説明

内燃機関の複リンク式ピストン−クランク機構

【課題】複リンク式ピストン−クランク機構のコントロールリンクと制御軸との連結部分を確実に潤滑する。
【解決手段】制御軸6の回転可能角度範囲と、偏心スリーブ20の調整可能角度範囲と、コントロールリンク5の偏心軸部7に対する揺動可能角度範囲との和が、軸受メタル油溝35の形成範囲である180°以下となるよう設定され、偏心スリーブ20の調整可能角度範囲内でピストン1の上死点位置の調整を行う際に、偏心スリーブ油穴34と偏心軸部油溝33とが常に重なり合い、制御軸6の回転可能角度範囲で圧縮比を制御する際に、コントロールリンク5が揺動しても偏心スリーブ油穴34と軸受メタル油溝35とが常に重なり合うよう設定されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の複リンク式ピストン−クランク機構に関する。
【背景技術】
【0002】
例えば、特許文献1には、ピストンに揺動自由に連結された第1リンクと、この第1リンクに回動自在に連結されると共に、クランクシャフトのクランクピンに回転自由に装着された第2リンクと、偏心軸部を有するコントロールシャフトと、第2リンクに連結ピンを介して回転自由に連結されると共に、コントロールシャフトの偏心軸部に揺動可能に連結された第3リンクと、を備え、機関運転状態に応じてコントロールシャフトを回転して偏心軸部を位置を変更して内燃機関の圧縮比を可変制御する内燃機関の可変圧縮比機構において、各気筒毎に独立して圧縮比を調整可能な調整手段が前記第3リンクの下部に設けられたものが開示されている。
【0003】
この特許文献1においては、第3リンクの下部に、ネジ溝が形成されたボルト穴が設けられ、そのボルト穴に調整ボルトが螺合していると共に、第3リンクの下部に一対の半割構造の偏心スリーブ軸受が設けられている。そして、この偏心スリーブ軸受の外周と調整ボルトの先端が係合しており、調整ボルトを回転させて前進後退させることて偏心スリーブ軸受が回転するので、第3リンクと第2リンクとを連結する連結ピンと、第3リンクの下部の揺動中心間の距離の微調整が可能となり、圧縮比の微調整が可能となっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−69027
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、この特許文献1に開示された可変圧縮比機構においては、第3リンクの下端とコントロールシャフトとの連結部分における潤滑構造に関しては開示されておらず、第3リンクの下端とコントロールシャフトとの連結部分に十分な潤滑性能を確保することができない虞がある。
【課題を解決するための手段】
【0006】
そこで、本発明は、偏心スリーブを制御軸の偏心軸部に対して回転させることで、各気筒毎にピストンの上死点位置が調整可能な内燃機関の複リンク式ピストン−クランク機構において、前記偏心軸部の外周面周方向に延接された偏心軸部油溝と、前記偏心スリーブに貫通形成された偏心スリーブ油穴と、前記偏心スリーブの外周面と回転可能に嵌合する半割れ2分割構造の軸受メタルの一方のみに設けられ、該軸受メタルの内周面周方向に180°に亘って延接された軸受メタル油溝と、を有し、前記制御軸の回転可能角度範囲と、前記偏心スリーブの調整可能角度範囲と、前記ピストンとクランクシャフトとを連結する複数のリンク部材の動きを規制するコントロールリンクの揺動可能角度範囲との和が、前記軸受メタル油溝の形成範囲である180°以下となるよう設定され、前記偏心スリーブの調整可能角度範囲内で偏心スリーブを回転させて前記ピストンの上死点位置の調整を行う際に、前記偏心スリーブ油穴と前記偏心軸部油溝とが常に重なり合い、前記制御軸の回転可能角度範囲で制御軸を回転させて圧縮比を制御する際に、前記コントロールリンクが揺動しても前記偏心スリーブ油穴と前記軸受メタル油溝とが常に重なり合うよう設定されていることを特徴としている。これによって、複リンク式ピストン−クランク機構のコントロールリンクと制御軸との連結部分を潤滑する潤滑油路が、偏心スリーブによる気筒間の圧縮比バラツキの調整や、機関の運転条件や、リンク部材の姿勢によらず確保される。
【発明の効果】
【0007】
本発明によれば、各気筒毎にピストンの上死点位置が調整可能な複リンク式ピストン−クランク機構のコントロールリンクと制御軸との連結部分を潤滑する潤滑油路が、偏心スリーブによる気筒間の圧縮比バラツキの調整や、機関の運転条件や、リンク部材の姿勢によらず確保されるため、潤滑性能を向上させることができる。
【図面の簡単な説明】
【0008】
【図1】本発明が適用された内燃機関の複リンク式ピストン−クランク機構の概略構成を示す説明図。
【図2】制御軸付近の構成を示す側面図。
【図3】制御軸の側面図。
【図4】制御軸の正面図。
【図5】本発明が適用された内燃機関の複リンク式ピストン−クランク機構におけるコントロールリンクと制御軸との連結部分を拡大して示した説明図。
【図6】本発明が適用された内燃機関の複リンク式ピストン−クランク機構に用いられる偏心スリーブを示す説明図であり、(a)は正面図、(b)は側面図、(c)は背面図である。
【図7】本発明の第1実施形態におけるコントロールリンクと制御軸との連結部分における各部材の相対的な位置関係を模式的に示した説明図であり、(a)は最低圧縮比のときの説明図、(b)最高圧縮比のときの説明図である。
【図8】コントロールリンクと制御軸との連結部分における各部材の相対的な位置関係をコントロールリンクからみた角度を横軸として模式的に示した説明図。
【図9】第1実施形態における偏心スリーブの組み付け角度と、偏心スリーブの調整範囲を模式的に示した説明図。
【図10】本発明の第2実施形態におけるコントロールリンクと制御軸との連結部分における各部材の相対的な位置関係を模式的に示した説明図であり、(a)は最低圧縮比のときの説明図、(b)最高圧縮比のときの説明図である。
【図11】第2実施形態における偏心スリーブの組み付け角度と、偏心スリーブの調整範囲を模式的に示した説明図。
【図12】本発明の第3実施形態におけるコントロールリンクと制御軸との連結部分における各部材の相対的な位置関係を模式的に示した説明図であり、(a)は最低圧縮比のときの説明図、(b)最高圧縮比のときの説明図である。
【図13】第3実施形態における偏心スリーブの組み付け角度と、偏心スリーブの調整範囲を模式的に示した説明図。
【発明を実施するための形態】
【0009】
以下、本発明の一実施形態を図面に基づいて詳細に説明する。図1及び図2は、本発明が適用される複リンク式ピストン−クランク機構の基本的な構成の一例を示すものであって、直列4気筒の内燃機関へ適用された場合を示している。図1は内燃機関の複リンク式ピストン−クランク機構の概略構成を示す説明図であり、図2は制御軸6(後述)付近の構成を示す側面図である。
【0010】
複リンク式ピストン−クランク機構は、ピストン1とクランクシャフト2とを連結するアッパリンク3及びロアリンク4と、アッパリンク3及びロアリンク4の動きを規制するコントロールリンク5と、コントロールリンク5の一端が揺動可能に連結される偏心軸部7を有する制御軸6と、から大略構成されている。
【0011】
ピストン1は、シリンダブロック9に形成されたシリンダ10内を摺動可能に配置されており、アッパリンク3の一端(図1における上端)にピストンピン11を介して揺動可能に連結されている。
【0012】
アッパリンク3は、他端(図1における下端)が、第1連結ピン12を介してロアリンク4の一端部に回転可能に連結されている。
【0013】
ロアリンク4は、その中央部においてクランクシャフト2のクランクピン13に回転可能に取り付けられている。
【0014】
クランクシャフト2は、複数のジャーナル部14とクランクピン13とを備えており、その回転軸となるジャーナル部14がシリンダブロック9に回転可能に支持されている。クランクピン13は、ジャーナル部14から所定量偏心しており、ここにロアリンク4が回転自在に連結されている。
【0015】
ロアリンク4の運動を拘束するコントロールリンク5は、一端(図1における上端)が第2連結ピン16を介してロアリンク4の他端部に回動可能に連結され、他端(図1おける下端)が内燃機関本体の一部となるシリンダブロック9に揺動可能に支持されている。コントロールリンク5の他端は、内燃機関の圧縮比の変更のために、その揺動支点17の位置が内燃機関本体に対して変位可能となっている。具体的には、クランクシャフト2と平行に延びた制御軸6を備え、この制御軸6に偏心して設けられた偏心軸部7にコントロールリンク5の他端が回転可能に嵌合している。コントロールリンク5の他端は、本体部5aとキャップ部5bからなる半割構造となって偏心軸部7を挟み込んでいる。この半割構造における分割面18は、偏心軸部7の中心を通る平面となっている。
【0016】
制御軸6は、図1〜図4に示すように、シリンダブロック9に対して回転可能に支持される主軸部8と、この主軸部8に対して所定量e0だけ偏心した偏心軸部7と、有している。偏心軸部7は、主軸部8よりも大径となるよう設定されていて、偏心軸部7と主軸部8の間は偏心軸部7及び主軸部8のどちらよりも径が細い接続部26となっている。制御軸6の一端には、電気モータ等のアクチュエータ19が取り付けられている。本実施形態において、制御軸6は、4箇所に偏心軸部7が形成され、これらの偏心軸部7に4つの気筒のコントロールリンク5がそれぞれ連結されている。
【0017】
従って、圧縮比の変更のために、アクチュエータ19により制御軸6を回転駆動すると、コントロールリンク5の揺動支点17となる偏心軸部7の中心位置が機関本体に対して移動する。これにより、コントロールリンク5によるロアリンク4の運動拘束条件が変化して、クランク角に対するピストン1の行程位置が変化し、ひいては圧縮比が変更されることになる。
【0018】
また、この複リンク式ピストン−クランク機構においては、クランクシャフト2のジャーナル部14の中心15が、シリンダ10のボア中心線L1に対して、図1における右側にオフセットした構成となっている。また、制御軸6の回転軸となる主軸部8が、ジャーナル部14の中心15を通り、シリンダ10のボア中心線L1に対して平行なジャーナル部中心線L2に対して、図1における右側にオフセットすると共に、クランクシャフト2のジャーナル部14よりも図1における下方に位置するよう構成されている。
【0019】
換言すれば、複リンク式ピストン−クランク機構は、シリンダ10のボア中心線L1に対して、クランクシャフト2のジャーナル部14と、制御軸6の主軸部8とが同じ方向にオフセットし、かつ制御軸6がクランクシャフト2よりも下方に位置するように構成されている。
【0020】
さらに言えば、クランクシャフト2の軸方向視で、クランクシャフト2のジャーナル部14の中心15を原点とし、この原点を通りシリンダ10のボア中心線L1と直交する軸線L3をx軸、前記原点を通りシリンダ10のボア中心線と平行な軸線L2をy軸とする座標系を定義した場合に、シリンダ10はこの座標系の第2象限に位置し、制御軸6はこの座標系の第4象限に位置するよう、複リンク式ピストン−クランク機構は構成されている。つまり、前記座標系において、シリンダ10はそのx座標の値が負の値、y座標の値が正の値となり、制御軸6はそのx座標の値が正の値、y座標の値が負の値となっている。
【0021】
ここで、制御軸6の偏心軸部7の周囲(外周)には、図5及び図6に示すように、略円筒状の継ぎ目の無い偏心スリーブ20が圧入されている。偏心スリーブ20は、機関運転中に偏心軸部7に対して相対回転することなく、十分な圧入代に基づく圧入によって固定される。従って本発明によれば、従来技術のようにコントロールリンクの連結ピン孔(軸受メタルの内周)の中心位置が調整される代わりに、制御軸6の偏心軸部7(軸側の外周)の中心位置が調整される。
【0022】
この偏心スリーブ20は、偏心軸部7に圧入される筒状部21と、筒状部21の一端に形成された回転角度調整部22と、を有している。筒状部21は、偏心軸部7の外周面と対向する内周面23に対して、コントロールリンク5の他端側に取り付けられた半割れ2分割構造からなる軸受メタル24と回転可能に嵌合する外周面25が、所定量eだけ偏心するよう形成されている。回転角度調整部22は、筒状部21の一端の全周に鍔状に形成された凸部であって、偏心スリーブ20を軸方向から見て、外形が6角形となるように形成されている。
【0023】
ここで、偏心スリーブ20は、制御軸6の偏心軸部7に圧入されているため、偏心スリーブ20の筒状部21の内周面23と、偏心軸部7の外周面とが直接接触する部分が必ず存在することになる。すなわち、偏心スリーブ20の筒状部21の内周面23と、偏心軸部7の外周面との間は、少なくとも流体潤滑状態とはならないように設定されている。
【0024】
尚、本実施形態における制御軸6は、図3に示すように、4つの偏心軸部7を有しており、偏心軸部7a、7bについては図3における右側から、偏心軸部7c、7dについては図3における左側からそれぞれ偏心スリーブ20が組み付けられている。これは、偏心軸部7a、7dの外径が、偏心軸部7b、7cの外径よりも(例えば1mmほど)小さく設定されているからである。但し、偏心軸部7a、7dに圧入される偏心スリーブ20の筒状部21の内径は、偏心軸部7b、7cに圧入される偏心スリーブ20の筒状部21の内径よりも小さく設定され、圧入代δ(偏心軸部7の外径と、偏心スリーブ20の筒状部21の内径との差)は全気筒同一となるよう設定されている。また、偏心スリーブの外径は全気筒で同一となるように構成され、コントロールリンク5は全気筒で共通のものを用いることができるようになっている。
【0025】
偏心スリーブ20の外径中心と内径中心のずれに相当する偏心量eは、全気筒で等しく、気筒間の圧縮比のバラツキ調整に必要な最小限の偏心量に設定されたものであって、制御軸6における偏心軸部7の主軸部8に対する偏心量e0よりも小さく設定されている。
【0026】
この複リンク式ピストン−クランク機構においては、図7、図8に示すように、制御軸6の内部に形成された制御軸油通路31内を流れる潤滑油によって、コントロールリンク5と制御軸6との連結部分の摺動部位を強制潤滑するために、偏心軸部7、偏心スリーブ20に、潤滑油供給路が形成されている。そして、軸受メタル24には、コントロールリンク5に形成されたコントロールリンク油通路36と連通するように、軸受メタル油穴37が貫通形成されている。コントロールリンク油通路36は、コントロールリンク5とロアリンク4との連結部分の摺動部位に、コントロールリンク5と制御軸6との連結部分の摺動部位を強制潤滑した潤滑油の一部を供給するものであり、コントロールリンク5の一端まで連続するよう形成されている。
【0027】
図7及び図8は、各気筒の圧縮比を偏心スリーブ20を用いて調整することにより、気筒間の圧縮比バラツキの解消を図ろうとする実施形態を示しており、図7は制御軸の軸線方向から見た組み付け例であり、図8は周方向(角度方向)を横軸として展開することにより各潤滑油供給路の周方向の位置関係を模式的に示した説明図である。偏心スリーブ20に破線で示された油穴は、仮に偏心スリーブ油穴34が時計回り又は反時計回りにα/2回転した場合の様子を示している。
【0028】
図7は、各気筒の圧縮比が計算上の設計中央値となるように気筒間の圧縮比バラツキの調整を行う場合の組み付け例を示している。具体的には、制御軸の角度を所定の圧縮比に対応した角度に設定し、クランクシャフトの角度をピストンが所定のストローク位置となる角度に設定した上で、偏心スリーブを、予め定められた姿勢で偏心軸部に組付けたときに、ピストンのストローク位置が所定の圧縮比における所定のストローク位置の設計上の中央値とほぼ一致するように、複リンク式ピストン−クランク機構の各要素が構成(設計寸法が設定)されている。ここでの偏心スリーブの姿勢は、例えば、偏心スリーブを回したときの回転角度に対するピストンのストローク位置の関係が線形に近い線形特性領域の中央となる姿勢であり、これによって圧縮比の調整代を偏心スリーブの回転角度で直接的(リニア)に決められるようにして、偏心スリーブの回転による圧縮比の調整ができるだけ精度良く行なえるようにしている。
【0029】
図7(a)は、最低圧縮比の状態を示し、図7(b)は、最高圧縮比の状態を示している。図7(b)は、図7(a)の状態から制御軸を図7の時計方向周りにA°回転させた状態、すなわち、図7(a)の状態から制御軸6の回転可能角度範囲に等しいA°回転させた状態を示している。また、図8は、図7aの状態における各要素を、コントロールリンク5の上から(コントロールリンク5上に視点をおいて)みた角度を横軸として模式的に示した説明図である。
【0030】
偏心軸部7においては、制御軸油通路31と連通し、一端が偏心軸部7の外周面に開口する偏心軸部7の半径方向に延びる偏心軸部油穴32と、偏心軸部7の外周面に形成され、偏心軸部7の軸方向に所定の幅を有し、偏心軸部油穴32と連続する偏心軸部油溝33と、が形成されている。
【0031】
偏心軸部油溝33は、偏心軸部7の周方向に沿って形成されており、偏心軸部油穴32と接続している。本実施形態では、偏心軸部油穴32の位置が後述の理由によって決まることから、偏心軸部油溝33の一端で偏心軸部油溝33と偏心軸部油穴32とが連通している。尚、偏心軸部7の外周面と偏心スリーブ20の内周面との間に形成される油溝を偏心軸部7側に設ける(スリーブ側に油溝は設けられていない)のは、相対的に肉厚の薄い偏心スリーブの強度や剛性の低下を抑制するためである。
【0032】
図7に示すように、偏心軸部7の軸方向視で、偏心軸部油溝33の偏心軸部7の周方向に沿った角度範囲(周方向に沿った長さ)は、偏心スリーブ20に貫通形成された偏心スリーブ油穴34の直径に相当する角度範囲(スリーブ油穴の直径に相当する長さ)αと、圧縮比調整時(圧縮比バラツキを解消しようとするとき)に偏心スリーブ20の回転に伴う偏心スリーブ油穴34の移動範囲である偏心スリーブ20の調整可能角度範囲(偏心スリーブ油穴34の移動範囲長さ)Cとの和となるように設定されている。これによって、偏心軸部油溝33の長さを、偏心スリーブ20の調整可能角度範囲C内でピストン1の上死点位置の調整を行う上で、偏心スリーブ油穴34と偏心軸部油溝33とが常に重なり合うために必要な最低限の長さにすることができ、偏心軸部7ひいては制御軸6の強度を向上させることができる。尚、本実施形態の偏心スリーブ20の調整可能角度範囲Cの大きさは、偏心スリーブ20の回転角度に対するピストン1のストローク位置の関係が線形に近い関係を保つことができる角度範囲に設定されている。
【0033】
一方、軸受メタル24においては、その内周面に、軸方向に所定の幅を有する軸受メタル油溝35が、軸受メタル24の周方向に沿って形成されている。この軸受メタル油溝35は、図7に示すよう、軸受メタル24の軸方向視で、180°の角度範囲に形成されている。つまり、半割れ2分割構造の軸受メタル24の一方のみの内周面に、図7、及び図8に示すように、この内周面の半周に亘って連続する軸受メタル油溝35が形成されている。
【0034】
本実施形態の複リンク式ピストン−クランク機構は、シリンダ10のボア中心線L1に対して、クランクシャフト2のジャーナル部14と、制御軸6の主軸部8とが同じ方向にオフセットし、かつ制御軸6がクランクシャフト2よりも下方に位置するように構成されているため、ピストン1に燃焼荷重が加わると、コントロールリンク5に引っ張り方向の荷重が作用する。このため、コントロールリンク5のキャップ部5b側の内周面から偏心軸部7に荷重が作用することになる。
【0035】
そこで、軸受メタル油溝35は、コントロールリンク5のキャップ部5b側の内周面から偏心軸部7に荷重が作用した際に、軸受全体としての強度が低下したり油溝付近に応力が集中したりすることが無いように、キャップ部5b側ではなく本体部5a側(図7中上側)の軸受メタル24に設けられる。すなわち、軸受メタル油溝35が設けられる一方の軸受メタルは、ピストン1に燃焼荷重が加わったときに偏心軸部7との間に作用する荷重が相対的に大きくなる側とは異なる側の軸受メタルである。このように本体部5a側の180°の範囲のみに軸受メタル油溝35を設けることにしたので、軸受全体としての強度を低下させることなく、応力が集中することも回避できる。また、油溝を半割りにされた軸受メタル24の一方にのみ設ければ済むので、製作も容易である。そして、全周の内、半分に油溝が存在するので、コントロールリンク5と制御軸6(偏心軸部7)の間の潤滑性能を十分確保することができる。
【0036】
さらに、偏心軸部油穴32についても、キャップ部5b側の面圧上昇を抑制するために、圧縮比を可変する範囲において、キャップ部5b側とならないに位置に、すなわちコントロールリンク5の本体部5a側の位置に開口するように形成されている。そのため、偏心軸部油穴32への応力集中を回避することができる。
【0037】
特に本実施形態の偏心軸部油穴32は、高負荷低圧縮比となるときに、コントロールリンク5から作用する荷重の方向と略垂直となる位置に開口するよう偏心軸部7に形成されている。このため、高負荷時に荷重が集中する部分、すなわち、曲げ中立面から遠く離れた部分に偏心軸部油穴32が開口しない(低圧縮比高負荷時の中立面近くに開口する)ので、偏心軸部油穴32付近の応力集中を回避することができる。
【0038】
前述の通り、偏心軸部7に設けられた偏心軸部油溝33の角度範囲(周方向長さ)は、圧縮比調整時の偏心スリーブ油穴34の移動角度範囲(移動範囲長さ)Cと、偏心スリーブ油穴34の直径相当の角度範囲(直径の長さ)αを足し合わせたものになっていて、図7に示すように、偏心スリーブ油穴34が、調整可能角度範囲Cの中で、最も反時計周り方向側へ移動したときに、偏心軸部油溝33の反時計周り方向側の一端の位置と一致し、最も時計周り方向側へ移動したときに、偏心軸部油溝33の時計周り方向側の一端の位置と一致する。
【0039】
そして、偏心スリーブ20は、気筒間の圧縮比調整前の偏心軸部7への取り付け時に、図9に示すように、偏心スリーブ20の回転角度に対するピストン1のストローク位置の関係が線形に近い線形特性領域の中央となる姿勢で偏心軸部7へ取り付けられ、偏心スリーブ油穴34が、偏心軸部油溝33の偏心軸部7周方向に沿った長さに相当する角度範囲(C+α)の略中央に位置するように取り付けられている。これにより、偏心スリーブ20による圧縮比バラツキの調整を行う際の偏心スリーブ20の回転角度は、計算上の設計中央値から圧縮比が上昇する側に(C/2)°、計算上の設計中央値から圧縮比が低下する側に(C/2)°となり、各気筒の圧縮比を上げ下げして、各気筒の圧縮比が計算上の設計中央値となるように、気筒間の圧縮比バラツキの調整を行えるようになっている。
【0040】
以上のような前提において、軸受メタル24に設けられた軸受メタル油溝35が180°の角度範囲で設けられるのに対して、圧縮比調整によって偏心スリーブ油穴34が調整可能角度範囲Cだけ移動したとしても、偏心軸部油穴33と軸受メタル油溝35とは偏心スリーブ油穴34を通じて常に接続されるように構成されていなければならない。そのためには、偏心スリーブ油孔34の取り得る角度範囲全体、あるいは、偏心スリーブ油孔34の取り得る角度範囲全体が偏心軸部油溝33の角度範囲全体と一致する本実施形態においては偏心軸部油溝33の角度範囲全体が、軸受メタル油溝35の角度範囲180°に常に内包される関係となっていなければならない。
【0041】
また、制御軸6は圧縮比制御のため回転可能角度範囲Aだけ回転するので、偏心軸部油溝33は全体としてさらに回転可能範囲Aだけ回転することになる。従って、偏心スリーブ油穴34の調整角度可能範囲C(あるいは偏心スリーブ油穴の直径を考慮するのであれば調整角度可能範囲Cとスリーブ油穴34の直径分角度範囲αの和)と圧縮比制御のため回転可能角度範囲Aとの和が、軸受メタル油溝35の角度範囲180°以下になっている必要がある。
【0042】
一方、コントロールリンク5は偏心軸部7に対して揺動可能角度範囲Bだけ揺動するので、見かけ上軸受メタル油溝35の角度範囲(A+Cを常に内包するのに寄与する角度範囲)は、揺動可能角度範囲Bだけ減少する。
【0043】
以上より、制御軸6の回転可能角度範囲をA、コントロールリンク5の他端の偏心軸部7に対する揺動可能角度範囲をB、偏心スリーブ20の調整可能角度範囲をCとすれば、回転可能角度範囲A+調整可能角度範囲C≦軸受メタル油溝の形成範囲(180°)−揺動可能角度範囲B、となるよう設定されなければならない。
【0044】
この式は、偏心スリーブ油穴34が取り得る範囲を示している、と捉えることができる。偏心スリーブ油穴34の位置は、軸受メタル24に対して、圧縮比の微調整(偏心スリーブ20による圧縮比のバラツキの調整)、圧縮比の変更(制御軸6の回転)、コントロールリンク5の揺動によって移動しうる。すなわち、最低圧縮比で、偏心軸部7がコントロールリンク5の他端に対して図7における反時計方向周り側に最も回転した状態を基準として、そこから最も大きくコントロールリンク5の他端側の各部材が動く場合を考えると、偏心スリーブ20は圧縮比バラツキの調整により最大で調整可能角度C移動し、制御軸6は圧縮比の変更により図7における時計方向周り側に最大で回転可能角度A移動し、コントロールリンク5の他端は偏心軸部7に対し最大で揺動可能角度B移動するので、これらの合計が180°以下であれば、偏心スリーブ20を調整可能角度範囲Cの範囲内で如何に調整しようとも、偏心スリーブ油穴34と軸受メタル溝35とが常に重なり合うように設定可能となる。
【0045】
このように本実施形態では、制御軸6の回転可能角度範囲Aと、偏心スリーブ20の調整可能角度範囲Cと、コントロールリンク5の一端の前記偏心軸部7に対する揺動可能角度範囲Bとの和が、軸受メタル油溝24の形成範囲である180°以下となるよう設定され、偏心スリーブ20の調整可能角度範囲C内でピストンの上死点位置の調整を行う際に、偏心スリーブ油穴34と偏心軸部油溝35とが常に重なり合い、制御軸6の回転可能角度範囲Aで圧縮比を制御する際に、コントロールリンク5が揺動しても偏心スリーブ油穴34と軸受メタル油溝35とが常に重なり合うよう設定されている。
【0046】
これによって、複リンク式ピストン−クランク機構のコントロールリンク5と制御軸6との連結部分の摺動部位を潤滑する潤滑油供給路が、偏心スリーブ20による気筒間の圧縮比バラツキの調整や、機関の運転条件(圧縮比変化)や、リンク部材の姿勢によらず確保されるため、潤滑性能を向上させることができる。
【0047】
また、偏心スリーブ20により、気筒間の圧縮比のバラツキが低減されるため、その分、吸排気弁とピストンとの干渉回避のために設定されるマージンの低減、点火時期進角、EGR領域の拡大、が可能となり、燃費を向上させることができる。
【0048】
そして、偏心スリーブ20により、気筒間の圧縮比のバラツキが低減されるため、その分、過給圧領域の拡大が可能となり、出力、トルクを向上させることができる。
【0049】
また、複リンク式ピストン−クランク機構は、シリンダ10のボア中心線L1に対して、クランクシャフト2のジャーナル部14と、制御軸6の主軸部8とが同じ方向にオフセットし、かつ制御軸6がクランクシャフト2よりも下方に位置するように構成されているので、軸受メタル油溝35が高負荷時に荷重が集中するコントロールリンク5の一端の下方側をさけて位置する構成となるため、高負荷時に荷重が集中するコントロールリンク5の一端の下方側の面圧を下げつつ、潤滑油も供給することができ、摺動部分の焼き付きを効果的に抑制することができる。
【0050】
尚、上述した図7、図8においては、制御軸6の回転可能角度範囲Aを約70°、コントロールリンク5他端の偏心軸部7に対する揺動可能角度範囲Bを約20°、偏心スリーブ20の調整可能角度範囲Cを約90°、とした例を示しており、回転可能角度範囲Aと揺動可能角度範囲Bとの和が調整可能角度範囲Cと等しくなっているが、これは、この一例でたまたまそうなっているだけであり、回転可能角度範囲A、揺動可能角度範囲B及び調整可能角度範囲Cの関係が異なれば、回転可能角度範囲Aと揺動可能角度範囲Bの和が調整可能角度範囲Cとはならない場合もある。
【0051】
以下、本発明の他の実施形態について説明するが、上述した第1実施形態と同一の構成要素には同一の符号を付し、重複する説明を省略する。
【0052】
図10及び図11を用いて、本発明の第2実施形態について説明する。この第2実施形態は、上述した第1実施形態と略同一構成となっており、この第2実施形態においても、制御軸6の内部に形成された制御軸油通路31内を流れる潤滑油によって、コントロールリンク5と制御軸6との連結部分の摺動部位を強制潤滑するために、偏心軸部7、偏心スリーブ20及び軸受メタル24に、潤滑油供給路が形成されているが、この第2実施形態においては、気筒間の圧縮比バラツキの調整を行う際に、圧縮比の最も高い気筒に他の気筒の圧縮比を調整している。つまり、図10及び図11は、圧縮比の最も高い気筒の圧縮比に他の気筒の圧縮比がなるように気筒間の圧縮比バラツキの調整を行う場合の組み付け例を示している。
【0053】
この第2実施形態における偏心スリーブ20は、気筒間の圧縮比調整前の偏心軸部7への取り付け時に、偏心スリーブ油穴34の位置が、偏心軸部油溝33の偏心軸部7周方向に沿った長さに相当する角度範囲(C+α)の図10における時計方向周り側の一端の位置するように取り付けられている。つまり、偏心スリーブ20は、気筒間の圧縮比調整前の偏心軸部7への取り付け時に、図11に示すように取り付けられている。これにより、偏心スリーブ20は調整前の状態から比較すると時計周り方向にしか動かさない前提になっていて、偏心スリーブ20による圧縮比バラツキの調整を行う際の偏心スリーブ20の回転角度は、計算上の設計中央値から圧縮比が上昇する側のみにC°となる。
【0054】
このような第2実施形態においては、上述した第1実施形態と略同様の作用効果が得られると共に、圧縮比が上昇する側への調整レンジを最大化することができる。
【0055】
図12及び図13を用いて、本発明の第3実施形態について説明する。この第3実施形態は、上述した第1実施形態と略同一構成となっており、この第3実施形態においても、制御軸6の内部に形成された制御軸油通路31内を流れる潤滑油によって、コントロールリンク5と制御軸6との連結部分の摺動部位を強制潤滑するために、偏心軸部7、偏心スリーブ20及び軸受メタル24に、潤滑油供給路が形成されているが、この第3実施形態においては、気筒間の圧縮比バラツキの調整を行う際に、圧縮比の最も低い気筒に他の気筒の圧縮比を調整している。つまり、図12及び図13は、圧縮比の最も低い気筒の圧縮比に他の気筒の圧縮比がなるように気筒間の圧縮比バラツキの調整を行う場合の組み付け例を示している。
【0056】
この第3実施形態における偏心スリーブ20は、気筒間の圧縮比調整前の偏心軸部7への取り付け時に、偏心スリーブ油穴34の位置が、偏心軸部油溝33の偏心軸部7周方向に沿った長さに相当する角度範囲(C+α)の図12における反時計方向周り側の一端の位置するように取り付けられている。つまり、偏心スリーブ20は、気筒間の圧縮比調整前の偏心軸部7への取り付け時に、図13に示すように取り付けられている。これにより、偏心スリーブ20は調整前の状態から比較すると反時計周り方向にしか動かさない前提になっていて、偏心スリーブ20による圧縮比バラツキの調整を行う際の偏心スリーブ20の回転角度は、計算上の設計中央値から圧縮比が低下する側のみにC°となる。
【0057】
このような第3実施形態においては、上述した第1実施形態と略同様の作用効果が得られると共に、圧縮比が低下する側への調整レンジを最大化することができる。
【符号の説明】
【0058】
5…コントロールリンク
6…制御軸
7…偏心軸部
18…分割面
20…偏心スリーブ
24…軸受メタル
31…制御軸油通路
32…偏心軸部油穴
33…偏心軸部油溝
34…偏心スリーブ油穴
35…軸受メタル油溝
36…コントロールリンク油通路
37…軸受メタル油穴

【特許請求の範囲】
【請求項1】
内燃機関のピストンとクランクシャフトとを連結する複数のリンク部材と、これら複数のリンク部材の動きを規制するコントロールリンクと、前記コントロールリンクの一端が揺動可能に連結される偏心軸部を有すると共に、内部に潤滑油が流れる油通路が形成されている制御軸と、前記偏心軸部に圧入された筒状の偏心スリーブと、前記コントロールリンクの一端側に取り付けられ、前記偏心スリーブの外周面と回転可能に嵌合する半割れ2分割構造の軸受メタルと、を有し、前記制御軸の回転により前記偏心軸部の位置を変化させることによって前記ピストンの上死点位置が変化して圧縮比が変化すると共に、前記偏心スリーブを前記偏心軸部に対して回転させることで、各気筒毎にピストンの上死点位置が調整可能な内燃機関の複リンク式ピストン−クランク機構において、
前記偏心軸部の外周面周方向に延設された偏心軸部油溝と、前記偏心スリーブに貫通形成された偏心スリーブ油穴と、前記軸受メタルの一方のみに設けられ、該軸受メタルの内周面周方向に180°に亘って延設された軸受メタル油溝と、を有し、
前記制御軸の回転可能角度範囲と、前記偏心スリーブの調整可能角度範囲と、前記コントロールリンクの揺動可能角度範囲との和が、前記軸受メタル油溝の形成範囲である180°以下となるよう設定され、
前記偏心スリーブの調整可能角度範囲内で偏心スリーブを回転させてピストンの上死点位置の調整を行う際に、前記偏心スリーブ油穴と前記偏心軸部油溝とが常に重なり合い、
前記制御軸の回転可能角度範囲で制御軸を回転させて圧縮比を制御する際に、前記コントロールリンクが揺動しても前記偏心スリーブ油穴と前記軸受メタル油溝とが常に重なり合うよう設定されていることを特徴とする内燃機関の複リンク式ピストン−クランク機構。
【請求項2】
前記軸受メタル油溝が設けられる一方の軸受メタルは、前記ピストンに燃焼荷重が加わったときに前記偏心軸部との間に作用する荷重が相対的に大きくなる側とは異なる側の軸受メタルであることを特徴とする請求項1に記載の内燃機関の複リンク式ピストン−クランク機構。
【請求項3】
前記シリンダのボア中心線に対して、前記クランクシャフトの回転軸と、前記制御軸の回転軸とが同じ方向にオフセットし、かつ前記制御軸が前記クランクシャフトよりも下方に位置し、
前記コントロールリンクの一端は、半割構造となって前記偏心軸部を挟み込んでおり、この半割構造の分割面が該コントロールリンクに作用する荷重方向に対して直交するように設定され、
前記軸受メタルは、前記軸受メタル油溝が前記コントロールリンクの一端において該コントロールリンクの他端側に位置するように取り付けられていることを特徴とする請求項1または2に記載の内燃機関の複リンク式ピストン−クランク機構。
【請求項4】
前記偏心軸部の軸方向視で、前記偏心スリーブの調整可能角度範囲と一致するように、前記偏心軸部油溝の偏心軸部周方向に沿った長さに相当する角度範囲が設定されていることを特徴とする請求項1〜3のいずれかに記載の内燃機関の複リンク式ピストン−クランク機構。
【請求項5】
前記偏心軸部は、偏心軸部の断面中央付近より前記偏心軸部油溝に達する偏心軸部油穴を備え、前記偏心軸部油穴は、高負荷低圧縮比となるときに、荷重方向と略垂直となる位置に開口するよう前記制御軸に形成されていることを特徴とする請求項1〜4のいずれかに記載の内燃機関の複リンク式ピストン−クランク機構。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2013−11206(P2013−11206A)
【公開日】平成25年1月17日(2013.1.17)
【国際特許分類】
【出願番号】特願2011−143625(P2011−143625)
【出願日】平成23年6月29日(2011.6.29)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】