における発光側光導波路コア11は、発光素子13からの光が入射する光入射側端部(始端部11d)の直後から、枠の一辺20X側に向かう複数の光出射用コア11b,11b,・・・と、他辺20Y側に向かう複数の光出射用コア11c,11c,・・・とに分岐しており、発光素子13からコア11に入射した光が、一度に多数の光出射用コア11b,11cに分配され、上記枠の内縁に位置決めされた各コアの光出射側終端部(出光部11a)から出射されるようになっている。
【0006】
上記のような構成の入力デバイスにおいては、上記検知空間S内を通る光の格子の一部を、指等の物体(入力体)が遮蔽すると、その遮蔽された部分が、受光側光導波路コア12に接続された受光素子14で、光量の低下として感知され、上記指等が触れた部分の位置(例えば、検知空間S内におけるxy座標等)が特定される。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特表2001−514779号公報
【特許文献2】特開2010−20103号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、発明者の研究によれば、上記のような枠状の光導波路を用いた入力デバイスにおいては、光源(発光素子)から、枠において隣り合う2辺に光を均等に分配することが難しい場合が多いことが分かった。例えば図5において、発光素子13から発光側光導波路コア11に入射した光は、上記発光素子13の発光の光軸に沿った一方の辺(辺20Y)に光を伝達する光出射用コア11cでは、光はそのまま直進するが、上記光軸に直交する方向に延びる他方の辺(辺20X)に光を伝達する光出射用コア11bでは、光はコアの始端部11dから大きく湾曲して進むこととなる。そのため、この湾曲部位での光損失が大きくなり、結果として、互いに直交する枠の2辺(辺20X側と辺20Y側)に分配される光量が均等になりにくいことを突き止めた。
【0009】
さらに、この従来の入力デバイスに用いられている光導波路20は、その発光側光導波路コア11が、一辺20X側と他辺20Y側に対しそれぞれに対応して独自に設計された多分岐状コアであるため、コア11と光源との間の調芯が難しい。発明者は、仮に、各光出射用コア11b,11cの始端部11dの光軸と発光素子13の光軸がずれていると、辺20X側と辺20Y側とに分配される光量の差が、より大きくなることを突き止めた。ここに改善の余地がある。
【0010】
本発明は、このような事情に鑑みなされたもので、光源と光導波路コアとの間の調芯に高い精度が必要なく、この光源からの光を、枠状の光導波路の2辺に均等に分配することのできる入力デバイスの提供をその目的とする。
【課題を解決するための手段】
【0011】
上記の目的を達成するため、本発明の入力デバイスは、矩形状の検知空間の周りに配置された枠状の光導波路と、この枠状光導波路の矩形状の外縁に配設される発光素子および受光素子を備え、上記枠状光導波路の内縁に位置決めされた発光側光導波路コアの光出射側端部から対応する受光側光導波路コアの光入射側端部に到達する光の遮蔽を検知することにより、上記検知空間内に位置する入力体の位置情報を取得する入力デバイスであって、上記枠状光導波路のひとつの角部の外縁に、上記発光素子が所定の向きで配置され、この角部に隣接する枠の2辺に、上記発光素子から出射される光を互いに直交する上記2辺方向に所定の比率で分配する二分岐状の発光側光導波路コアが設けられ、上記二分岐状の発光側光導波路コアが、上記発光素子に接する角部に設けられた光入射側の共通部と、この共通部に連続して上記発光素子の発光の光軸に沿った枠の一辺方向に直線状に延びる第1のコア部と、上記共通部の分岐点から所定の曲率で湾曲しそれより光出射側が上記光軸に直交する枠の他辺方向に延びる第2のコア部とから形成され、上記発光側光導波路コアの分岐点における、上記直線状の第1のコア部のコア幅(W1)に対する上記湾曲する第2のコア部のコア幅(W2)の比が1以上〔(W2/W1)≧1〕になっているという構成をとる。
【0012】
すなわち、本発明の発明者は、前記課題を解決するために、枠状の光導波路の光路に関する研究を重ね、光源の光軸に沿った方向と直交する方向の2方向に向かう分岐状光導波路コアの始端側をひとつにまとめて広幅の共通部とし、光源からの光をこの幅広状の共通部の端部(光入射側)で受けるとともに、この共通部から湾曲して他辺方向に延びる側の光導波路コア(第2のコア部)の幅を、光軸に沿った直線状の光導波路コア(第1のコア部)の幅より広くすることにより、上記各辺に分配される光の量を均等化できることを見出した。また、発明者は同時に、上記広幅状とした光入射側の共通部を、光源に対応させると、調芯の精度にさほど影響を受けずに、2方向に分配する光量のバランスを調整できることを見出し、本発明に到達した。
【発明の効果】
【0013】
以上のように、本発明の入力デバイスは、二分岐状の発光側光導波路コアの共通部が、光源(発光素子)に接する角部に配置され、この二分岐状のコアが、上記共通部の分岐点から、上記発光素子の発光の光軸に沿った枠の一辺方向に延びる第1のコア部と、所定の曲率で湾曲しそれより光出射側が上記光軸に直交する枠の他辺方向に延びる第2のコア部とに分岐しているとともに、この分岐点における、上記第1のコア部のコア幅(W1)に対する上記第2のコア部のコア幅(W2)の比が1以上〔(W2/W1)≧1〕になるように形成されている。
【0014】
このように、上記入力デバイスは、発光素子の光軸に直交する方向に延びる第2のコア部の湾曲部位での光損失を見越して、分岐点における第2のコア部のコア幅を上記第1のコア部より広く(太く)し、より多くの光が分配されるようにしている。そのため、この湾曲部位を通過して直線状となった後の第2のコア部と、上記共通部から直線状に連続する第1のコア部とに到達する光の量の差が小さくなり、これら直交する2辺に分配される光量が均等化する。
【0015】
さらに、本発明の入力デバイスは、二分岐状の発光側光導波路コアの光入射側始端部が、ひとつの共通部としてまとめられ、この共通部を光源に対応させている。そのため、従来の光導波路を用いた入力デバイスのように、光導波路コアと光源との高精度な調芯が要求されない。そして、例え、光導波路コアと光源とが厳密に調芯されていなくても、光導波路コアを伝搬するトータルの光量が減るだけで、上記直交する2辺に分配される光の量に、偏りが生じることはない。
【0016】
また、本発明の入力デバイスのなかでも、上記二分岐状の発光側光導波路コアにおける第2のコア部の湾曲部位が、1/4円形状であり、その曲率半径(R)が、上記第2のコア部のコア幅(W2)の15倍以上〔R≧(15×W2)〕になっているものは、このコアの湾曲による光損失を、より低減することができる。その結果、この入力デバイスは、上記湾曲部位を有する第2のコア部と、上記直線状の第1のコア部との光量バランスが調整し易く、これら直交する2辺に分配される光を、理想的な状態で分配することができる。
【0017】
また、本発明の入力デバイスのなかでも、上記二分岐状の発光側光導波路コアが配置された枠の2辺にそれぞれ対向する他の2辺に、上記発光側光導波路コアの各光出射側端部に対応して、この発光側光導波路コアからの光を入射させて上記受光素子に導く複数の受光側光導波路コアが設けられているものは、上記検知空間に、入力体検知用の枠の縦横に交差する光の格子が形成され、この検知空間内における、死角のない高精度な入力体の検出を行うことができる。
【図面の簡単な説明】
【0018】
【図1】(a)は本発明の入力デバイスの構成を示す平面図であり、(b)はそのP部拡大図である。
【図2】(a)〜(e)は、本発明の入力デバイスに用いられる枠状光導波路を作製する方法を説明する図である。
【図3】本発明の入力デバイスにおける光導波路のコア幅(W2)と曲げ損失(dB)の関係をあらわすグラフである。
【図4】本発明の入力デバイスにおける光導波路のコア幅W2対する曲率半径Rの比(R/W2)と曲げ損失(dB)の関係をあらわすグラフである。
【図5】光導波路を用いた従来の入力デバイスの構成を示す図である。
【発明を実施するための形態】
【0019】
つぎに、本発明の実施の形態を、図面にもとづいて詳しく説明する。
【0020】
図1(a)に全体像を示す枠状の光導波路型入力デバイスは、例えば、表示装置としての液晶画面(フラットパネルディスプレイ)等の上に載置され、その枠状の光導波路10の中央部に形成された検知空間(検知領域)S内に位置する、指やペン等の入力体の位置を、この検知空間S内の座標(x−y座標)として取得し、その位置情報をコンピュータやATM等の情報機器に出力するものである。
【0021】
上記枠状の光導波路10は、上記ディスプレイの画面のサイズに合わせて、横長(長辺10Xの長さ:短辺10Yの長さ=16:9)の長方形状に形成されたクラッド層5と、このクラッド層5に埋没するようにして形成された光路としてのコア(1,2)とからなり、そのひとつの角部10aの外縁に、光源としての発光素子3が、所定の向きに取り付けられている。
【0022】
また、上記枠状光導波路10には、上記クラッド層5の角部10aに隣接する枠の2辺(図においては長辺10Xと短辺10Y)に、上記発光素子3から出射される光を、互いに直交する上記2辺(10X,10Y)方向に所定の比で分配する発光側光導波路コア1(点線)が設けられ、上記辺10X,10Yにそれぞれ対向する他の2辺(10X’,10Y’)に、上記発光側光導波路コア1からの光を入射させて受光素子(受光素子アレイ4)に導くための複数の受光側光導波路コア2(二点鎖線)が設けられている。
【0023】
さらに、上記発光側光導波路コア1は、図1(b)の拡大図のように、枠状光導波路10の角部10aに配置された光入射側の共通部1aと、この共通部1aから上記発光素子3の発光の光軸(一点鎖線)に沿った枠の一辺(10X)方向に延びる第1のコア部1bと、上記共通部1aの分岐点Jから所定の曲率半径Rで湾曲するとともにそれより光出射側が上記光軸に直交する枠の他辺(10Y)方向に延びる第2のコア部1cとから形成されている。そして、上記二分岐状の発光側光導波路コア1は、その分岐点Jにおいて、上記湾曲する第2のコア部1cのコア幅W2が、上記直線状の第1のコア部1bのコア幅W1より広くなるように〔すなわち、(W2/W1)≧1に〕形成されている。これが、本発明の入力デバイスの特徴である。
【0024】
上記入力デバイスについて、さらに詳しく説明すると、この入力デバイスに用いられる枠状光導波路10は、例えば、ポリマー系光導波路の場合、樹脂材料を用いて形成された枠状のクラッド層5(オーバークラッド層5aおよびアンダークラッド層5bからなる)の間に、フォトリソグラフィ法等により上記形状にパターニングされた発光側光導波路コア1および上記複数の受光側光導波路コア2が形成されている。
【0025】
上記発光側の光導波路コア1は、上記発光素子3から出射される光を、互いに直交する上記2辺(10X,10Y)方向に所定の比で分配できるように、発光素子3に接する光入射側の端部(共通部1a)から、枠のx方向(長辺10X側)の第1のコア部1bとy方向(短辺10Y側)の第2のコア部1cの2方向に分岐する、二分岐形状に形成されており、光出射側の各光出射路1x,1yの先端(出光部)が、枠状のクラッド層5の内縁〔図1(a)においては上側縁と右側縁〕の所定位置に、それぞれ位置決めされている。そして、発光素子3からの光を上記各光出射路1x,1yの先端から出射(投射)させることにより、上記枠の内側の検知空間Sに、枠の縦横(xy方向)に交差する光の格子(点線、矢印は光の進行方向を示す)が形成される。
【0026】
上記発光側光導波路コア1の共通部1aは、図1(b)のように、第1のコア部1b(幅:W1)と第2のコア部1c(幅:W2)とを合わせたコア幅W0に相当する幅広状に形成され、その一端側(図示右側)の端面は、光源(発光素子3)からの光(白抜き矢印)が入射する光結合面となっている。なお、共通部1aのコア幅W0は、上記発光素子3との光結合を容易にするために、通常、発光素子3の発光部幅Hよりも広くなっている。例えば、発光素子3の発光部幅Hが10μm程度である場合、上記共通部1aのコア幅W0は、40〜1000μmに設計される。また、上記共通部1aの光軸(一点鎖線)方向の長さL〔その一端面(光接続面)から上記分岐点Jまでの長さ〕は、150〜5000μmとすることが好ましい。
【0027】
上記共通部1aから分岐した第1のコア部1bは、分岐点Jにおける分岐後も上記発光素子3からの光を真っ直ぐに通過させることができるように、上記共通部1aの一部を延長するように直線状に形成されている。そのコア幅W1は、先に述べたように、後記する第2のコア部1cのコア幅W2より細く(狭く)形成されており、その幅W1は、好ましくは20〜500μm程度、さらに好ましくは40〜300μm程度である。
【0028】
上記分岐点Jで第1のコア部1bと分岐した第2のコア部1cは、図1(b)のように、この分岐点Jの直後から、1/4円形状(アーチ形状)に湾曲し、それより先端側が枠の短辺10Y側に直線状に延びる形状に形成されている。上記第2のコア部1cの湾曲部位は、枠の長辺10X方向に沿って投射される発光素子3の光(光軸)を、短辺10Y方向に90°曲げるもので、この部位での光損失の増大を防止するために、上記湾曲部位の曲率半径Rは、第2のコア部1cのコア幅W2の15倍以上〔R≧(15×W2)〕になっている。
【0029】
なお、上記分岐点Jと分岐後におけるコア幅W2は、先に述べたように、第1のコア部1bのコア幅W1より広く(太く)形成されており、好ましくは20〜500μm、さらに好ましくは40〜300μmである。また、上記分岐点Jにおける、第1のコア部1bのコア幅W1と第2のコア部1cのコア幅W2との比(W2/W1)は、1〜5であることが好ましく、より好ましくは1〜4である。さらに、上記光導波路コア1の好適な厚さ(高さ)は、後記する発光素子3の発光部のサイズにもよるが、例えば20〜100μm程度である。
【0030】
また、上記図1(a)における各光出射路1x,1yは、図示が煩雑になるのを避けるため、多数の光出射路1x,1yのうちの一部のみを実線で示し、残りを点線として記載を省略している(出射される光−点線矢印も同様)。上記光出射路1x,1yの本数は、入力デバイスのサイズや解像度等に応じて適宜設計されるが、例えば、上記第1のコア部1bから分岐する長辺10X側の光出射路1xの本数は200〜800本程度、上記第2のコア部1cから分岐する短辺10Y側の光出射路1yの本数は100〜600本程度のものが採用される。
【0031】
一方、上記発光側の光導波路コア1に対して検知空間Sを挟んで対向する辺(長辺10X’,短辺10Y’)には、上記各光出射路1x,1yの先端(出光部)のそれぞれに対応する、受光側光導波路コア2が複数形成されている。これら各受光側光導波路コア2の光入射側の端部(受光部)は、上記発光側のコア1の各先端(出光部)対向する枠の内縁〔図1(a)においては下側縁と左側縁〕の所定位置にそれぞれ位置決めされており、上記検知空間Sを通過して各受光側光導波路コア2の先端(受光部)に入射した光が、光入射路2x,2yを介して、これら各先端のひとつひとつに対応する多数の受光素子を有する受光素子アレイ4に導かれるようになっている。
【0032】
上記入力デバイスに用いられる光源(発光素子3)には、発光ダイオード(LED)または半導体レーザー等が用いられ、なかでも、光伝送性に優れるVCSEL(垂直共振器面発光レーザー)が好適に用いられる。上記発光素子3から出射される光の波長は、近赤外線(波長:700〜2500nm)が好ましい。
【0033】
また、上記発光素子3は、図1(a)に示すように、枠状光導波路10の短辺10Y側の角部10aに配置され、その発光部(幅H)が枠の長辺10X方向を向くように位置決めされる。この配置により、発光素子3から発せられた光が、図1(b)のように、上記発光側光導波路コア1の共通部1aの端面(光結合面)に入射し、上記枠の長辺10X側の終端まで、曲がることなく到達する。そのため、この入力デバイスは、発光素子3からの光を、効率よく利用することができる。
【0034】
上記受光素子アレイ4としては、CCD,CMOS等のイメージセンサや、多数の受光素子が一列に並ぶCMOSリニアセンサアレイ等を用いることができる。
【0035】
上記構成の入力デバイスにおいては、先に述べたように、発光側光導波路コア1が、枠の長辺10X側に直線状に延びる第1のコア部1bと、上記分岐点Jから分岐・湾曲して枠の短辺10Y側に延びる第2のコア部1cとに分岐するパターンに形成され、この第2のコア部1cの「湾曲による光損失」を考慮して、上記第2のコア部1cのコア幅W2が上記第1のコア部1bのコア幅W1以上に広く(W1≦W2)、かつ、その幅の比(W2/W1)が1以上になっている。そのため、この入力デバイスは、共通部1aに入射した光が、光量差の少ない、バランスのとれた状態で、互いに直交する枠の2辺(長辺X側と短辺Y側)に分配される。
【0036】
上記第1のコア部1bのコア幅W1に対する第2のコア部1cのコア幅W2の比(W2/W1)が1未満の場合は、共通部1aから直線状に延びる長辺10X側の第1のコア部1bの光量が強くなりすぎる傾向にある。逆に、上記コア幅の比(W2/W1)が、5を超える場合は、共通部1aから湾曲して分岐する短辺10Y側の第2のコア部1cの光量が強くなりすぎ、光量バランスが悪くなる傾向がみられる。
【0037】
また、これら長辺10X側の第1のコア部1bと短辺10Y側の第2のコア部1cとが、発光素子3に対応する共通部1aから分かれて分岐しているため、この共通部1aと上記発光素子3との調芯が多少ずれていても、このずれに起因する長辺10X側と短辺10Y側との光量差が緩和され、これらの光の間の光量バランスが保たれる。したがって、この入力デバイスは、従来の構成の入力デバイスに比べ、発光素子3と発光側光導波路コア1との間の調芯の許容範囲が広くなる。
【0038】
さらに、上記構成の入力デバイスにおいては、上記湾曲する第2のコア部1cの湾曲部位の曲率半径Rが、この第2のコア部1cのコア幅W2の15倍以上〔R≧(15×W2)〕になっているため、この湾曲部位の光損失を低減することができる。例えば、上記のように第2のコア部1cのコア幅W2が20〜500μmである場合、上記湾曲による光損失(曲げ損失)を約3dB以下に抑えることができる(この点は、後記の「実施例」で説明する)。
【0039】
なお、上記発光側光導波路コア1の光出射側端部(コア1の各光出射路1x,1y先端の出光部)と、上記各受光側光導波路コア2の光入射側端部(コア2の受光部)とは、枠の内側に向かって反るレンズ状(平面視円弧状)になっていることが望ましい。上記発光側光導波路コア1の光出射側端部を上記レンズ状とすることにより、これら光出射側端部から、枠状光導波路10の内縁に垂直でかつ互いに平行な光線を出射することができる。また、上記各受光側光導波路コア2の光入射側端部を上記レンズ状とすることにより、これら光入射側端部の集光効率を高めることができる。上記各コア1,2の出光部および受光部をレンズ状としない場合は、別体のレンズ体を準備し、これを上記枠状光導波路10の検知空間S内の周縁に沿って設置してもよい。
【0040】
また、上記実施形態においては、光導波路の分岐状発光側光導波路コア1が、樹脂材料(高分子材料)を用いて形成されたポリマー系光導波路を例に説明したが、このコア1を構成する材料は、例えばガラス等、周囲に配設されるクラッド層5より屈折率の高い材料であればよい。ただし、上記コア1と周囲のクラッド層5との屈折率の差は、0.01以上であることが好ましく、上記形状のパターンニング性等も考慮すると、紫外線硬化樹脂等の感光性樹脂が最も好ましい。使用する紫外線硬化樹脂としては、アクリル系,エポキシ系,シロキサン系,ノルボルネン系,ポリイミド系等があげられる。
【0041】
さらに、上記コア1の周囲のクラッド層5は、上記紫外線硬化樹脂等の感光性樹脂のうち、上記コア1より屈折率の低い材料を用いればよい。その他にも、クラッド層5には、ガラス,シリコン,金属,樹脂等、平坦性を有する基板を兼用する材料を用いることもできる。さらに、クラッド層5は、コア1の下側のアンダークラッド層(後記の5b)のみとしてもよく、上記コア1を覆うオーバークラッド層(後記の5a)は、形成しなくてもよい。そして、上記枠状光導波路10は、プラズマを用いたドライエッチング法,転写法,露光・現像を用いたフォトリソグラフィ法,フォトブリーチ法等により作製することができる。
【0042】
つぎに、上記入力デバイスの作製方法の一例について説明する。
図2(a)〜(e)は、本発明の実施形態における入力デバイス用光導波路の製法を模式的に説明する断面図である。なお、図2においては、光導波路の発光側のみを図示しており、これと並行して作製される受光側の図示を省略している。また、図中の符号1はコア(発光側の光導波路コア)、5bはアンダークラッド層、5aはオーバークラッド層、21は基台、22は成形型であり、図2の(a)〜(e)は、光導波路が作製される工程順を表す。
【0043】
まず、枠状の光導波路を形成するための基台21を準備し、平坦な場所に載置する。この基台21の材質は、作製されるポリマー系光導波路を、後に剥離可能な材質が選択される。
【0044】
ついで、図2(a)に示すように、上記基台21の表面に、アンダークラッド層5bを形成する。このアンダークラッド層5bは、感光性樹脂を形成材料として、フォトリソグラフィ法により形成することができる。アンダークラッド層5bの厚さは、例えば、5〜50μmの範囲内に設定される。
【0045】
つぎに、図2(b)に示すように、上記アンダークラッド層5bの表面に、フォトリソグラフィ法により、パターン形状の発光側光導波路コア1および受光側光導波路コア(図示せず)を形成する。これらコア1(および2)の形成材料としては、上記アンダークラッド層5bおよび後記のオーバークラッド層5aの形成材料よりも屈折率が高い感光性樹脂が用いられる。なお、先に述べたように、上記発光側光導波路コア1および受光側光導波路コアの枠の内縁部〔コア1の各光出射路1x,1y先端の出光部と各受光側光導波路コア2の光入射側先端の受光部:図1(a)参照〕は、平面視レンズ状に形成される。
【0046】
ついで、オーバークラッド層5a形成用の、透光性を有する成形型22を準備する。この成形型22には、図2(c)に示すように、オーバークラッド層5aの表面形状に対応する型面を有する凹部(成形キャビティ)が形成されており、この実施形態では、上記各光出射路1x,1yの先端側端部を覆う部位〔図2(c)の右端部分〕が、上下方向(光導波路の厚み方向)に1/4円の円弧状のレンズ曲面に形成されているものを使用している。
【0047】
ついで、この成形型22を、上記凹部を上にして(天地を逆にして)、成形型22を成形ステージ(図示せず)の上に設置し、まず、上記凹部内にオーバークラッド層5a形成用の感光性樹脂(ワニス状)を充填する。ついで、アンダークラッド層5b上に形成したコア1を、上記成形型22の凹部に対して位置決めし、その状態で、上記アンダークラッド層5bを上記成形型22に押圧し、上記ワニス状のオーバークラッド層5a形成用の感光性樹脂の中にコア1を浸す。そして、この状態で、紫外線等の照射線を、上記成形型22を透して上記感光性樹脂に照射し、その感光性樹脂を露光する。これにより、上記感光性樹脂が硬化して、図2(d)に示すような、コア1(および2)の内縁側先端部に対応する部位がレンズ状に形成されたオーバークラッド層5aが形成される。
【0048】
つぎに、上記感光性樹脂の硬化が完了した後、上記成形型22からオーバークラッド層5aをコア1,アンダークラッド層5bおよび基台21とともに脱型し、上記基台21を剥離させて取り除くことにより、図2(e)に示すような、枠状の光導波路10を得る。
【0049】
ついで、図1(a)に示すように、得られた枠状光導波路10の角部10aの所定位置に、コア1の共通部1aの端面(光結合面)に正対するように発光素子3を配置し、共通部1aの光軸と発光素子3の光軸とを調芯して位置決めする。また、受光側にも受光素子アレイ4を取り付け、図示しない配線等を接続することにより、本実施形態における入力デバイスを作製することができる。
【実施例】
【0050】
つぎに、実施例について比較例と併せて説明する。ただし、本発明は、以下の実施例に限定されるものではない。
【0051】
本実施例においては、上記発光側光導波路コア1の「第1のコア部のコア幅W1に対する第2のコア部のコア幅W2の比(W2/W1)」〔図1(b)参照〕を種々変更した光導波路を作製し、これに発光素子を接続して入力デバイスを構成するとともに、作製した実施例1〜4および比較例1の入力デバイスを用いて、長辺10X側と短辺10Y側とから出射される光の量(光強度)を受光素子で測定し、長辺10Xと短辺10Yの間の光量差(バランス)を比較した。
【0052】
まず、光導波路の形成材料を準備した。
〔アンダークラッド層の形成材料〕
成分A:脂環骨格を含むエポキシ樹脂(ダイセル化学工業社製,EHPE3150)75重量部
成分B:エポキシ基含有アクリル系ポリマー(日油社製,マープルーフG−0150M)25重量部
成分C:光酸発生剤(サンアプロ社製,CPI−200K)4重量部
これら成分A〜Cを、紫外線吸収剤(チバジャパン社製,TINUVIN479)5重量部とともに、シクロヘキサノン(溶剤)に溶解することにより、アンダークラッド層の形成材料を調製した。
【0053】
〔コアの形成材料〕
成分D:ビスフェノールA骨格を含むエポキシ樹脂(ジャパンエポキシレジン社製,157S70)85重量部
成分E:ビスフェノールA骨格を含むエポキシ樹脂(ジャパンエポキシレジン社製,エピコート828)5重量部
成分F:エポキシ基含有スチレン系ポリマー(日油社製,マープルーフG−0250SP)10重量部
これら成分D〜Fと上記成分C 4重量部とを、乳酸エチルに溶解することにより、コアの形成材料を調製した。
【0054】
〔オーバークラッド層の形成材料〕
成分G:脂環骨格を有するエポキシ樹脂(ADEKA社製,EP4080E)100重量部
この成分Gと上記成分C 2重量部とを混合することにより、オーバークラッド層の形成材料を調製した。
【0055】
[実施例1]
<光導波路の作製>
〔アンダークラッド層の形成〕
まず、ステンレス製の基台(平板状)の表面に、上記アンダークラッド層の形成材料を塗布した後、160℃×2分間の乾燥処理を行い、感光性樹脂層を形成した。ついで、上記感光性樹脂層に対し、紫外線を照射して積算光量1000mJ/cm2の露光を行い、厚さ20μmのアンダークラッド層を形成した〔図2(a)参照〕。
【0056】
〔コアの形成〕
ついで、上記アンダークラッド層の表面に、上記コアの形成材料を塗布した後、170℃×3分間の加熱処理を行い、溶媒を揮散させてコア形成用の感光性樹脂層を形成した。つぎに、上記分岐状コアのパターンと同形状の開口パターンが形成されたフォトマスクを介して(ギャップ100μm)紫外線を照射し、積算光量3000mJ/cm2の露光を行った後、120℃×10分間の加熱処理を行い、樹脂の硬化を完了させた。そして、現像液(γ−ブチロラクトン)を用いてディップ現像することにより、未露光部分を溶解除去した後、120℃×5分間の加熱乾燥処理を行うことにより、パターニングされた厚さ(高さ)50μmの分岐状コアを形成した。
【0057】
なお、この実施例1では、コア分岐点における第1のコア部に対応する開口幅(W1)が180μm、第2のコア部に対応する開口幅(W2)が180μm、これらが合流する共通部に対応する開口幅(W0)が360μmの開口パターンを有するフォトマスクを使用した〔図1(b)参照〕。そのため、コアの各部もこれに沿って形成され、第1のコア部のコア幅W1が180μm、第2のコア部のコア幅W2が180μmになっている。また、第1のコア部のコア幅W1に対する第2のコア部のコア幅W2の比(W2/W1)は「1」(好適な範囲の下限)となっている。なお、フォトマスクの開口パターンにおける上記第1,第2コア部に対応する開口幅は、後記の実施例2,3,4と比較例1で変更される。
【0058】
また、上記フォトマスクには、分岐後の第1のコア部に相当する部位に、長辺10X側の出射路に対応する220本(各出射路先端の出光部が平面視レンズ状)の開口パターンが形成されているとともに、分岐後の第2のコア部に相当する部位には、短辺10Y側の出射路に対応する165本(各出射路先端の出光部が平面視レンズ状)の開口パターンが形成されており、上記分岐状コアの形成と同時に、これらの出射路も形成されるようになっている(フォトマスクの開口パターンにおける上記出射路の部位は、後記の実施例2,3と比較例1,2でも同様)。
【0059】
〔オーバークラッド層の形成〕
つぎに、オーバークラッド層形成用の、透光性を有する成形型を準備した。この成形型は、オーバークラッド層の表面形状に対応する成形キャビティを備えている。そして、その凹部を上にして、成形型を成形ステージの上に設置し、上記凹部に、前記のオーバークラッド層の形成材料を充填した。
【0060】
ついで、上記アンダークラッド層の表面にパターン形成したコアを、上記成形型の凹部に対して位置決めし、その状態で、上記アンダークラッド層を上記成形型に押圧し、上記オーバークラッド層の形成材料(ワニス状)に、上記コアを浸した。そして、この状態で、紫外線を、上記成形型を透して上記オーバークラッド層の形成材料に照射して積算光量8000mJ/cm2の露光を行い、コアの先端部に対応するオーバークラッド層の部分が、上下方向に略1/4円弧状のレンズ曲面(曲率半径1.5mm)に形成されたオーバークラッド層を形成した。
【0061】
つぎに、上記成形型から、上記オーバークラッド層を、アンダークラッド層およびコアとともに脱型させるとともに、上記基台をアンダークラッド層から剥離して、実施例1の入力デバイス作製用の光導波路(総厚1mm)を得た。
【0062】
<供試用入力デバイスの作製>
〔光源の取り付け〕
得られた枠状の光導波路の角部に位置する、発光側光導波路コアの共通部の端部(光結合面)に当接する所定位置〔図1(b)参照〕に、発光強度(または出力)が3mWのVCSEL光源(Optowell社製)を配設し、上記コアの光軸の延長上に上記光源の発光部(幅H=10μm)の中心がくるように、調芯・位置合わせしてこの光源を固定し、実施例1の入力デバイスを作製した。
【0063】
〔測定用受光素子ユニットの取り付け〕
ついで、光強度測定用の受光素子ユニット(Optowell社製 CMOSリニアセンサアレイ)を準備し、上記発光側光導波路コアの各光出射路の先端(出光部)から出射される光(信号)が、このセンサアレイの各受光素子に個々に入射するように(すなわち、光出射路1本に対して受光素子1個が対応するように)、上記受光素子ユニットを位置決めし、その状態で、上記枠状光導波路に接着剤等で固定して、光出射路1本ごとの光強度を測定できるように準備した。
【0064】
[実施例2]
上記光導波路の作製の〔コアの形成〕において、コア分岐点における第1のコア部に対応する開口幅と第2のコア部に対応する開口幅の比が異なるフォトマスクを使用したこと以外、上記実施例1と同様にして、第1のコア部のコア幅W1が140μm、第2のコア部のコア幅W2が220μmの実施例2の入力デバイス作製用光導波路(コア幅の比 W2/W1=約1.57)を作製した。そして、この光導波路に、上記のように光源と測定用受光素子ユニットを取り付けて実施例2の入力デバイスとし、光出射路1本ごとの光強度を測定できるように準備した。
【0065】
[実施例3]
上記光導波路の作製の〔コアの形成〕において、コア分岐点における第1のコア部に対応する開口幅と第2のコア部に対応する開口幅の比が異なるフォトマスクを使用したこと以外、上記実施例1と同様にして、第1のコア部のコア幅W1が120μm、第2のコア部のコア幅W2が140μmの実施例3の入力デバイス作製用光導波路(コア幅の比 W2/W1=2)を作製した。そして、この光導波路に、上記のように光源と測定用受光素子ユニットを取り付けて実施例3の入力デバイスとし、光出射路1本ごとの光強度を測定できるように準備した。
【0066】
[実施例4]
上記光導波路の作製の〔コアの形成〕において、コア分岐点における第1のコア部に対応する開口幅と第2のコア部に対応する開口幅の比が異なるフォトマスクを使用したこと以外、上記実施例1と同様にして、第1のコア部のコア幅W1が80μm、第2のコア部のコア幅W2が280μmの実施例3の入力デバイス作製用光導波路(コア幅の比 W2/W1=3.5)を作製した。そして、この光導波路に、上記のように光源と測定用受光素子ユニットを取り付けて実施例4の入力デバイスとし、光出射路1本ごとの光強度を測定できるように準備した。
【0067】
比較例として、上記第1のコア部のコア幅W1に対する第2のコア部のコア幅W2の比(W2/W1)が、本発明の好適な範囲(1〜5)から外れる光導波路を作製し、これを用いて入力デバイスを作製した。
【0068】
[比較例1]
上記光導波路の作製の〔コアの形成〕において、コア分岐点における第1のコア部に対応する開口幅と第2のコア部に対応する開口幅の比率が異なるフォトマスクを使用したこと以外、上記実施例1と同様にして、第1のコア部のコア幅W1が240μm、第2のコア部のコア幅W2が120μmの比較例1の入力デバイス作製用光導波路(コア幅の比 W2/W1=0.5)を作製した。そして、この光導波路に、上記のように光源と測定用受光素子ユニットを取り付けて比較例1の入力デバイスとし、光出射路1本ごとの光強度を測定できるように準備した。
【0069】
<光強度の測定および評価>
上記実施例1〜4および比較例1の入力デバイスを用いて、それぞれの光源を発光させて850nmの赤外線をコアに入射させ、各光出射路ごとの光強度(光出射路から出射されて各受光素子に届いた光の強度)を測定し、長辺10X側(220本)の平均値IXと、短辺10Y側(165本)の平均値IYを算出した。そして、これら平均値の差の絶対値を求め、その絶対値の大小により、長辺と短辺に分配された光量の差「長辺側と短辺側の光量差」を評価した。
【0070】
なお、測定は、コアの光軸と光源の光軸が一致した(調芯された)状態と、一致していない状態の両方で行った。すなわち、図1(b)において、光源(発光素子3)の中心が、コア1の光軸上の点Oにあり、光軸が一致した状態を「±0μm」と表し、この発光素子3の中心を意図的に(y方向)A側に100μmずらした状態を「+100μm」、上記光源の中心を意図的にB側に100μmずらした状態を「−100μm」と表示する。
【0071】
また、光導波路のコア幅,コア高さの測定には、レーザー顕微鏡(キーエンス社製)を、コア中心および光源のずれ量の測定には、光学顕微鏡(オリンパス社製 MX51)を用いた。
【0072】
以上の測定結果を「表1」に示す。
【0073】
【表1】

【0074】
上記表1に示すように、実施例1〜4の入力デバイスは、コアと光源の光軸が一致した状態「±0μm」において、長辺10X側と短辺10Y側の光量差が0.2〜0.9と小さく、光源からの光を、互いに直交する2方向に略均等に分配できていることが分かる。また、光源の中心が、コアの光軸に対して一方にずれた状態「+100μm」でも、他方にずれた状態「−100μm」でも、その長辺側と短辺側の光量差が最大で1.2と小さい。このことから、本発明の入力デバイスは、コアと光源の調芯の許容範囲が広いことが分かる。
【0075】
一方、比較例1の入力デバイスは、コアと光源の光軸が一致した状態「±0μm」でも、長辺10X側と短辺10Y側の光量差が2.0と大きく、光源の中心が、コアの光軸に対してずれた状態「+100μm」,「−100μm」では、この長辺側と短辺側の光量差がさらに拡大する。したがって、比較例1の入力デバイスは、上記特性に劣る。
【0076】
つぎに、本発明の入力デバイスの二分岐状光導波路コアの「湾曲部位」におけるコア幅(W2)と、この「湾曲部位」の曲率半径(R)との関係について行った検証の結果について述べる。
【0077】
本実施例においては、平面視1/4円形状の湾曲部位を区間内に1箇所有する「発光側光導波路コアの第2のコア部」〔図1(b)の1c部を参照〕を模した光導波路コアを作製し、そのコアの上記湾曲部位のコア幅(W2)とカーブの曲率半径(R)との組合せを種々変更して、このコアの湾曲(曲がり)によって発生する光の「曲げ損失」(光の反射角が臨界角を越えた漏れ光による損失)を測定した。
【0078】
なお、上記測定に用いた光導波路の供試品は、上記実施例1と同様の構成材料と方法を用いて、コア形成時のフォトマスクのパターン(開口形状)を変更することにより作製した。コア幅W2の設定は、15,20,30,50,75,100,150,200,250μmであり、湾曲部位の曲率半径Rの設定は、0.6,0.8,1.0,1.5,2.0,2.5,3.0mmである。これら各設定値を組み合わせた光導波路(コア)を作製し、供試品とした。なお、各供試品の屈折率(850nm)は、コアが1.57、オーバーおよびアンダークラッド層が1.51、コアの厚さ(高さ)は50μmであり、湾曲部位の曲率半径Rの単位換算(mm→μm)値は、それぞれ600,800,1000,1500,2000,2500,3000μmである。
【0079】
また、上記曲げ損失の測定は、上記供試用光導波路のコアの湾曲部位の前後を切断し、この前後の切断部の間(1箇所の湾曲部位を含む)の光損失〔入力光パワーと出力光パワーの差〕を、JIS C 6823「光ファイバ損失試験方法」のカットバック法に準じて行った。上記コアにおける上記「湾曲部位」を挟んだ2点間(二つの断面の間)の光損失(曲げ損失)は、以下の式(1)で計算される。
曲げ損失(dB) = −10×log(Po/Pi) ・・・(1)
上記式において、Piはコア入口端面における入力光パワー、Poはコア出口端面における出力光パワーである。また、光パワーの測定には、COHERENT社製FieldMaxII−TOを、光源には、Optowell社製VCSEL PH85−F1P0S2を使用した。
【0080】
上記「曲げ損失」の測定結果を図3,図4に示す。
図3は、上記測定から得られた、光導波路のコア幅(W2)と曲げ損失(dB)の関係を、湾曲部位の曲率半径(R)ごとにプロットしたグラフである。また、図4は、上記図3の結果を、コア幅(W2:μm)に対する曲率半径(R:μm)の比(R/W2)でまとめたものであり、この「コア幅W2に対する曲率半径Rの比(R/W2)」と上記「曲げ損失」の関係を表すグラフになっている。なお、グラフ中の基準線として用いている「3(dB)」は、入力光パワー(Pi)に対する湾曲経由後の出力光パワー(Po)の強さが50%(光パワーが半分)になっている点に相当する。
【0081】
上記図3のグラフによれば、コアの「曲げ損失」(dB)は、コア幅W2が広い(太い)ほど低く、また、湾曲部位の曲率半径Rが大きい(緩やかである)ほど低くなる傾向にあることが分かる。基準としている曲げ損失3dB(光量50%低下)で見てみると、コア幅W2が50μmで曲率半径Rが0.8mm(R/W2=16)の時に2.98dB、コア幅W2が100μmで曲率半径Rが1.5mm(R/W2=15)の時に3.24dB、コア幅W2が200μmで曲率半径Rが3.0mm(R/W2=15)の時に3.23dBとなっており、これらの間に相関があることが分かる。
【0082】
そして、発明者がまとめた、図4のグラフによれば、上記のように、発光側光導波路コアの第2のコア部の形状を、「コア幅W2に対する曲率半径Rの比を15以上(R/W2≧15)」、すなわち、上記「湾曲する第2のコア部の湾曲部位の曲率半径R(μm)を、この第2のコア部1cのコア幅W2(μm)の15倍以上〔R≧(15×W2)〕」とすることにより、この湾曲部位の光損失(曲げ損失)を低減できることが確認された。したがって、本発明の入力デバイスは、上記発光側の光導波路コアにおける湾曲部位の光損失が少ないため、この湾曲部位を有する第2のコア部と直線状の第1のコア部との光量バランスの設計および調整が容易で、結果として、これら直交する2辺に分配される光を、理想的な状態で分配することが可能になる。
【産業上の利用可能性】
【0083】
本発明の枠状光導波路を用いた入力デバイスは、光源と光導波路コアとの間の調芯に、高い精度とそれに伴う手間を必要とせず、この光源からの光が、光導波路の枠において直交する2辺に均等に分配される。その結果、この入力デバイスは、検知空間内に死角のない、高精度な入力体の検出を行うことができる。
【符号の説明】
【0084】
1 発光側光導波路コア
1a 共通部
1b 第1のコア部
1c 第2のコア部
3 発光素子
10 枠状光導波路
10a 角部
S 検知空間
J 分岐点
W1 第1のコア部のコア幅
W2 第2のコア部のコア幅

【特許請求の範囲】
【請求項1】
矩形状の検知空間の周りに配置された枠状の光導波路と、この枠状光導波路の矩形状の外縁に配設される発光素子および受光素子を備え、上記枠状光導波路の内縁に位置決めされた発光側光導波路コアの光出射側端部から対応する受光側光導波路コアの光入射側端部に到達する光の遮蔽を検知することにより、上記検知空間内に位置する入力体の位置情報を取得する入力デバイスであって、上記枠状光導波路のひとつの角部の外縁に、上記発光素子が所定の向きで配置され、この角部に隣接する枠の2辺に、上記発光素子から出射される光を互いに直交する上記2辺方向に所定の比率で分配する二分岐状の発光側光導波路コアが設けられ、上記二分岐状の発光側光導波路コアが、上記発光素子に接する角部に設けられた光入射側の共通部と、この共通部に連続して上記発光素子の発光の光軸に沿った枠の一辺方向に直線状に延びる第1のコア部と、上記共通部の分岐点から所定の曲率で湾曲しそれより光出射側が上記光軸に直交する枠の他辺方向に延びる第2のコア部とから形成され、上記発光側光導波路コアの分岐点における、上記直線状の第1のコア部のコア幅(W1)に対する上記湾曲する第2のコア部のコア幅(W2)の比が1以上〔(W2/W1)≧1〕になっていることを特徴とする入力デバイス。
【請求項2】
上記二分岐状の発光側光導波路コアにおける第2のコア部の湾曲部位が、1/4円形状であり、その曲率半径(R)が、上記第2のコア部のコア幅(W2)の15倍以上〔R≧(15×W2)〕になっている請求項1記載の入力デバイス。
【請求項3】
上記二分岐状の発光側光導波路コアが配置された枠の2辺にそれぞれ対向する他の2辺に、上記発光側光導波路コアの各光出射側端部に対応して、この発光側光導波路コアからの光を入射させて上記受光素子に導く複数の受光側光導波路コアが設けられている請求項1または2記載の入力デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−83840(P2013−83840A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2011−224404(P2011−224404)
【出願日】平成23年10月11日(2011.10.11)
【出願人】(000003964)日東電工株式会社 (5,557)
【Fターム(参考)】