説明

再構成可能なステータ

【課題】発電機の出力が発電機の作動速度の広い範囲において電力エレクトロニクスユニットの電圧閾値を満たすように再構成可能な発電機のステータを提供する。
【解決手段】装置は、位相素子を形成するように配置されたコイルを有するロータ及びステータを含む。位相素子は、第1コイル及び第2コイルを含む第1コイルグループと、第3コイル及び第4コイルを含む第2コイルグループを含み、ロータは第1コイルグループと第2コイルグループとの間に位置づけられている。装置はまた、コイルの電気構成を切り替えることによって位相素子の再構成を可能にする一又は複数のスイッチも含む。第1モードにおいて、コイルは、第1コイル経路に第1コイルがあり、第1コイル経路と並列に連結された第2コイル経路に第2コイルがあるように配置されている。コイルは第1コイル経路全体に生じる電圧が、第2コイル経路全体に生じる電圧とほぼ等しくなるように配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は概して、再構成可能なステータに関するものである。
【背景技術】
【0002】
電気事業によって使用される発電機等の多くの発電機は、ほぼ一定速度で作動する。しかしながら、ある発電機は、航空機のエンジン又はフライホイール式エネルギー貯蔵装置等の可変速度源によって駆動される。これら可変速度源の回転速度は作動中に大幅に変化しうる。発電機の出力電圧は、発電機のロータの回転速度に比例しうる。ロータの回転速度が遅すぎると、発電機の出力電圧が負荷に十分な電力を供給するには低くなりすぎる可能性がある。可変速度源と発電機との間の接合点に複雑なギアアセンブリを使用して、ロータの回転速度を利用可能な電力を生成するのに十分な速さに維持することができる。しかしながら、これらのギアアセンブリは高価で複雑、また重量が重くなりうる。重いギアアセンブリは、発電機が、システムの重量が重要な設計検討事項になりうるポータブルシステム又は航空機の一部である時に、特に問題となりうる。
【発明の概要】
【0003】
発電機に連結された電力エレクトロニクスユニットは、発電機の出力電力が電力エレクトロニクスユニットの電圧閾値を満たすときに、負荷に電力を供給するように作動可能であり得る。特定の実施形態において、発電機のステータを、発電機の出力が発電機の作動速度の広い範囲において電力エレクトロニクスユニットの電圧閾値を満たすように再構成可能であってよい。ステータは、ステータのコイルの配線形態を変えるスイッチを使用することによって再構成することができる。コイルの再構成により、発電機の回転速度が変化した時に発電機の出力電圧を規定の電圧範囲内に維持することができる。
【0004】
特定の実施形態において、装置は、電源コネクタ、少なくとも一つの磁石を含むロータ、及び第1位相素子を形成するように配置された多重コイルを有するステータを含む。第1位相素子は、少なくとも第1コイル及び第2コイルを有する第1コイルグループと、少なくとも第3コイル及び第4コイルを有する第2コイルグループを含むことができる。ロータは第1コイルグループ及び第2コイルグループとの間に位置づけることができる。デバイスはまた、多重コイルの電気構成を切り替えることによって多重モード間の第1位相素子の再構成を可能にする一又は複数のスイッチも含むことができる。多重モードの第1モードにおいて、多重コイルは第1コイルが第1コイル経路にあり、第2コイルが第2コイル経路にあるように配置されており、第2コイル経路は第1コイル経路と並列に電源コネクタに連結されている。多重コイルは、ロータとステータの相対運動によって第1コイル経路全体に生じた第1電圧が、相対運動によって第2コイル経路全体に生じた第2電圧とほぼ等しくなるように配置することができる。
【0005】
特定の実施形態では、ある方法はステータの第1位相素子のコイルの電気構成を第1構成に切り替えることを含む。第1構成において、第1位相素子の第1コイルは第1コイル経路にあり、第1位相素子の第2コイルは、第1コイル経路に対して並列に電源コネクタに連結された第2コイル経路にある。本方法はまた、第1位相素子のコイルの電気構成を第2構成に切り替えることも含むことができる。第2構成において、第1コイル及び第2コイルは直列に連結されている。第1位相素子は少なくとも第1コイル及び第2コイルを有する第1コイルグループと、少なくとも第3コイル及び第4コイルを有する第2コイルグループを含むことができる。ロータは第1コイルグループと第2コイルグループの間に位置づけることができる。
【0006】
特定の実施形態において、システムは運動エネルギーと電気を変換する変換装置を含む。変換装置は電気を受ける又は出力する電源コネクタを含むことができる。変換装置はまた、少なくとも一つの磁石を有するロータと、少なくとも一つの位相素子を形成するように配置された多重コイルを有するステータを含むこともできる。第1位相素子は少なくとも第1コイル及び第2コイルを有する第1コイルグループと、少なくとも第3コイル及び第4コイルを有する第2コイルグループを含むことができる。ロータは、第1コイルグループと第2コイルグループの間に位置づけることができる。変換装置はまた、多重コイルの電気構成を切り替えることによって多重モード間の第1位相素子の再構成を可能にする一又は複数のスイッチも含むことができる。多重モードの少なくとも一つのモードにおいて、多重コイルは第1コイルが第1コイル経路にあり、第2コイルが第2コイル経路に配置されており、第2コイル経路は第1コイル経路と並列に電源コネクタに連結されている。多重コイルは、ロータとステータの相対運動によって第1コイル経路全体に生じた第1電圧が、相対運動によって第2コイル経路全体に生じた第2電圧とほぼ等しくなるように配置することができる。本システムはまた、ロータに連結され、ロータとステータの相対運動を駆動させる運動エネルギーを供給する機械的装置も含むことができる。
【0007】
開示の実施形態により、例えば発電機又はモータ等の変換装置のステータのコイルの再構成が可能になり得る。コイルは、変換装置が発電機として作動する時に、変換装置の出力がコイルが再構成されなかった場合にサポートされる速度よりも広い範囲の作動速度において電力エレクトロニクスユニットの閾値を満たすように再構成することができる。この再構成は、ステータの位相素子間の逆電流が減少し、変換装置が、コイルの再構成前にできるだけ長く高効率構成で作動することができ、低効率構成で作動を継続することができるような方法で実施することができる。
【0008】
記載した特徴、機能及び利点は、様々な実施形態において個別に達成することができる、または下記の説明及び図面を参照することによってさらに詳細が開示される更に別の実施形態と組み合わせることができる。
【図面の簡単な説明】
【0009】
【図1】図1はロータ及びステータを含む変換装置の一部の特定の実施形態の上面図である。
【図2】図2はロータ及びステータを含む変換装置の一部の第2の特定の実施形態の図である。
【図3】図3は様々な電気構成における位相素子の特定の実施形態の図案化した簡略図である。
【図4】図4はバイファイラ巻コイルの特定の実施形態の図である。
【図5】図5はステータの位相素子の特定の実施形態の図である。
【図6】図6は変換装置及び機械的装置を含むシステムの特定の実施形態の図である。
【図7】図7は変換システムの特定の実施形態の回路配線図である。
【図8】図8は変換システムの電源処理システムの特定の実施形態の回路配線図である。
【図9】図9は変換装置のステータの電気構成を切り替える方法の特定の実施形態のフロー図である。
【発明を実施するための形態】
【0010】
エネルギー変換装置は運動エネルギーと電気エネルギー間の変換を行うことができる。例えば、モータは電気を運動エネルギー(運動)に変換することができる。逆に、発電機は運動を電気エネルギーに変換することができる。便宜上、そして非限定的に、この開示内容に記載した運動の例には回転運動が含まれる。しかしながら、特定の実施形態において、運動は線形又は別の方向におけるものであってよい。
【0011】
図示した実施形態において、発電機のロータは、ロータが回転軸周囲を回るときに、一又は複数のステータコイル全体に拡がる磁場を発生させる。この回転により、ステータコイルに伝わった磁場が変わり、ステータコイルに電圧が生じ、これによりステータコイルから外部の回路に電流を送ることが可能になる。ステータコイルにおいて生じた電圧の大きさは中でも、ロータ及びステータコイルの相対運動の速度(例えばロータの回転速度)に関連する。
【0012】
特定の実施形態において、一定時間内にロータの回転速度を変化させる機械的装置に発電機を連結させることができる。例えば、発電機が航空機のエンジン等の可変速度エンジンに連結された時、エンジンの回転速度(及び対応するロータの回転速度)は航空機の運航中において変化しうる。説明するために、航空機のエンジンは、巡航中よりも離陸中のほうが回転速度が異なる可能性がある。別の実施例において、フライホイール式エネルギー貯蔵システムのフライホイールの回転速度は、運動エネルギーがフライホイール式エネルギー貯蔵システムに加わった又はフライホイール式エネルギー貯蔵システムから除去された時に、一定時間内に変化する可能性がある。したがって、発電機がフライホイール式エネルギー貯蔵システムに連結された時に、発電機のロータの回転速度が一定時間内に変化しうる。
【0013】
特定の航空機の電気システムにおいて、発電機は航空機のジェットエンジンによって駆動される。ジェットエンジンの出力(及び回転速度)は離陸から巡航運転に移るときに大幅に変化しうる。発電機の回転速度を電力エレクトロニクスユニットの許容範囲内に維持するために、発電機をギアボックスに接続することができる。ギアボックスは、発電機の回転速度をジェットエンジンの回転速度の範囲において比較的一定に保つことができる。ギアボックスにより航空機の重量、費用、及び複雑性が大幅に増加する可能性がある。
【0014】
発電機の出力エネルギーを電力エレクトロニクスユニットに供給することができる。電力エレクトロニクスユニットは、発電機によって生じた電圧が特定範囲内にある時に、負荷にエネルギーを供給することができる。ロータ上に固定の起磁力と、ステータの静的コイル構成を有するステータコイルを有する発電機(例えば、永久磁石ブラシレス構成)において、発電機によって生じる電圧の大きさはロータの回転速度に比例する。電力エレクトロニクスユニットは、電力エレクトロニクスユニットが許容できる最大電圧が発電機の最大回転速度と対応するように構成することができる。発電機の回転速度が、電力エレクトロニクスユニットが負荷に電力を送るのに使用できる最小電圧に対応する閾値よりも下回った場合、電力エレクトロニクスユニットはもはや負荷に電力を送ることができない。特定の回転速度において、またステータコイル全体の特定の磁束に対して、ステータコイルにおいて生じる電圧の大きさは、ステータコイルの巻き数に比例する。したがって、低速度においてステータコイルの巻き数を増加させることによって、低速において発電機が生じる電圧の大きさを電力エレクトロニクスユニットの閾値よりも上に維持することができる。
【0015】
通常、フライホイールの回転速度が落ちた時に電圧が低下した結果、電力エレクトロニクスユニットを介して負荷にエネルギーを送ることができるフライホイールの最小回転速度というものがある。この最小回転速度により、フライホイールから抽出できるエネルギーの量が、フライホイールの特定割合の最大回転運動エネルギーに制限される。例えば、フライホイール式エネルギー貯蔵システムにおいて、利用可能なエネルギー(すなわち、電圧が電力エレクトロニクスユニットの閾値を上回っている間に抽出できるエネルギー)は、全速度(すなわち、フライホイールの最大定格速度)からおおよそ半分の速度(すなわち、フライホイールの最大定格速度の半分)までのフライホイールの速度範囲において抽出することができる。運動エネルギーは速度の平方に比例するため、この速度範囲は、フライホイールによって貯蔵された合計運動エネルギーの約75%のみが利用可能なエネルギーとして抽出することができることを示している。
【0016】
低速度におけるステータコイルの巻き数を増加することによって、発電機によって生成される電圧の大きさを、より広い速度範囲にわたって電力エレクトロニクスユニットの閾値よりも上に維持することができる。例えば、フライホイール貯蔵システムに単一の再構成を加えることで、利用可能なエネルギーを抽出できる最小速度をフライホイールの最大速度の半分から最大速度の約4分の1まで下げることが可能になり得る。したがって、フライホイール貯蔵システムの単一の再構成を追加することによって、フライホイールから抽出できる利用可能なエネルギーをフライホイールによって貯蔵される合計運動エネルギーの約94%まで拡大することができる。
【0017】
一定の出力に対し、ロータの速度が低下するにつれステータの巻き線の抵抗加熱損失が増加する。効率の観点から見て、またステータを冷却する能力を考慮すると、電力エレクトロニクスユニットの電圧閾値のみを使用して得られる値よりも大きい値のエネルギーが抽出される閾値を確立することが望ましいといえる。例えば、ステータコイルの再構成によりフライホイールからのエネルギーの抽出はフライホイールの最大回転速度の約25%まで可能となり得るが、閾値は例えば最大回転速度の約30%、最大回転速度の約35%、最大回転速度の約40%、又は25〜50%の間の別の値等のより高い値に設定することができる。できるだけ長く最低抵抗形態において作動することが望ましい。例えば、ステータの低い抵抗形態から高い抵抗形態への再構成は、できるだけ低い速度(すなわち、電力エレクトロニクスユニットの電圧閾値がまだ満たされうる最低速度)において実施することが可能である。説明すると、(例えば、フライホイールの最大速度の約半分の速度において)コイルによって生成された電圧が電力エレクトロニクスユニットの電圧閾値と一致するちょうどその時、又はその直前に再構成を実施することが可能である。
【0018】
図1及び2は、ロータ102とステータ103を含む変換装置100の特定実施形態の図である。図1は、変換装置100の一部の概略上面図を示し、図2は(変換装置100の説明をしやすくするためにステータ103の一部を省いた)変換装置100の別の部分の概略側面斜視図を示す。
【0019】
特定の実施形態において、変換装置100は三相発電機又は三相モータである。ステータ103は例えば、第1位相素子108、第2位相素子109、及び第3位相素子110等の位相素子に配置された複数のコイル又は巻き線を含むことができる。その他の実施形態では、変換装置100は異なる数の位相を有することができ、対応する異なる数の位相素子を有することができる。また、特定の実施形態において、ステータ103の各位相素子108〜110は、追加のコイルのセットを含むことができる。例えば、特定の形態において、ロータ102は一よりも多い磁石104(又は2よりも多い磁極)を含み、各位相素子108〜110は、ステータ103周囲に互いに角度をなしてオフセットしている2セットよりも多いコイルを含む。説明すると、ロータ102は4つの磁極を含むことができ、第1位相素子108はステータ103周囲で約90度の角度でたがいにオフセットしている4セットのコイルを含むことができる。
【0020】
したがって、変換装置100はステータ103の各位相素子108〜110に対して、様々な数の位相、様々な数のロータ102の極、及び様々な数のコイルのセットを有することができる。また、変換装置100は発電機、モータ又はその両方として作動することができる。例えば、変換装置100がモータとして作動する時は、ステータ103に電力を印加してロータ102を回転させることができる。変換装置100を発電機として作動する時は、ロータ102を(例えば図1及び2に図示してない機械的装置によって)回転させて、ステータ103のコイル端部全体に電圧を生成することができる。さらに、説明しやすくするために、変換装置100は回転装置(すなわち、電気を回転運動に変換する、又は回転運動を電気に変換する装置)として図示し、また説明しているが、特定の実施形態では、変換装置100は例えば線形モータ等の線形装置であってよい。さらに、ステータ103のコイルはそれぞれ12巻数を有するものとして図1及び2に示されているが、各コイルは変換装置100の特定の形態によって12巻数よりも多い又は少ない巻数を有することができる。
【0021】
図1を参照すると、ロータ102はロータ102の回転軸106となるシャフトを含むことができる。磁石104は図1に示すように単一の北(N)及び単一の南(S)磁極を有するように磁石104の対称軸に対して直角に磁化された永久磁石であってよい。発電機として作動中は、ロータ102は回転軸106の周りを回転し、磁石104からの磁束はステータ103のコイル全体に広がる。ロータ102が回転している間、磁束の変化によってファラデーの法則にしたがってステータ103のコイル端部全体に電圧が生じ、ステータ103のコイルから外部の回路(図示せず)へ電流を供給することができる。特定の実施形態において、変換装置100は強磁性支持鉄(図示せず)、強磁性歯(図示せず)、又は両方を含むことができる。
【0022】
特定の実施形態において、ステータ103の各位相素子108〜110は多重セットのコイルを含む。例えば、第1位相素子108は、少なくとも第1コイル112及び第2コイル113を含む第1コイルグループ130を含むことができる。第1位相素子108はまた、少なくとも第3コイル114及び第4コイル115を含む第2コイルグループ131を含むことができる。同様に、第2位相素子109は第3コイルグループ140及び第4コイルグループ141を含むことができ、第3位相素子110は第5コイルグループ150及び第6コイルグループ151を含むことができる。ロータ102は特定の位相素子のコイルグループの間に位置づけることができる。例えば、ロータ102は第1位相素子108の第1コイルグループ130及び第2コイルグループ131の間に位置づけることができる。
【0023】
各コイルグループ130、131、140、141、150、151は多重コイルを含むことができる。例えば、第1コイルグループ130は第1コイル112と第2コイル113を含むことができ、第2コイルグループ131は第3コイル114及び第4コイル115を含むことができる。一以上のスイッチにより、各位相素子108〜110のコイルの再構成を可能にすることができる。例えば、図2を参照すると、スイッチ240及び241により、コイル112〜115の電気構成を切り替えることで多重モード間の第1位相素子108の再構成を可能にすることができる。説明すると、第1モードにおいて、コイル112〜115は第1コイル112が第1コイル経路にあり、第2コイル113が第2コイル経路にあるように配置することができ、第2コイル経路は第1コイル経路と並列に電力コネクタ270、272に連結されている。例えば、第1コイル112は端部220、221を含むことができ、第2コイル113は端部222及び223を含むことができ、第3コイルは端部224及び225を含むことができ、第4コイル115は端部226及び227を含むことができる。第1電力コネクタ270を第1コイル112の端部220に、第3コイル114の端部224に、及び第1スイッチ240に連結させることができる。第2電力コネクタ272は第2コイル113の端部223、第4コイル115の端部227に、及び第2スイッチ241に連結させることができる。第1スイッチ240と第2スイッチ241の位置を変えることによって、相互に対する、及び電力コネクタ270、272に対するコイル112〜115の様々な電気構成を実現することができる。
【0024】
例えば、図3は例えば様々な電気形態の図1の位相素子108〜110のうちの一つ等の、位相素子の図案化された簡略図を示す。第1電気構成302において、位相素子の各コイルは位相素子の各他のコイルに対して並列に電力コネクタに連結されている。第2電気構成304において、位相素子のコイルは電力コネクタに直列に連結されている。第3電気構成306において、第1及び第4コイルはともに直列に連結されて、コイルのセットを形成している。第2コイル、第3コイル、及び(第1コイル及び第4コイルを含む)コイルのセットは相互に並列に電力コネクタに連結されている。
【0025】
第4電気構成308において、第2及び第3コイルはともに直列に連結されてコイルのセットを形成する。第1コイル、第4コイル、及びコイルのセット(第2コイル及び第3コイルを含む)は相互に並列に電力コネクタに連結されている。第5電気構成310において、第1及び第2コイルはともに直列に連結されて第1セットのコイルを形成し、第3コイル及び第4コイルはともに直列に連結されて第2セットのコイルを形成する。第1セットのコイル及び第2セットのコイルは相互に並列に電力コネクタに連結されている。
【0026】
第6電気構成312において、第1及び第4コイルはともに直列に連結されて第1セットのコイルを形成し、第2及び第3コイルはともに直列に連結されて第2セットのコイルを形成する。第1セットのコイルと第2セットのコイルは相互に並列に電力コネクタに連結されている。第7電気構成314において、第1及び第3コイルは共に直列に連結されて第1セットのコイルを形成し、第2及び第4コイルはともに直列に連結されて第2セットのコイルを形成する。第1セットのコイルと第2セットのコイルは相互に並列に電力コネクタに連結されている。
【0027】
特定の電気構成において、一以上のコイルは電力コネクタに連結されていなくてよい。例えば、第8電気構成316において、第2及び第3コイルは相互に並列に電力コネクタに連結されており、第1及び第4コイルは電力コネクタに連結されていない。別の実施例において、第9電気構成318では、第2及び第3コイルは直列に電力コネクタに連結されており、第1及び第4コイルは電力コネクタに連結されていない。別の実施例において、第10電気構成320では、第1及び第4コイルは相互に並列に電力コネクタに連結されており、第2及び第3コイルは電力コネクタに連結されていない。さらに別の実施例において、第11電気構成322では、第1及び第4コイルは直列に電力コネクタに連結されており、第2及び第3コイルは電力コネクタに連結されていない。
【0028】
図2に戻ると、スイッチ240、241(及び潜在的な一以上の追加のスイッチ)を使用して、図3の任意の電気構成においてコイル112〜115を構成する又は再構成することができる。説明すると、第1スイッチ240が第1コイル112の端部221を第2コイル113の端部222へ連結し、第2スイッチ241が第3コイルの端部225を第4コイル115の端部226へ連結する時に、コイル112〜115は全て直列に電力コネクタ270、272に接続されている。この配置は図3の第2電気構成304と一致する。
【0029】
別の実施例において、第1スイッチ240は第1コイル112の端部221を第1配線260へ連結し、第2コイル113の端部222を第1電力コネクタ270に連結された第2配線262へ連結し、第2スイッチ241は第3コイル114の端部225を第2電力コネクタ272に連結された第3配線264へ連結し、第4コイル115の端部226を第1配線260へ連結し、コイル112〜115は第2コイル113及び第3コイル114へ互いに並列に接続されており、第1コイル112及び第4コイル115は互いに直列に、そして第2コイル113及び第3コイル114と並列に接続されている。この配置は、図3の第3電気構成306と一致する。
【0030】
コイル112〜115による出力電圧は2つ以上のコイルが直列に連結された時はおおむね付加的である。例えば、図3を参照すると、第8電気構成316において、第2コイル及び第3コイルは並列に連結されており、第9電気構成318において、第2コイル及び第3コイルは直列に連結されている。したがって、第9電気構成318の出力電圧はおおよそ第8電気構成316の出力電圧の2倍である可能性がある。また、コイルの抵抗は、直列に連結されたコイルについてはおおむね付加的であり、コイルが並列に連結されている時はより低くなっている。したがって、抵抗を減らすために、並列の電気構成をより速い回転速度において使用して抵抗加熱を減らすことができ、直列の電気構成をより遅い回転速度において使用して出力電圧を上げることができる。
【0031】
コイル112〜115を通る磁束は磁石104からの距離が広まるほど小さくなる。したがって、第1コイル112を通る磁束は第2コイル113を通る磁束よりも小さい可能性があり、これは第1コイル112が第2コイル113よりも磁石104から離れているためである。同様に、第4コイル115を通る磁束は第3コイル114を通る磁束よりも小さい可能性があり、これは第4コイル115が第3コイル114よりも磁石104から離れているためである。第1隙間116及び第2隙間117等の隙間は、隣接するコイル間で画定することができる。例えば、第1コイル112を第2コイル113から半径方向に間隔を置いて配置して第1隙間116を画定することができ、第3コイル114を第4コイル115から半径方向に間隔を置いて配置して第2隙間117を画定することができる。隙間116〜117は(変換装置100の使用中、又は変換装置100を使用していない時に行われる調整プロセスの一部として)各コイル112〜115にかかる磁束を整調するために調節可能であってよい。具体的には、隙間116〜117を調節して、特定の電気構成におけるコイル112〜115全体の又は特定セットのコイル112〜115全体の電圧のバランスをとるように調節することができる。コイル112〜115又はコイル112〜115のセット全体の電圧のバランス調整により、コイル112〜115の意図しない電流の流れ(例えば逆電流)を減らすことができる。説明すると、図3の第3電気構成306において、第2コイル全体の電圧、第3コイル全体の電圧、及び第1コイルと第4コイルを含む直列コイル経路全体の電圧がバランス調整されるように、隙間116〜117を調節することができる。すなわち、ロータ及びステータの相対運動に起因して(第1コイル及び第4コイルを含む)第1コイル経路全体に発生する第1電圧が、相対運動に起因して(第2コイルを含む)第2コイル経路全体に発生する第2電圧とほぼ等しく、相対運動に起因して(第3コイルを含む)第3コイル経路全体に発生する第3電圧とほぼ等しい。
【0032】
図3の第8、第9、第10、及び第11電気構成316〜322で示すように、ステータの特定の電気構成はコイルのうちのいくつかのみを用いることができる。例えば、第1電気構成302から第8電気構成316へ切り替えることによって、使用されるコイルの合計巻き数が減る。このような切替えは「巻き数制限」と呼ぶことができる。反対に、第8電気構成316から第1電気構成302への切替えにより、コイルに追加の巻き数が効果的に加えられる。巻き数が多いほど巻き数が少ない時よりもより高い出力電圧を発生させることができるが、巻き数が多いと抵抗もより高くなり得る。したがって、巻き数制限を使用する時は、巻き数がより多い電気構成を低い回転速度において使用することができ、巻き数がより少ない電気構成を高い回転速度において使用することができる。
【0033】
図3に示すように、直列及び並列構成の間で切り替えを行うことによってステータを再構成することができる。第2電気構成304、第9電気構成318、及び第11電気構成322は直列構成の例である。第1電気構成302、第8電気構成316及び第10電気構成320は並列構成の例である。ステータはまた、いくつかのコイルが直列に接続され、その他が並列に接続されているハイブリッド構成へ又はから再構成することもできる。第3、第4、第5、第6及び第7電気構成306〜314はハイブリッド構成の例である。加えて、ステータを再構成して例えば巻き数制限又は巻き数追加等、巻き数を追加する又は減らすことができる。さらに、巻き数制限及び直列−並列再構成は個別に又は同時に行うことができる。説明すると、第2電気構成304から第8電気構成316への切替えにより、ステータは直列構成から並列構成へ再構成されて、使用されるコイルの合計巻き数が減る。
【0034】
高い回転速度において、コイル抵抗を縮小することができ、これにより効率性を向上させることができる。通常、巻き数制限よりも直列、並列及びハイブリッド構成の間で切替えを行うことによって抵抗がより小さくなり、効率性が上がる。巻き数制限を促進する実施形態として、選択できる再構成の数は各コイルをさらに分割しスイッチを追加することによって増やすことができる。例えば、図2を参照すると、第1コイル112及び第4コイル115はそれぞれ巻き数5を含み、第2コイル113及び第3コイル114はそれぞれ巻き数7を含む。したがって、コイル112〜115をすべて使用する時は、第1位相素子108は(7+5)の巻き数12を各側に含む。例えば、第1コイル112及び第4コイル115が使われないようにスイッチ240、241を切り替えることによって、巻き数が制限されるときは、第1位相素子108は各側に巻き数7を有する。追加のスイッチを加えることによって、使用される巻き数の選択肢を追加することができる。説明すると、各巻きと関連するスイッチを加えることによって、一側面あたり一巻きから最大一側面当たり12巻きまでの巻き数を選択することができ、これはどの巻き数が使用されるかによって変わる。スイッチの追加により、選択できるハイブリッド構成の数もまた増加しうる。
【0035】
特定の実施形態において、ステータ103は直列構成(例えば図3の第2電気構成304)とハイブリッド構成との間で切り替わるように構成することができ、ハイブリッド構成において第1コイル112と第4コイル115は互いに直列であり、第2コイル113と第3コイル114(例えば、図3の第3電気構成306)と並列である。直列構成には、(さらに多い又は少ない巻き数を使用することも可能であるが)第1位相素子の一側面当たりの巻き数12を含む単一のコイル経路しかない。したがって、図2に示す実施形態の直列構成は12−12構成と呼ぶことができる。12−12構成の単一コイル経路全体の電圧はおおよそ、個別の各コイル全体の電圧の合計(例えばコイル112〜115のうちの単一コイル全体の電圧の約4倍)である。
【0036】
ハイブリッド構成においては3つのコイル経路があり、直列の第1コイル112と第4コイル115を含む第1コイル経路、第2コイル113のみを含む第2コイル経路、及び第3コイル114のみを含む第3コイル経路である。図2に示す実施形態において、第1コイル経路の巻き数は10であり、第2コイル経路の巻き数は7であり、第3コイル経路の巻き数は7である。したがって、ハイブリッド構成は7−7−10構成と呼ぶことができる。
【0037】
特定の実施形態において、第1コイル経路全体の電圧が第2及び第3コイル経路全体の電圧とほぼ等しくなるように隙間116〜117を調節することができる。例えば、各隙間116〜117全体の間隔を、第1位相素子108の構成の切替えに応じて調節することができる。別の実施例において、(例えばシム、スペーサ、位置づけボルトを使用して)各隙間116〜117全体の間隔を固定しまた予め調節して、第2コイル112全体の電圧が第2コイル113全体の電圧のほぼ半分になるような間隔に調節することができる。変換装置100を使用中に隙間116及び117が調節可能である時は、第1コイル112及び第4コイル115を、コイル112及び115の正確な再配置を可能にする線形モータ又はその他の可動要素に連結させて隙間116及び117全体の間隔を調節することができる。ロータ102からの磁束が磁界源からの半径方向の距離とともに減少するために巻き数は異なるが、コイル経路全体の電圧を均等化することは可能である。
【0038】
特定の実施形態において、隙間116及び117全体の間隔は、ステータ103を作製する時にシム及び位置づけボルトを使用して予め調節し、固定することができる。例えば、ロータ102を試験速度において回転させて、コイル112〜115全体の電圧の測定値を得ることができる。隙間116及び117のシムの厚さは、望ましい電圧測定値の関係が成り立つまで変えることができる。ステータ103のコイル112〜115を例えばエポキシ又は別の材料を使用して適所に埋め込むことができる。あるいは、隙間116〜117の動態的調節を可能にするために、コイル112〜115をコイルフォーマーに巻きつけてコイルフォーマーを半径方向に作動する線形モータに取り付けることができる。隙間116〜117の動態調節は、ロータ102、ステータ103、又はこれら両方が使用中に例えば回転運動又は温度変化の結果サイズが変わった時に望ましい。この場合線形モータにより、磁束分布の変化に対して各コイル112〜115とロータ102の間の間隔を調節することも可能になる。ステータ103がステータ歯(図示せず)を含む時は、各コイル112〜115全体の磁束はほぼ同じであってよく、コイル112〜115の半径方向の調節は不必要であり得る。
【0039】
特定の実施形態において、コイルは各コイル全体の磁束がほぼ同じになるように配置することができる。例えば、第1コイル112及び第2コイル113をバイファイラ巻きコイル配列に絡み合わせることができる。図4はバイファイラ巻きコイル400の特定の実施形態の図である。バイファイラ巻きコイル400は一巻きのコイルを形成するように配置された第1配線402を含む。第2配線404は、第2配線404が一巻きの第2コイルを形成するように第1配線402と絡み合わされる。2本巻きコイル400を使用して、ステータのインターリーブコイルを形成することができる。
【0040】
図5は、ステータの位相素子500の特定の実施形態の図である。位相素子500はバイファイラ巻きコイルを使用して形成されている。例えば、位相素子500の第1側面502は、バイファイラ巻き配列の第2コイル513とつながった第1コイル512を含む。位相素子500の第2側面504は、バイファイラ巻き配列の第4コイル515とつながった第3コイル514を含む。図5に示す実施形態において、第1コイル512を通る磁束と第2コイル513を通る磁束はほぼ等しい。したがって、コイル512〜515のうちのどのコイルが使用されるか、またコイル512〜515が直列構成、並列構成、又はハイブリッド構成に連結されているか否かに関わらず、各コイル512〜515全体の電圧はほぼ等しく、いくつかの構成において電圧のバランスをとるための(例えば隙間116及び117等の)隙間は必要ない。
【0041】
図6は変換装置606及び機械的装置620を含むシステム600の特定の実施形態の図である。図6に示す特定の実施形態では、機械的装置620はフライホイールであり、システム600はフライホイール式エネルギー貯蔵システムであるが、その他の実施形態では、機械的装置620は例えばジェットエンジン等の別の可変速度装置であってよい。システム600は個別の電源(図示せず)から電気を受けて、別々の負荷(図示せず)、又は両方に電気を出力する電力コネクタ614を含むことができる。
【0042】
変換装置606は図1及び2の変換装置100を含む、又は図1及び2の変換装置100内に含まれることができる。変換装置606は運動エネルギーと電気の間で変換を行うように構成することができる。変換装置606は少なくとも一つの磁石を含むロータ602を含むことができる。変換装置はまたステータ604を含むこともできる。ステータ604は例えば、図1の位相素子108、109、及び110等の一又は複数の位相素子を形成するように配置された多重コイルを含むことができる。ステータ604の第1位相素子は、少なくとも第1コイル及び第2コイルを含む第1コイルグループと、少なくとも第3コイル及び第4コイルを含む第2コイルグループを含むことができる。ロータ602は第1コイルグループと第2コイルグループの間に位置づけることができる。例えば、第1位相素子は図1の位相素子108〜110、図2の第1位相素子108、又は図5の位相素子500のうちの一つを含むことができる。
【0043】
システム600はまた、多重コイルの電気構成を切り替えることによって、多重モード間での第1位相素子(又はその他の位相素子)の再構成を可能にする一又は複数のスイッチ610を含むこともできる。説明すると、スイッチ610により、図3の電気構成302〜322間でのステータ604の位相素子の再構成を可能にすることができる。例えば、多重モードのうちの少なくとも一つのモードにおいて、多重コイルは、第1コイルが第1コイル経路にあり、(図3の第3電気構成306等の)第2コイルが第1コイル経路と並列に電力コネクタ614に連結された第2コイル経路にあるように配置されている。ステータ604のコイルは、ロータ602とステータ604の相対運動が原因で第1コイル経路全体に発生する第1電圧が、相対運動が原因で第2コイル経路全体に発生する第2電圧とほぼ等しくなるように配置することができる。例えば、コイルは(図4及び5を参照して説明したように)バイファイラ巻コイルであってよい。別の実施例では、第1及び第2コイル間で隙間を画定することができ、隙間全体の間隔は(図2を参照して説明したように)コイル経路全体の電圧のバランスをとるために選択することができる。
【0044】
システム600はまた、コントローラ612を含む、又はコントローラ612に連結することも可能である。特定の実施形態では、コントローラ612は(例えばメモリ装置から等の)ソフトウェアを実行してシステム600の様々な機能を制御するプロセッサを含む。別の特定の実施形態において、コントローラ612はシステム600の様々な機能を制御するように作動可能な一又は複数のアプリケーション特有の集積回路を含む。さらに別の実施形態では、コントローラ612はソフトウェアを実行するプロセッサと、システム600の機能をともに制御するアプリケーション特有の集積回路を含む。
【0045】
コントローラ612は、変換装置606が特定の時点で作動する特定モードを選択するように構成することができる。例えば、コントローラ612はセンサ616を含むことができる、又はセンサ616に連結されることができる。センサ616はシステム600と関連するパラメータを検出することができ、コントローラ612は検出されたパラメータ値に基づいて変換装置606が作動する特定モードを選択することができる。説明すると、コントローラ612は、ロータ602とステータ604の相対運動の速度に少なくとも部分的に基づいて特定モードを選択することができる。別の実施例では、コントローラ612はステータ604の一又は複数のコイル全体で測定した電圧に基づいて特定モードを選択することができる。説明すると、コントローラ612は電力エレクトロニクスユニット(図6に示せず)に関連した閾値を満たすようにモードを選択することができる。
【0046】
機械的装置620はロータ602に連結させることができ、運動エネルギーを供給して(例えば機械的装置620とロータ602を連結する機械的リンク機構を介して)ロータ602及びステータ604の相対運動を駆動するように構成することができる。特定の実施形態において、ステータ604は(例えば機械的リンク機構を介して)機械的装置620を回すように、(例えばステータ604に印加された電流によって生成される起電力を介して)ロータ602の運動を起動させることができる。例えば、機械的装置620はフライホイールを含むことができる。フライホイールはフライホイールによって貯蔵された運動エネルギーをロータ602に送って電気を生成し、電力コネクタ614を介して受けた電気に応答してロータ602から送られた運動エネルギーを受けるように構成することができる。
【0047】
モードを切り替えるために、コントローラ612を切替パターンによって指定される順番に一又は複数のスイッチ610を発動させるように構成することができる。切替パターンの順番は、多重コイルを通って流れる電流に起因するロータ602の不平衡力を制限するように選択することができる。例えば、機械的装置620がフライホイールである場合、フライホイールは比較的高速で回ることができる。上記のような高速では、ロータ602にかかる不平衡力により、フライホイール、又は例えばキャリア・ベアリング622、高温超電導体ベアリング624、クライオジェニック冷却システム626、又はそれら任意の組合せ等のフライホイールの支持要素が損傷する可能性がある。
【0048】
このため、システム600は例えば発電機又はモータ等の変換装置606のステータ604のコイルの再構成を可能にでき得る。コイルは、変換装置606が発電機として作動するときに、変換装置606の出力がコイルが再構成されなかった場合にサポートされる速度よりも広い範囲の作動速度において電力エレクトロニクスユニットの閾値を満たすように再構成することができる。この再構成は、ステータ604の位相素子間の逆電流が減少し、変換装置606が、コイルの再構成前にできるだけ長く高効率構成で作動することができ、低効率構成で作動を継続することができるような方法で実施することができる。
【0049】
図7は変換装置700の特定の実施形態の概略回路図である。変換装置700は位相素子702〜704に配置される複数のコイル710〜715を含むことができる。変換装置700はまた、図7に図示しないロータも含むことができる。特定の実施形態では、変換装置700は図1及び2の変換装置100、又は図6の変換装置606を含む、又は変換装置700は図1及び2の変換装置100、又は図6の変換装置606内に含まれることができる。各位相素子702〜704は、(図1及び2に示すように)別々であってよい、又は(図4及び5に示すように)絡み合わせることができる複数のコイルを含むことができる。例えば、第1位相素子702は第1コイル710及び第2コイル711を含むことができ、第2位相素子703は第3コイル712及び第4コイル713を含むことができ、第3位相素子704は第5コイル714及び第6コイル715を含むことができる。
【0050】
変換装置700はコイル710〜715の再構成を可能にしうる一又は複数のスイッチ722を含むことができる、又は一又は複数のスイッチ722に連結させることができる。例えば、スイッチ722は図3の電気構成302〜322間のコイル710〜715の再構成を可能にすることができる。特定の実施形態では、スイッチ722はステータの巻線に位置する、又はステータの巻線近くに位置していてよい。スイッチ722は機械的、電気的又は電気機械的であってよい。
【0051】
特定の実施形態では、スイッチ722は各位相素子702〜704に関連する再構成ハウジング730〜732内に格納することができる。再構成ハウジング730〜732は、制御ハウジング708内に含まれていてよい。制御ハウジング708はスイッチ722の遠隔起動が可能である制御インターフェース726を含むことができる。例えば、スイッチ722は、スイッチ722が個別に、又はグループとして作動するのを可能にする例えばソレノイド等の駆動装置724に関連していてよい。スイッチ722はラッチ型スイッチであってよく、これにより電力は短期間駆動装置724に供給されるのみとなる。
【0052】
変換装置700は例えば第1位相素子702に関連する第1電力出力部740、第2位相素子703に関連する第2電力出力部742、第3位相素子704に関連する第3電力出力部744、及び少なくとも一つの中性線746等の電力出力部を含むことができる。変換装置700は例えばインダクタ736等の電力処理部品を含む、又は電力処理部品に連結されることができる。
【0053】
変換装置700のコイル710〜715は、変換装置700が発電機として作動する時に、変換装置700の出力がコイル710〜715が再構成されなかった場合にサポートされる速度よりも広い範囲の作動速度において電力エレクトロニクスユニット(図7に図示せず)の閾値を満たすように再構成することができる。この再構成は、位相素子702〜704間の逆電流が減少し、変換装置700が、コイル710〜715の再構成前にできるだけ長く高効率構成で作動することができ、低効率構成で作動を継続することができるような方法で実施することができる。
【0054】
図8は変換システムの例えば電力エレクトロニクスユニット等の電力処理システム800の特定の実施形態の概略回路図である。電力処理システム800は、制御ハウジング708を介して、図7の変換装置700等の変換装置の複数の位相素子の出力部810に連結させることができる。変換装置による出力電力は各位相素子、例えば第1電力出力部740、第2電力出力部742、第3電力出力部744、及び中性線746に関連する出力部を介して電力処理システム800によって受けることが可能である。
【0055】
特定の実施形態において、電力処理システム800は可変周波数、電力出力部740、742、744と中性線746を介して変換装置から受けた可変出力電力を、固定周波数、負荷に供給される固定出力電圧に変えるように適合させることができる。例えば、電力処理システム800はHブリッジ整流器インバータを含むことができる。この実施例において、電力処理システム800の整流器側802で、各電力出力部740、742、744は、対応する電力出力部740、742、744を直流(DC)バス808に接続する例えばスイッチ804及び805等の2つの電気スイッチに関連していてよい。これらのスイッチはIGBT型、又は別のタイプの半導体電源スイッチであってよい。
【0056】
コンデンサ806はDCバス808に関連していてよい。特定の位相において再構成が行われる時に、その特定の位相に関連する2つのスイッチは再構成中はオフにする(つまり開放する)ことができ、再構成後に通常の作動状態に戻す(つまり閉鎖する)ことができる。再構成中は、変換装置(図8に図示せず)のロータが回転し続けて、磁束がステータのコイル全体に拡がることが可能である(図8に図示せず)。したがって、コイルの電圧は変化し続ける可能性がある。特定位相に関連する両方のスイッチがオフ(すなわち開放)状態にあることで、特定の位相のコイルが効率的に開放され、切替中はその特定の位相において電流が流れず、再構成が実施される。再構成中の位相のスイッチを開放することで、再構成中の電圧ノイズの発生と特定位相のコイル内の電流の流れを低減することができる。スイッチは、(例えば図6のコントローラ612等の)コントローラのファイヤリングシーケンスプログラムに応じて制御することができる。あるいは、電力出力部740、742、744と電力処理システム800の間に切断スイッチを配置することができる。
【0057】
特定の実施形態では、異なる位相の再構成を同期させることができる。例えば、整流器側802のスイッチをほぼ同時にオフにする(つまり、解放する)ことができる。すなわち、コントローラが再構成が行われることを示す信号を発信すると、閉鎖された(すなわちオン状態にある)各スイッチは再構成が実施されている間は閉じられたままである。解放された(すなわちオフ状態にある)各スイッチは、再構成が完了するまで解放されたままである。この実施例に於いて、DCバス808のコンデンサ806のサイズは、再構成が行われている間、数回の出力サイクルに対して変換装置の出力負荷をサポートするのに十分なキャパシタンスを有するように調整可能である。
【0058】
別の実施例では、各位相は連続的に再構成することができる。説明すると、三相ステータにおいて、DCバス808をサポートするために再構成中は少なくとも2つの発電機の位相を常に作動させたままにすることができる。この実施例において、第2位相が再構成される時は、第1位相は第3位相とは電圧が異なり、コンデンサ806のサイズは、相当量の高電圧位相の逆電流が低電圧位相に流れ込むのを防ぐのに十分なキャパシタンスを有するように調整可能である。
【0059】
したがって、電力処理システム800により、変換装置から受けた電力を処理してDCバス808に電力供給し、負荷(図示せず)に電力を供給することが可能になる。電力処理システム800のスイッチにより、ステータの位相間の電圧の不平衡が原因で例えば高電圧位相から低電圧位相への好ましくない電流の流れを起こすことなく、ステータのコイルの再構成が可能になる。
【0060】
図9は変換装置のステータの電気構成の切替え方法の特定の実施形態のフロー図である。変換装置は図1及び2の変換装置100、図6の変換装置606、図7の変換装置700、又は別の変換装置を含むことができる。特定の実施形態では、変換装置はロータとステータを含む。ステータは、一又は複数の位相素子に配置された複数のコイルを含む。例えば、第1位相素子は少なくとも第1コイルと第2コイルを有する第1コイルグループと、少なくとも第3コイル及び第4コイルを有する第2コイルグループを含むことができる。ロータは第1コイルグループと第2コイルグループの間に位置づけることができる。
【0061】
本方法は902において、変換装置に関連する作動パラメータを検出することを含むことができる。例えば、検出された作動パラメータは変換装置のロータの回転速度を含むことができる。別の実施例では、検出された作動パラメータは変換装置のステータの出力電圧を含むことができる。
【0062】
本方法は904において、検出された作動パラメータが閾値を満たすか否かを判断することを含むことができる。例えば、閾値は電圧閾値、回転速度閾値、又は別の閾値を含むことができる。特定の実施形態において、閾値は変換装置が連結された電力エレクトロニクスユニットの電圧閾値に対応するように選択される。例えば、閾値をロータの検出された回転速度と比較した時に、特定のステータ構成において閾値はロータの最低回転速度に対応していてよく、これにより変換装置が電力エレクトロニクスユニットの電圧閾値を満たすことができる。別の実施例において、閾値をステータの出力電圧と比較したときに、閾値は電力エレクトロニクスユニットの電圧閾値と対応していてよい。
【0063】
本方法は906において、検出された作動パラメータが閾値を満たすことに応答して、少なくとも第1位相素子のコイルの電気構成を切り替えることを含むことができる。例えば、ステータの出力電圧が電圧閾値を満たすことに応答して、コイルの電気構成を切り替えることができる。別の実施例において、ロータの回転速度が速度閾値を満たすことに応答して、コイルの電気構成を切り替えることができる。説明すると、ロータの回転速度が速度閾値以下に低下したことに応答して、コイルの電気構成を第1構成から第2構成へ切り替えることができる。(電力がフライホイール式エネルギー貯蔵システムに印加された時に)ステータに電気が供給されてロータの運動が駆動されたことに応答して、コイルの電気構成を第1構成に切り替えることも可能である。
【0064】
本方法は908において、例えば第2位相素子のコイル等のステータの追加コイルの電気構成を切り替えることを含むことができる。追加コイルの電気構成は、第1位相素子のコイルの電気構成の切替えと同時に切り替えることができる、又は第1位相素子のコイルの電気構成を切り替えた後で追加コイルの電気構成を切り替えることができる。
【0065】
したがって、図9の方法により、例えば発電機又はモータ等の変換装置のステータのコイルの再構成が可能になる。コイルは変換装置の出力が(すなわち、変換装置が発電機として作動した時に)コイルが再構成されなかった場合にサポートされる速度よりも広い範囲の作動速度において電力エレクトロニクスユニットの閾値を満たすように再構成することができる。この再構成は、ステータの位相素子間の逆電流が減少し、変換装置が、コイルの再構成前にできるだけ長く高効率(低抵抗)構成で作動することができ、低効率構成で作動を継続することができるような方法で実施することができる。
【0066】
本明細書に説明したように、ある方法の一実施形態はステータの第1位相素子のコイルの電気構成を第1構成に切り替え、第1構成においては、第1位相素子の第1コイルは第1コイル経路にあり、第1位相素子の第2コイルは第1コイル経路と並列に電力コネクタに連結された第2コイル経路にあり、第1位相素子のコイルの電気構成を第2構成に切り替え、第2構成においては、第1コイル及び第2コイルは直列に連結されており、第1位相素子は少なくとも第1コイル及び第2コイルを有する第1コイルグループと、少なくとも第3コイル及び第4コイルを有する第2コイルグループを含み、ロータが第1コイルグループと第2コイルグループの間に位置づけられているステップを含む。
【0067】
本方法はさらに、ロータの回転速度を検出することを含むことができ、コイルの電気構成は回転速度が速度閾値を満たすことに応答して切り替えられる。上記の実施形態においては、本方法はさらに、ロータの回転速度が速度閾値以下に低下したことに応答して、コイルの電気構成を第2構成に切り替えることを含むことができる。加えて、本方法はステータに電気が供給されてロータの運動が駆動されたことに応答してコイルの電気構成を第1構成に切り替えることを含むことができる。説明した方法はさらに、ステータを検出することを含むことができ、ステータの出力電圧が電圧閾値を満たすことに応答して、コイルの電気構成が切り替えられる。ステータがさらに追加コイルを有する少なくとも一つの第2位相素子を含む実施形態では、本方法はさらに、第1位相素子のコイルの電気構成を切り替えるのと同時に追加コイルの電気構成を切り替えることを含むことができる。ステータがさらに追加コイルを有する少なくとも一つの第2位相素子を含む実施形態においては、本方法はさらに、第1位相素子のコイルの電気構成を切り替えた後で追加コイルの電気構成を切り替えることを含む。
【0068】
また本明細書で説明したように、システムの実施形態は運動エネルギーと電気間の変換を行う変換装置を含む。変換装置は電気を受ける又は出力する電力コネクタと、少なくとも一つの磁石を含むロータと、第1位相素子を形成するように配置された多重コイルを含むステータと、少なくとも第1コイル及び第2コイルを有する第1コイルグループと少なくとも第3コイル及び第4コイルを有する第2コイルグループを含む第1位相素子であって、ロータだけでなく、多重コイルの電気構成を切り替えることによって多重モード間の第1位相素子の再構成を可能にする一又は複数のスイッチが第1コイルグループと第2コイルグループの間に位置づけられ、多重モードのうちの少なくとも一つのモードにおいて、多重コイルが第1コイルが第1コイル経路に、第2コイルが第1コイル経路と並列に電力コネクタに連結された第2コイル経路にあるように配置されており、多重コイルはロータとステータの相対運動によって第1コイル経路全体に発生した第1電圧が、相対運動の結果第2コイル経路全体に発生した第2電圧とほぼ等しくなるように配置されている第1位相素子と、ロータに連結され、運動エネルギーを供給してロータとステータの相対運動を駆動する機械的装置を含む。
【0069】
システムの特定の実施形態はさらに、変換装置が相対運動の速度に少なくとも部分的に基づいて作動する特定モードを選択するコントローラを含む。上記実施形態の一部のコントローラはさらに、切替パターンによって指定される順番で一又は複数のスイッチを起動させるように構成されており、この順番は多重コイルを通る電流の流れが原因のロータの不平衡力が制限されるように選択される。
【0070】
あるシステムの実施形態においては、機械的装置は、電力コネクタを介して送られた電気に応答して、貯蔵された運動エネルギーをロータに送って電気を発生させ、ロータから運動エネルギーを受けるフライホイールである。その他のシステムの実施形態においては、機械的装置は可変速度エンジンである。
【0071】
本明細書に記載した実施形態の説明は、様々な実施形態の構造を一般的な意味解釈ができるように意図されたものである。この説明は、本明細書に記載した構造又は方法を用いる装置及びシステムのすべての要素及び特徴の完全な説明となるものではない。本開示内容を再検討した時に当業者にはその他多くの実施形態が明らかとなり得る。本開示内容の範囲を逸脱せずに、構造的及び論理的な置き換え、及び変更を行うことができるようなその他の実施形態を本開示内容から用いる及び得ることができる。例えば、方法のステップは図面で示した順番とは異なる順番で実施することができる、又は一又は複数の方法のステップを省略することができる。したがって、本開示内容及び図面は説明のために記載されたものであり、限定的なものではない。
【0072】
さらに、特定の実施形態を本明細書に図示し説明してきたが、当然ながら同じ又は類似の結果を得るために設計されたすべての後続の配置構成を図示した特定の実施形態と置き換えることができる。この開示内容は様々な実施形態の任意の、またすべての後続の適応形態又は変形例を網羅するものである。本明細書に具体的に記載されていない上記実施形態の組み合わせ、及びその他の実施形態は、この記載内容を再検討する時に当業者に明らかとなるであろう。
【0073】
開示内容の要約は請求項の範囲又は意味を解釈する又は限定するために使用されないことを前提として提出したものである。さらに、前述の詳細説明において、開示内容を簡素化する目的で様々な特徴を一緒にグループ化する又は単一の実施形態において説明している場合がある。この開示内容は、実施形態が各請求項に明確に列挙されたもの以上の特徴を要求する意思を表すものとして解釈されるべきではない。むしろ、後述の各請求項に示すように、請求される主題は開示された任意の実施形態の特徴すべてを満たさないものを示すことができる。
【符号の説明】
【0074】
100 変換装置
102 ロータ
103 ステータ
104 磁石
106 回転軸
108 第1位相素子
109 第2位相素子
110 第3位相素子
112 第1コイル
113 第2コイル
114 第3コイル
115 第4コイル
116 第1隙間
117 第2隙間
130 第1コイルグループ
131 第2コイルグループ
140 第3コイルグループ
141 第4コイルグループ
150 第5コイルグループ
151 第6コイルグループ
220 コイル端部
221 コイル端部
222 コイル端部
223 コイル端部
224 コイル端部
225 コイル端部
226 コイル端部
227 コイル端部
240 第1スイッチ
241 第2スイッチ
260 第1配線
262 第2配線
264 第3配線
270 電力コネクタ
272 電力コネクタ
302 第1電気構成
304 第2電気構成
306 第3電気構成
308 第4電気構成
310 第5電気構成
312 第6電気構成
314 第7電気構成
316 第8電気構成
318 第9電気構成
320 第10電気構成
322 第11電気構成
400 バイファイラ巻きコイル
402 第1配線
404 第2配線
500 ステータの位相素子
502 位相素子の第1側面
504 位相素子の第2側面
512 第1コイル
513 第2コイル
514 第3コイル
515 第4コイル
600 システム
602 ロータ
604 ステータ
606 変換装置
610 スイッチ
612 コントローラ
614 電力コネクタ
616 センサ
620 機械的装置
622 キャリア・ベアリング
624 高温超電導体ベアリング
626 クライオジェニック冷却システム
700 変換装置
702 第1位相素子
703 第2位相素子
704 第3位相素子
708 制御ハウジング
710 第1コイル
711 第2コイル
712 第3コイル
713 第4コイル
714 第5コイル
715 第6コイル
722 スイッチ
724 駆動装置
726 制御インターフェース
730 再構成ハウジング
731 再構成ハウジング
732 再構成ハウジング
736 インダクタ
740 第1電力出力部
742 第2電力出力部
744 第3電力出力部
746 中性線
800 電力処理システム
802 整流器側
804 スイッチ
805 スイッチ
806 コンデンサ
808 DCバス
810 位相素子の出力部

【特許請求の範囲】
【請求項1】
電力コネクタ(270、272)と、
ロータ(102)と、
第1位相素子(108)を形成するように配置された多重コイルを含むステータ(103)であって、第1位相素子が、少なくとも第1コイル(112)と第2コイル(113)を含む第1コイルグループ(130)と、少なくとも第3コイル(114)と第4コイル(115)を含む第2コイルグループ(131)を含み、ロータが第1コイルグループと第2コイルグループの間に位置づけられているステータ(103)と、
多重コイルの電気構成を切り替えることによって多重モード間で第1位相素子の再構成を可能にする一又は複数のスイッチ(240、241)であって、多重モードの第1モードにおいて、多重コイルが、第1コイル経路に第1コイルがあり、第2コイル経路に第2コイルがあるように配置されており、第2コイル経路が第1コイル経路と並列に電力コネクタに連結されている、一又は複数のスイッチ(240、241)と
を含み、
多重コイルは、ロータとステータの相対運動によって第1コイル経路全体に生じた第1電圧が、同相対運動によって第2コイル経路全体に生じた第2電圧とほぼ等しくなるように配置されている
装置(100)。
【請求項2】
第1コイル(112)が第2コイル(113)から半径方向に間隔を置いて配置されて第1電圧と第2電圧とのバランス調整が行われ、この間隔は第1電圧と第2電圧のバランスをとるように調節可能である、請求項1に記載の装置(100)。
【請求項3】
多重モードの第2モードにおいて、第1コイルグループ(130)の少なくとも一つのコイルと、第2コイルグループ(131)の少なくとも一つのコイルとが、電力コネクタ(270、272)に連結されていない、請求項1に記載の装置(100)。
【請求項4】
多重モードの第1モードにおいて、第1コイル(112)と第4コイル(115)は互いに連結されて直列コイルのセットを形成し、直列コイルのセットは第2コイル(113)と第3コイル(114)と並列に電力コネクタ(270、272)に連結されている、請求項1に記載の装置(100)。
【請求項5】
多重モードの第3モードにおいて、第1コイル(112)と第2コイル(113)は互いに連結されて第1直列コイルのセットを形成し、第3コイル(114)と第4コイル(115)は互いに連結されて第2直列コイルのセットを形成し、第1直列コイルのセットと第2直列コイルのセットは電力コネクタ(270、272)に並列に連結されている、請求項1に記載の装置(100)。
【請求項6】
多重モードの第4モードにおいて、第1コイル(112)、第2コイル(113)、第3コイル(114)、及び第4コイル(115)は互いに連結されて電力コネクタ(270、272)に連結された直列コイルのセットを形成する、請求項1に記載の装置(100)。
【請求項7】
第1コイル(112)が第2コイル(113)と絡み合わされている、請求項1に記載の装置(100)。
【請求項8】
少なくとも、第1位相素子(108)から角度をなしてオフセットしている第2位相素子であって、一又は複数のスイッチ(240、241)を使用して多重モード間で再構成可能である第2位相素子(109)をさらに含む、請求項1に記載の装置(100)。
【請求項9】
ステータ(103)の第1位相素子(108)のコイルの電気構成を第1構成(302)に切り替えるステップ(906)であって、第1構成において、第1位相素子の第1コイル(112)が第1コイル経路にあり、第1位相素子の第2コイル(113)が、第1コイル経路に並列に電力コネクタ(270、272)に連結されている第2コイル経路にあるステップと、
第1位相素子のコイルの電気構成を第2構成(304)へ切り替えるステップ(908)であって、第2構成において、第1コイル及び第2コイルは直列に連結されているステップ
を含む方法であって、
第1位相素子は、少なくとも第1コイル及び第2コイルを有する第1コイルグループ(130)と、少なくとも第3コイル(114)及び第4コイル(115)を有する第2コイルグループ(131)を含み、ロータ(102)は第1コイルグループと第2コイルグループの間に位置づけられている方法。
【請求項10】
運動エネルギーと電気の間で変換を行う変換装置(606)であって、
電気を受ける又は出力する電力コネクタ(614)と、
少なくとも一つの磁石を含むロータ(602)と、
第1位相素子(108)を形成するように配置された多重コイルを含むステータ(604)であって、第1位相素子が少なくとも第1コイル(112)と第2コイル(113)を有する第1コイルグループ(130)と、少なくとも第3コイル(114)と第4コイル(115)を有する第2コイルグループ(131)を含み、ロータが第1コイルグループと第2コイルグループの間に位置づけられているステータ(604)と、
多重コイルの電気構成を切り替えることによって多重モード間で第1位相素子の再構成を可能にする一又は複数のスイッチ(240、241)であって、多重モードのうちの少なくとも一つのモードにおいて、多重コイルが、第1コイル経路に第1コイルがあり、第1コイル経路と並列に電力コネクタに連結された第2コイル経路に第2コイルがあるように配置されている、一又は複数のスイッチ(240、241)と
を含み、
多重コイルが、ロータとステータの相対運動によって第1コイル経路全体に生じた第1電圧が、同相対運動によって第2コイル経路全体に生じた第2電圧とほぼ等しくなるように配置されている変換装置(606)、並びに
ロータに連結され、ロータとステータの相対運動を駆動する運動エネルギーを供給する機械的装置(620)
を含むシステム(600)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−239377(P2012−239377A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−108079(P2012−108079)
【出願日】平成24年5月10日(2012.5.10)
【出願人】(500520743)ザ・ボーイング・カンパニー (773)
【氏名又は名称原語表記】The Boeing Company
【Fターム(参考)】