説明

冷却装置、冷却装置の制御方法および制御装置

【課題】冷房能力を確保しつつ発熱源を確実に冷却でき、圧縮機の消費動力を低減できる冷却装置を提供する。
【解決手段】HV機器31を冷却する冷却装置1は、冷媒を循環させる圧縮機12と、冷媒と外気との間で熱交換する熱交換器14と、冷媒を減圧する膨張弁16と、冷媒と空調用空気との間で熱交換する熱交換器18と、熱交換器14と膨張弁16との間に設けられ、冷媒を用いてHV機器31を冷却する冷却部30と、圧縮機12と熱交換器14との間の冷媒通路21と冷却部30と膨張弁16との間の冷媒通路36とを連通する連通路51と、冷却装置1を制御する制御部80とを備える。制御部80は、外部からの操作を受け付ける操作入力部と、操作入力部からの指示に従って圧縮機12の起動および停止を制御する圧縮機制御部と、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷却装置に関し、特に、蒸気圧縮式冷凍サイクルを利用して発熱源を冷却する冷却装置に関する
【背景技術】
【0002】
近年、環境問題対策の一つとして、モータの駆動力により走行するハイブリッド車、燃料電池車、電気自動車などが注目されている。このような車両において、モータ、ジェネレータ、インバータ、コンバータおよびバッテリなどの電気機器は、電力の授受によって発熱する。そのため、これらの電気機器を冷却する必要がある。そこで、車両用空調装置として使用される蒸気圧縮式冷凍サイクルを利用して、発熱体を冷却する技術が提案されている。
【0003】
たとえば特開2006−290254号公報(特許文献1)には、ガス冷媒を吸入圧縮可能なコンプレッサと、高圧のガス冷媒を凝縮させるための周囲空気で冷却可能なるメインコンデンサと、低温の液冷媒を蒸発させて被冷媒物を冷却可能なるエバポレータと、減圧手段とを含み、モータから吸熱可能な熱交換器及び第2減圧手段を減圧手段とエバポレータとに並列に接続してなる、ハイブリッド車両の冷却システムが開示されている。特開2007−69733号公報(特許文献2)には、膨張弁から圧縮機へ至る冷媒通路に、空調用の空気と熱交換する熱交換器と、発熱体と熱交換する熱交換器と、を並列に配置し、空調装置用の冷媒を利用して発熱体を冷却するシステムが開示されている。
【0004】
特開2005−90862号公報(特許文献3)には、空調用の冷凍サイクルの減圧器、蒸発器および圧縮機をバイパスするバイパス通路に、発熱体を冷却するための発熱体冷却手段を設けた、冷却システムが開示されている。特開2001−309506号公報(特許文献4)には、車両走行モータを駆動制御するインバータ回路部の冷却部材に車両空調用冷凍サイクル装置の冷媒を還流させ、空調空気流の冷却が不要な場合に車両空調用冷凍サイクル装置のエバポレータによる空調空気流の冷却を抑止する、冷却システムが開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−290254号公報
【特許文献2】特開2007−69733号公報
【特許文献3】特開2005−90862号公報
【特許文献4】特開2001−309506号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に開示されている冷却装置では、モータ、DC/DCコンバータおよびインバータに代表される電気機器などの発熱源を冷却するために、常時コンプレッサを運転する必要がある。そのため、コンプレッサの消費動力が増大し、車両の燃費が悪化する問題があった。また、発熱源と熱交換する熱交換器がエバポレータと並列に接続されるので、発熱源を冷却するための冷媒は冷房に使用されず、冷房能力が犠牲になる問題があった。
【0007】
本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、冷房能力を確保しつつ発熱源を確実に冷却でき、圧縮機の消費動力の低減を可能とする、冷却装置を提供することである。また、本発明の他の目的は、その冷却装置の制御方法および制御装置を提供することである。
【課題を解決するための手段】
【0008】
本発明に係る冷却装置は、発熱源を冷却する冷却装置であって、冷媒を循環させるための圧縮機と、冷媒と外気との間で熱交換する第一熱交換器と、冷媒を減圧する減圧器と、冷媒と空調用空気との間で熱交換する第二熱交換器と、第一熱交換器と減圧器との間を流通する冷媒の経路上に設けられ、冷媒を用いて発熱源を冷却する冷却部と、圧縮機と第一熱交換器との間を冷媒が流通する第一通路と、冷却部と減圧器との間を冷媒が流通する第二通路と、第一通路と第二通路とを連通する連通路と、冷却装置を制御する制御部と、を備える。制御部は、圧縮機の起動および停止を制御する圧縮機制御部と、外部からの操作を受け付ける操作入力部と、を含む。圧縮機制御部は、操作入力部からの指示に従って圧縮機を起動または停止させる。
【0009】
上記冷却装置において好ましくは、外気の温度を測定する外気温度測定部をさらに備え、圧縮機制御部は、外気温度測定部の測定値に基づいて圧縮機を起動または停止させる。
【0010】
上記冷却装置において好ましくは、空調用空気の温度を測定する空調用空気温度測定部をさらに備え、圧縮機制御部は、空調用空気温度測定部の測定値に基づいて圧縮機を起動または停止させる。
【0011】
上記冷却装置において好ましくは、第一熱交換器と冷却部との間の冷媒の経路に設けられ、液状の冷媒を貯留する蓄液器と、蓄液器の内部に貯留された冷媒の量を測定する冷媒量測定部と、をさらに備え、圧縮機制御部は、冷媒量測定部の測定値に基づいて圧縮機を起動または停止させる。
【0012】
上記冷却装置において好ましくは、冷却部に流入する冷媒の温度を測定する冷却部入口温度測定部と、冷却部から流出する冷媒の温度を測定する冷却部出口温度測定部と、をさらに備え、圧縮機制御部は、冷却部入口温度測定部および冷却部出口温度測定部の測定値に基づいて圧縮機を起動または停止させる。
【0013】
上記冷却装置において好ましくは、冷却装置は、車両に搭載されており、車両は、エンジンと、エンジンを制御するエンジン制御部と、を有し、圧縮機制御部は、エンジン制御部からの指示に従って圧縮機を起動または停止させる。
【0014】
上記冷却装置において好ましくは、開閉可能な切換弁をさらに備え、切換弁は、連通路と、第一通路および第二通路と、の連通状態を切り換え、制御部は、切換弁の開閉状態を制御する切換弁制御部をさらに含み、切換弁制御部は、圧縮機制御部が圧縮機を起動または停止させる指示に従って、切換弁を閉状態または開状態にする。
【0015】
本発明に係る冷却装置の制御方法は、発熱源を冷却する冷却装置の制御方法である。冷却装置は、冷媒を循環させるための圧縮機と、冷媒と外気との間で熱交換する第一熱交換器と、冷媒を減圧する減圧器と、冷媒と空調用空気との間で熱交換する第二熱交換器と、第一熱交換器と減圧器との間を流通する冷媒の経路上に設けられ、冷媒を用いて発熱源を冷却する冷却部と、圧縮機と第一熱交換器との間を冷媒が流通する第一通路と、冷却部と減圧器との間を冷媒が流通する第二通路と、第一通路と第二通路とを連通する連通路と、を含む。冷却装置の制御方法は、圧縮機の運転が必要であるか否かを判断するステップと、判断するステップで圧縮機の運転が必要と判断された場合に、圧縮機を運転するステップと、を備える。
【0016】
本発明に係る冷却装置の制御装置は、発熱源を冷却する冷却装置の制御装置である。冷却装置は、冷媒を循環させるための圧縮機と、冷媒と外気との間で熱交換する第一熱交換器と、冷媒を減圧する減圧器と、冷媒と空調用空気との間で熱交換する第二熱交換器と、第一熱交換器と減圧器との間を流通する冷媒の経路上に設けられ、冷媒を用いて発熱源を冷却する冷却部と、圧縮機と第一熱交換器との間を冷媒が流通する第一通路と、冷却部と減圧器との間を冷媒が流通する第二通路と、第一通路と第二通路とを連通する連通路と、を含む。制御装置は、圧縮機の起動および停止を制御する圧縮機制御部と、外部からの操作を受け付ける操作入力部と、を備え、圧縮機制御部は、操作入力部からの指示に従って圧縮機を起動または停止させる。
【発明の効果】
【0017】
本発明の冷却装置によると、冷房能力を確保しながら発熱源を確実に冷却することができ、かつ、圧縮機の消費動力を低減することができる。
【図面の簡単な説明】
【0018】
【図1】冷却装置が適用されるハイブリッド車両の構成を示す概略図である。
【図2】実施の形態1の冷却装置の構成を示す模式図である。
【図3】気液分離器の概略構成を示す模式図である。
【図4】実施の形態1の蒸気圧縮式冷凍サイクルの冷媒の状態を示すモリエル線図である。
【図5】蒸気圧縮式冷凍サイクルの運転中の、HV機器を冷却する冷媒の流れを示す模式図である。
【図6】蒸気圧縮式冷凍サイクルの停止中の、HV機器を冷却する冷媒の流れを示す模式図である。
【図7】冷却装置の運転モード毎の流量調整弁および切換弁の開度を示す図である。
【図8】制御部の構成の詳細を示すブロック図である。
【図9】冷却装置の制御方法の一例を示すフローチャートである。
【図10】実施の形態2の冷却装置の構成を示す模式図である。
【図11】実施の形態2の制御部の構成の詳細を示すブロック図である。
【図12】実施の形態2の冷却装置の制御方法を示すフローチャートである。
【発明を実施するための形態】
【0019】
以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
【0020】
(実施の形態1)
図1は、本実施の形態の冷却装置1が適用されるハイブリッド車両1000の構成を示す概略図である。図1に示すように、本実施の形態に係るハイブリッド車両1000は、エンジン100と、駆動ユニット200と、PCU(Power Control Unit)300と、バッテリ400とを含んで構成される。駆動ユニット200は、ケーブル500を介してPCU300と電気的に接続される。また、PCU300は、ケーブル600を介してバッテリ400と電気的に接続される。
【0021】
内燃機関であるエンジン100は、ガソリンエンジンであってもよいし、ディーゼルエンジンであってもよい。駆動ユニット200は、エンジン100とともにハイブリッド車両1000を駆動する駆動力を発生させる。エンジン100および駆動ユニット200は、ともにハイブリッド車両1000のエンジンルーム内に設けられている。
【0022】
図2は、実施の形態1の冷却装置1の構成を示す模式図である。図2に示すように、冷却装置1は、蒸気圧縮式冷凍サイクル10を備える。蒸気圧縮式冷凍サイクル10は、たとえば、車両の車内の冷房を行なうために、車両に搭載される。蒸気圧縮式冷凍サイクル10を用いた冷房は、たとえば、冷房を行なうためのスイッチがオンされた場合、または、自動的に車両の室内の温度を設定温度になるように調整する自動制御モードが選択されており、かつ、車室内の温度が設定温度よりも高い場合に行なわれる。
【0023】
蒸気圧縮式冷凍サイクル10は、圧縮機12と、第一熱交換器としての熱交換器14と、熱交換器15と、減圧器の一例としての膨張弁16と、第二熱交換器としての熱交換器18と、を含む。蒸気圧縮式冷凍サイクル10はまた、熱交換器14と熱交換器15との間の冷媒の経路上に配置された気液分離器40を含む。
【0024】
圧縮機12は、車両に搭載されたモータまたはエンジンを動力源として作動し、冷媒ガスを断熱的に圧縮して過熱状態冷媒ガスとする。圧縮機12は、蒸気圧縮式冷凍サイクル10の作動時に熱交換器18から流通する冷媒を吸入圧縮して、冷媒通路21に高温高圧の気相冷媒を吐出する。圧縮機12は、冷媒通路21に冷媒を吐出することで、蒸気圧縮式冷凍サイクル10に冷媒を循環させる。
【0025】
熱交換器14,15は、圧縮機12において圧縮された過熱状態冷媒ガスを、外部媒体へ等圧的に放熱させて冷媒液とする。圧縮機12から吐出された高圧の気相冷媒は、熱交換器14,15において周囲に放熱し冷却されることによって、凝縮(液化)する。熱交換器14,15は、冷媒を流通するチューブと、チューブ内を流通する冷媒と熱交換器14,15の周囲の空気との間で熱交換するためのフィンと、を含む。熱交換器14,15は、車両の走行によって発生する自然の通風またはエンジン冷却用のラジエータファンなどの冷却ファンからの強制通風によって供給された冷却風と冷媒との間で、熱交換を行なう。熱交換器14,15における熱交換によって、冷媒の温度は低下し冷媒は液化する。
【0026】
膨張弁16は、冷媒通路25を流通する高圧の液相冷媒を小さな孔から噴射させることにより膨張させて、低温・低圧の霧状冷媒に変化させる。膨張弁16は、熱交換器14,15によって凝縮された冷媒液を減圧して、気液混合状態の湿り蒸気とする。なお、冷媒液を減圧するための減圧器は、絞り膨張する膨張弁16に限られず、毛細管であってもよい。
【0027】
熱交換器18は、その内部を流通する霧状冷媒が気化することによって、熱交換器18に接触するように導入された周囲の空気の熱を吸収する。熱交換器18は、膨張弁16によって減圧された冷媒を用いて、冷媒の湿り蒸気が蒸発して冷媒ガスとなる際の気化熱を、車両の室内へ流通する空調用空気から吸収して、車両の室内の冷房を行なう。熱が熱交換器18に吸収されることによって温度が低下した空調用空気が車両の室内に再び戻されることによって、車両の室内の冷房が行なわれる。冷媒は、熱交換器18において周囲から吸熱し加熱される。
【0028】
熱交換器18は、冷媒を流通するチューブと、チューブ内を流通する冷媒と熱交換器18の周囲の空気との間で熱交換するためのフィンと、を含む。チューブ内には、湿り蒸気状態の冷媒が流通する。冷媒は、チューブ内を流通する際に、フィンを経由して車両の室内の空気の熱を蒸発潜熱として吸収することによって蒸発し、さらに顕熱によって過熱蒸気になる。気化した冷媒は、冷媒通路27を経由して圧縮機12へ流通する。圧縮機12は、熱交換器18から流通する冷媒を圧縮する。
【0029】
蒸気圧縮式冷凍サイクル10はまた、圧縮機12と熱交換器14とを連通する第一通路としての冷媒通路21と、熱交換器14と熱交換器15とを連通する冷媒通路22,23,24と、熱交換器15と膨張弁16とを連通する冷媒通路25と、膨張弁16と熱交換器18とを連通する冷媒通路26と、熱交換器18と圧縮機12とを連通する冷媒通路27と、を含む。
【0030】
冷媒通路21は、冷媒を圧縮機12から熱交換器14に流通させるための通路である。冷媒は、冷媒通路21を経由して、圧縮機12と熱交換器14との間を、圧縮機12の出口から熱交換器14の入口へ向かって流通する。冷媒通路22〜25は、冷媒を熱交換器14から膨張弁16に流通させるための通路である。冷媒は、冷媒通路22〜25を経由して、熱交換器14と膨張弁16との間を、熱交換器14の出口から膨張弁16の入口へ向かって流通する。
【0031】
冷媒通路26は、冷媒を膨張弁16から熱交換器18に流通させるための通路である。冷媒は、冷媒通路26を経由して、膨張弁16と熱交換器18との間を、膨張弁16の出口から熱交換器18の入口へ向かって流通する。冷媒通路27は、冷媒を熱交換器18から圧縮機12に流通させるための通路である。冷媒は、冷媒通路27を経由して、熱交換器18と圧縮機12との間を、熱交換器18の出口から圧縮機12の入口へ向かって流通する。
【0032】
蒸気圧縮式冷凍サイクル10は、圧縮機12、熱交換器14,15、膨張弁16および熱交換器18が、冷媒通路21〜27によって連結されて構成される。なお、蒸気圧縮式冷凍サイクル10の冷媒としては、たとえば二酸化炭素、プロパンやイソブタンなどの炭化水素、アンモニアまたは水などを用いることができる。
【0033】
気液分離器40は、熱交換器14から流出する冷媒を気相冷媒と液相冷媒とに分離する。図3は、気液分離器40の概略構成を示す模式図である。図3に示すように、気液分離器40は天井部41と底部42とを有する。気液分離器40の内部には、液相冷媒である冷媒液43と、気相冷媒である冷媒蒸気44と、が蓄蔵されている。冷媒液43は気液分離器40の底部42側に貯留されており、冷媒蒸気44は気液分離器40の天井部41側に溜められている。
【0034】
気液分離器40には、冷媒通路22,23と、冷媒通路34とが連結されている。冷媒通路22,23の端部は、気液分離器40の天井部41に連結されている。冷媒通路22,23は、気液分離器40の天井部41を経由して、気液分離器40の内部と外部とを連通する。冷媒通路34の端部は、気液分離器40の底部42に連結されている。冷媒通路34は、気液分離器40の底部42を経由して、気液分離器40の内部と外部とを連通する。
【0035】
熱交換器14の出口側において冷媒は、飽和液と飽和蒸気とが混合した気液二相状態の湿り蒸気の状態にある。熱交換器14から流出した冷媒は、冷媒通路22を通って気液分離器40へ供給される。冷媒通路22から気液分離器40へ流入する気液二相状態の冷媒は、気液分離器40の内部において気相と液相とに分離される。気液分離器40は、熱交換器14によって凝縮された冷媒を液体状の冷媒液43とガス状の冷媒蒸気44とに分離して、一時的に蓄える。
【0036】
分離された冷媒液43は、冷媒通路34を経由して、気液分離器40の外部へ流出する。気液分離器40内の液相中に配置された冷媒通路34の端部は、液相冷媒の気液分離器40からの流出口を形成する。分離された冷媒蒸気44は、冷媒通路23を経由して、気液分離器40の外部へ流出する。気液分離器40内の気相中に配置された冷媒通路23の端部は、気相冷媒の気液分離器40からの流出口を形成する。気液分離器40から導出された気相の冷媒蒸気44は、第三熱交換器としての熱交換器15において周囲に放熱し冷却されることによって、凝縮する。
【0037】
気液分離器40の内部では、冷媒液43が下側、冷媒蒸気44が上側に溜まる。気液分離器40から冷媒液43を導出する冷媒通路34の端部は、気液分離器40の底部42に連結されている。冷媒通路34を経由して、気液分離器40の底側から冷媒液43のみが気液分離器40の外部へ送り出される。気液分離器40から冷媒蒸気44を導出する冷媒通路23の端部は、気液分離器40の天井部41に連結されている。冷媒通路23を経由して、気液分離器40の天井側から冷媒蒸気44のみが気液分離器40の外部へ送り出される。これにより、気液分離器40は、気相冷媒と液相冷媒との分離を確実に行なうことができる。
【0038】
冷媒通路22,23は、天井部41に接続される構成に限られず、たとえば、気液分離器40の天井部41または側部を貫通して配置され、その端部が気液分離器40内の天井部41の近傍の冷媒蒸気44中に配置されてもよい。冷媒通路34は、底部42に接続される構成に限られず、たとえば、気液分離器40の底部42、天井部41または側部を貫通して配置され、その端部が気液分離器40内の底部42の近傍の冷媒液43中に配置されてもよい。
【0039】
気液分離器40には、冷媒量測定部70が取り付けられている。冷媒量測定部70は、液相の冷媒液43と気相の冷媒蒸気44との界面を成す液面45の高さ(すなわち、気液分離器40の底部42から液面45までの鉛直方向の距離)を測定することにより、気液分離器40の内部に貯留された冷媒の量を測定する。
【0040】
図3に示すように、本実施の形態の冷媒量測定部70は、気液分離器40の内部に配置されたフロート式のレベルスイッチである。冷媒量測定部70は、気液分離器40の底部42から天井部41へ向けて鉛直方向に沿って延在するガイド軸71と、ガイド軸71の内部に埋設された磁気駆動型スイッチであるリードスイッチ72と、を有する。冷媒量測定部70はまた、ガイド軸71の周囲に配置されガイド軸71の延在方向に移動可能な環状のフロート73と、フロート73の内部に配置された環状マグネット74と、フロート73の移動を規制するストッパ75と、を有する。
【0041】
気液分離器40内に貯留された冷媒液43の浮力によって、フロート73はガイド軸71に沿って上下方向に移動する。フロート73の内部の環状マグネット74もまた、フロート73と共に移動する。環状マグネット74の磁力により、ガイド軸71内に配置されたリードスイッチ72が作動する。具体的には、気液分離器40内の冷媒液43が減少するとき、液面45の低下に伴ってフロート73および環状マグネット74が下方へ移動する。環状マグネット74がリードスイッチ72の高さまで移動すると、リードスイッチ72がON状態となり、液面45が所定の高さ以下になったことが検知される。
【0042】
冷媒量測定部70は、液面45の高さが所定値以下になり気液分離器40内の冷媒量が所定量以下になったことを検知し、この検知した信号L1(図2参照)を出力する。信号L1は、冷却装置1を制御する制御部80(図2参照)に入力される。なお、冷媒量測定部70は、フロート式のレベルスイッチに限られず、任意の公知の液面計、または、たとえばロードセルなどの、他のパラメータにより冷媒液43の量を測定可能な任意の計器であってもよい。
【0043】
図2に戻って、熱交換器14の出口から膨張弁16の入口へ向かって流れる冷媒が流通する経路は、熱交換器14の出口側から気液分離器40へ至る冷媒通路22と、気液分離器40から冷媒蒸気44を流出させ後述する流量調整弁28を経由する冷媒通路23と、熱交換器15の入口側へ連結される冷媒通路24と、熱交換器15の出口側から冷媒を膨張弁16へ流通させる冷媒通路25と、を含む。
【0044】
熱交換器14と熱交換器15との間を流通する冷媒の経路はまた、気液分離器40と冷却部30とを連通する冷媒通路34と、冷却部30と冷媒通路24とを連通する第二通路としての冷媒通路36と、を含む。冷媒通路34を経由して、気液分離器40から冷却部30へ冷媒液43が流通する。冷却部30を通過した冷媒は、冷媒通路36を経由して、冷媒通路24へ戻る。冷却部30は、熱交換器14から熱交換器15へ向けて流通する冷媒の経路上に設けられている。
【0045】
図2に示すD点は、冷媒通路23と冷媒通路24と冷媒通路36との連結点を示す。つまりD点は、冷媒通路23の下流側(熱交換器15に近接する側)の端部、冷媒通路24の上流側(熱交換器14に近接する側)の端部、および、冷媒通路36の下流側の端部を示す。冷媒通路23は、気液分離器40から膨張弁16へ向かう冷媒が流通する経路の、気液分離器40からD点へ至る一部を形成する。
【0046】
冷却装置1は、冷媒通路23と並列に配置された冷媒の経路を備え、冷却部30は、当該冷媒の経路上に設けられている。冷却部30は、車両に搭載される電気機器であるHV(Hybrid Vehicle)機器31と、冷媒が流通する配管である冷却通路32とを含む。HV機器31は、発熱源の一例である。冷却通路32の一方の端部は、冷媒通路34に接続される。冷却通路32の他方の端部は、冷媒通路36に接続される。
【0047】
気液分離器40と図2に示すD点との間の冷媒通路23に並列に接続された冷媒の経路は、冷却部30よりも上流側(気液分離器40に近接する側)の冷媒通路34と、冷却部30に含まれる冷却通路32と、冷却部30よりも下流側(熱交換器15に近接する側)の冷媒通路36と、を含む。冷媒通路34は、気液分離器40から冷却部30に、液相の冷媒を流通させるための通路である。冷媒通路36は、冷却部30からD点に冷媒を流通させるための通路である。D点は、冷媒通路23,24と、冷媒通路36と、の分岐点である。
【0048】
気液分離器40から流出した冷媒液43は、冷媒通路34を経由して、冷却部30へ向かって流通する。冷却部30へ流通し、冷却通路32を経由して流れる冷媒は、発熱源としてのHV機器31から熱を奪って、HV機器31を冷却させる。冷却部30は、気液分離器40において分離された液相の冷媒を用いて、HV機器31を冷却する。冷却部30において、冷却通路32内を流通する冷媒と、HV機器31と、が熱交換することにより、HV機器31は冷却され、冷媒は加熱される。冷媒はさらに冷媒通路36を経由して冷却部30からD点へ向かって流通し、冷媒通路24を経由して熱交換器15へ至る。
【0049】
冷却部30は、冷却通路32においてHV機器31と冷媒との間で熱交換が可能な構造を有するように設けられる。本実施の形態においては、冷却部30は、たとえば、HV機器31の筐体に冷却通路32の外周面が直接接触するように形成された冷却通路32を有する。冷却通路32は、HV機器31の筐体と隣接する部分を有する。当該部分において、冷却通路32を流通する冷媒と、HV機器31との間で、熱交換が可能となる。
【0050】
HV機器31は、蒸気圧縮式冷凍サイクル10の熱交換器14から熱交換器15に至る冷媒の経路の一部を形成する冷却通路32の外周面に直接接続されて、冷却される。冷却通路32の外部にHV機器31が配置されるので、冷却通路32の内部を流通する冷媒の流れにHV機器31が干渉することはない。そのため、蒸気圧縮式冷凍サイクル10の圧力損失は増大しないので、圧縮機12の動力を増大させることなく、HV機器31を冷却することができる。
【0051】
代替的には、冷却部30は、HV機器31と冷却通路32との間に介在して配置された任意の公知のヒートパイプを備えてもよい。この場合HV機器31は、冷却通路32の外周面にヒートパイプを介して接続され、HV機器31から冷却通路32へヒートパイプを経由して熱伝達することにより、冷却される。HV機器31をヒートパイプの加熱部とし冷却通路32をヒートパイプの冷却部とすることで、冷却通路32とHV機器31との間の熱伝達効率が高められるので、HV機器31の冷却効率を向上できる。たとえばウィック式のヒートパイプを使用することができる。
【0052】
ヒートパイプによってHV機器31から冷却通路32へ確実に熱伝達することができるので、HV機器31と冷却通路32との間に距離があってもよく、HV機器31に冷却通路32を接触させるために冷却通路32を複雑に配置する必要がない。その結果、HV機器31の配置の自由度を向上することができる。
【0053】
HV機器31は、電力の授受によって発熱する電気機器を含む。電気機器は、たとえば、直流電力を交流電力に変換するためのインバータ、回転電機であるモータジェネレータ、蓄電装置であるバッテリ、バッテリの電圧を昇圧させるためのコンバータ、バッテリの電圧を降圧するためのDC/DCコンバータなどの、少なくともいずれか一つを含む。バッテリは、リチウムイオン電池あるいはニッケル水素電池等の二次電池である。バッテリに代えてキャパシタが用いられてもよい。
【0054】
熱交換器18は、空気が流通するダクト90の内部に配置されている。熱交換器18は、冷媒とダクト90内を流通する空調用空気との間で熱交換して、空調用空気の温度を調節する。ダクト90は、ダクト90に空調用空気が流入する入口であるダクト入口91と、ダクト90から空調用空気が流出する出口であるダクト出口92と、を有する。ダクト90の内部の、ダクト入口91の近傍には、ファン93が配置されている。
【0055】
ファン93が駆動することにより、ダクト90内に空気が流通する。ファン93が稼働すると、ダクト入口91を経由してダクト90の内部へ空調用空気が流入する。ダクト90へ流入する空気は、外気であってもよく、車両の室内の空気であってもよい。図2中の矢印95は、熱交換器18を経由して流通し、蒸気圧縮式冷凍サイクル10の冷媒と熱交換する空調用空気の流れを示す。冷房運転時には、熱交換器18において空調用空気が冷却され、冷媒は空調用空気からの熱伝達を受けて加熱される。矢印96は、熱交換器18で温度調節され、ダクト出口92を経由してダクト90から流出する、空調用空気の流れを示す。
【0056】
冷媒は、圧縮機12と熱交換器14,15と膨張弁16と熱交換器18とが冷媒通路21〜27によって順次接続された冷媒循環流路を通って、蒸気圧縮式冷凍サイクル10内を循環する。蒸気圧縮式冷凍サイクル10内を、図2に示すA点、B点、C点、D点、E点およびF点を順に通過するように冷媒が流れ、圧縮機12と熱交換器14,15と膨張弁16と熱交換器18とに冷媒が循環する。
【0057】
図4は、実施の形態1の蒸気圧縮式冷凍サイクル10の冷媒の状態を示すモリエル線図である。図4中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図4中には、熱交換器14の出口の冷媒通路22から気液分離器40を経由して冷媒通路34へ流入し、HV機器31を冷却し、冷媒通路36からD点を経由して熱交換器15の入口の冷媒通路24へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,C,D,EおよびF点)における冷媒の熱力学状態が示される。
【0058】
図4に示すように、圧縮機12に吸入された過熱蒸気状態の冷媒(A点)は、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は熱交換器14へと流れる。圧縮機12から吐出された気相冷媒は、熱交換器14において周囲に放熱し冷却されることによって、凝縮(液化)する。熱交換器14における熱交換によって、冷媒の温度は低下し冷媒は液化する。熱交換器14へ入った高圧の冷媒蒸気は、熱交換器14において等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になる。気液二相状態である冷媒のうち、凝縮した冷媒は飽和液の状態である(C点)。
【0059】
冷媒は気液分離器40において気相冷媒と液相冷媒とに分離される。気液分離された冷媒のうち、液相の冷媒液43が、気液分離器40から冷媒通路34を経由して冷却部30の冷却通路32へ流れ、HV機器31を冷却する。冷却部30において、熱交換器14を通過して凝縮された飽和液状態の液冷媒に熱を放出することで、HV機器31が冷却される。HV機器31との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。冷媒は、HV機器31から潜熱を受け取って一部気化することにより、飽和液と飽和蒸気とが混合した湿り蒸気となる(D点)。
【0060】
その後冷媒は、熱交換器15に流入する。冷媒の湿り蒸気は、熱交換器15において外気と熱交換して冷却されることにより再度凝縮され、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却された過冷却液になる(E点)。その後冷媒は、冷媒通路25を経由して膨張弁16に流入する。膨張弁16において、過冷却液状態の冷媒は絞り膨張され、比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(F点)。
【0061】
膨張弁16から出た湿り蒸気状態の冷媒は、冷媒通路26を経由して熱交換器18へ流入する。熱交換器18のチューブ内には、湿り蒸気状態の冷媒が流入する。冷媒は、熱交換器18のチューブ内を流通する際に、フィンを経由して車両の室内の空気の熱を蒸発潜熱として吸収することによって、等圧のまま蒸発する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して、過熱蒸気となる(A点)。その後冷媒は、冷媒通路27を経由して圧縮機12に吸入される。圧縮機12は、熱交換器18から流通する冷媒を圧縮する。
【0062】
冷媒はこのようなサイクルに従って、圧縮、凝縮、絞り膨張、蒸発の状態変化を連続的に繰り返す。なお、上述した蒸気圧縮式冷凍サイクルの説明では、理論冷凍サイクルについて説明しているが、実際の蒸気圧縮式冷凍サイクル10では、圧縮機12における損失、冷媒の圧力損失および熱損失を考慮する必要があるのは勿論である。
【0063】
蒸気圧縮式冷凍サイクル10の運転中に、冷媒は、蒸発器として作用する熱交換器18において蒸発する際に気化熱を車両の室内の空気から吸収して、車室内の冷房を行なう。加えて、熱交換器14から流出し気液分離器40で気液分離された高圧の液冷媒が冷却部30へ流通し、HV機器31と熱交換することでHV機器31を冷却する。冷却装置1は、車両に搭載された発熱源であるHV機器31を、車両の室内の空調用の蒸気圧縮式冷凍サイクル10を利用して、冷却する。なお、HV機器31を冷却するために必要とされる温度は、少なくともHV機器31の温度範囲として目標となる温度範囲の上限値よりも低い温度であることが望ましい。
【0064】
熱交換器18において被冷却部を冷却するために設けられた蒸気圧縮式冷凍サイクル10を利用して、HV機器31の冷却が行なわれるので、HV機器31の冷却のために、専用の水循環ポンプまたは冷却ファンなどの機器を設ける必要はない。そのため、HV機器31の冷却装置1のために必要な構成を低減でき、装置構成を単純にできるので、冷却装置1の製造コストを低減することができる。加えて、HV機器31の冷却のためにポンプや冷却ファンなどの動力源を運転する必要がなく、動力源を運転するための消費動力を必要としない。したがって、HV機器31の冷却のための消費動力を低減することができる。
【0065】
熱交換器14では、冷媒を湿り蒸気の状態にまで冷却すればよく、気液混合状態の冷媒は気液分離器40により分離され、飽和液状態の冷媒液43のみが冷却部30へ供給される。HV機器31から蒸発潜熱を受け取り一部気化した湿り蒸気の状態の冷媒は、熱交換器15で再度冷却される。湿り蒸気状態の冷媒を凝縮させ完全に飽和液にするまで、冷媒は一定の温度で状態変化する。熱交換器15はさらに、車両の室内の冷房のために必要な程度の過冷却度にまで、液相冷媒を過冷却する。冷媒の過冷却度を過度に大きくする必要がないので、熱交換器14,15の容量を低減することができる。したがって、車室用の冷房能力を確保でき、かつ、熱交換器14,15のサイズを低減することができるので小型化され車載用に有利な、冷却装置1を得ることができる。
【0066】
熱交換器14の出口から膨張弁16の入口へ向かう冷媒の経路の一部を形成する冷媒通路23は、熱交換器14と熱交換器15との間に設けられている。気液分離器40から膨張弁16へ向かう冷媒が流通する経路として、冷却部30を通過しない経路である冷媒通路23と、冷却部30を経由してHV機器31を冷却する冷媒の経路である冷媒通路34,36および冷却通路32と、が並列に設けられる。冷媒通路34,36を含むHV機器31の冷却系は、冷媒通路23と並列に接続されている。そのため、熱交換器14から流出した冷媒の一部のみが、冷却部30へ流れる。HV機器31の冷却のために必要な量の冷媒を冷却部30へ流通させ、HV機器31は適切に冷却される。したがって、HV機器31が過冷却されることを防止できる。
【0067】
熱交換器14から直接熱交換器15へ流れる冷媒の経路と、熱交換器14から冷却部30を経由して熱交換器15へ流れる冷媒の経路と、を並列に設け、一部の冷媒のみを冷媒通路34,36へ流通させることで、HV機器31の冷却系に冷媒が流れる際の圧力損失を低減することができる。全ての冷媒が冷却部30に流れないので、冷却部30を経由する冷媒の流通に係る圧力損失を低減することができ、それに伴い、冷媒を循環させるための圧縮機12の運転に必要な消費電力を低減することができる。
【0068】
膨張弁16を通過した後の低温低圧の冷媒をHV機器31の冷却に使用すると、熱交換器18における車室内の空気の冷却能力が減少して、車室用の冷房能力が低下する。これに対し、本実施の形態の冷却装置1では、蒸気圧縮式冷凍サイクル10において、圧縮機12から吐出された高圧の冷媒は、第一の凝縮器としての熱交換器14と、第二の凝縮器としての熱交換器15と、の両方によって凝縮される。圧縮機12と膨張弁16との間に二段の熱交換器14,15を配置し、HV機器31を冷却する冷却部30は、熱交換器14と熱交換器15との間に設けられている。熱交換器15は、冷却部30から膨張弁16に向けて流通する冷媒の経路上に設けられている。
【0069】
HV機器31から蒸発潜熱を受けて加熱された冷媒を熱交換器15において十分に冷却することにより、膨張弁16の出口において、冷媒は、車両の室内の冷房のために本来必要とされる温度および圧力を有する。そのため、熱交換器18において冷媒が蒸発するときに外部から受け取る熱量を十分に大きくすることができる。このように、冷媒を十分に冷却できる熱交換器15の放熱能力を定めることにより、車室内の空気を冷却する冷房の能力に影響を与えることなく、HV機器31を冷却することができる。したがって、HV機器31の冷却能力と、車室用の冷房能力との両方を、確実に確保することができる。
【0070】
熱交換器14から冷却部30へ流れる冷媒は、HV機器31を冷却するときに、HV機器31から熱を受け取り加熱される。冷却部30において冷媒が飽和蒸気温度以上に加熱され冷媒の全量が気化すると、冷媒とHV機器31との熱交換量が減少してHV機器31を効率よく冷却できなくなり、また冷媒が配管内を流れる際の圧力損失が増大する。そのため、HV機器31を冷却した後に冷媒の全量が気化しない程度に、熱交換器14において十分に冷媒を冷却するのが望ましい。
【0071】
具体的には、熱交換器14の出口における冷媒の状態を飽和液に近づけ、典型的には熱交換器14の出口において冷媒が飽和液線上にある状態にする。このように冷媒を十分に冷却できる能力を熱交換器14が有する結果、熱交換器14の冷媒から熱を放出させる放熱能力は、熱交換器15の放熱能力よりも高くなる。放熱能力が相対的に大きい熱交換器14において冷媒を十分に冷却することにより、HV機器31から熱を受け取った冷媒を湿り蒸気の状態に留めることができ、冷媒とHV機器31との熱交換量の減少を回避できるので、HV機器31を十分に効率よく冷却することができる。HV機器31を冷却した後の湿り蒸気の状態の冷媒は、熱交換器15において効率よく再度冷却され、飽和温度を下回る過冷却液の状態にまで冷却される。したがって、車室用の冷房能力とHV機器31の冷却能力との両方を確保した、冷却装置1を提供することができる。
【0072】
熱交換器14の出口において気液二相状態にある冷媒は、気液分離器40内において、気相と液相とに分離される。気液分離器40で分離された気相冷媒は、冷媒通路23,24を経由して流通し直接熱交換器15に供給される。気液分離器40で分離された液相冷媒は、冷媒通路34を経由して流通し、冷却部30に供給されてHV機器31を冷却する。この液相冷媒は、過不足の全くない真に飽和液状態の冷媒である。気液分離器40から液相の冷媒のみを取り出し冷却部30へ流すことにより、熱交換器14の能力を最大限に活用してHV機器31を冷却することができるので、HV機器31の冷却能力を向上させた冷却装置1を提供することができる。
【0073】
気液分離器40の出口で飽和液の状態にある冷媒をHV機器31を冷却する冷却通路32に導入することにより、冷媒通路34,36および冷却通路32を含むHV機器31の冷却系を流れる冷媒のうち、気相状態の冷媒を最小限に抑えることができる。そのため、HV機器31の冷却系を流れる冷媒蒸気の流速が早くなり圧力損失が増大することを抑制でき、冷媒を流通させるための圧縮機12の消費電力を低減できるので、蒸気圧縮式冷凍サイクル10の性能の悪化を回避することができる。
【0074】
気液分離器40の内部には、図3に示すように、飽和液状態の冷媒液43が貯留されている。気液分離器40は、その内部に液状の冷媒である冷媒液43を一時的に貯留する蓄液器として機能する。気液分離器40内に所定量の冷媒液43が溜められることにより、負荷変動時にも気液分離器40から冷却部30へ流れる冷媒の流量を維持できる。気液分離器40が液だめ機能を有し、負荷変動に対するバッファとなり負荷変動を吸収できるので、HV機器31の冷却性能を安定させることができる。
【0075】
図2に戻って、冷却装置1は、流量調整弁28を備える。流量調整弁28は、熱交換器14から膨張弁16へ向かう冷媒の経路において、並列に接続された経路のうちの一方を形成する、冷媒通路23に配置されている。流量調整弁28は、その弁開度を変動させ、冷媒通路23を流れる冷媒の圧力損失を増減させることにより、冷媒通路23を流れる冷媒の流量と、冷却通路32を含むHV機器31の冷却系を流れる冷媒の流量と、を任意に調節する。
【0076】
たとえば、流量調整弁28を全閉にして弁開度を0%にすると、熱交換器14を出た冷媒の全量が気液分離器40から冷媒通路34へ流入する。流量調整弁28の弁開度を大きくすれば、熱交換器14から冷媒通路22へ流れる冷媒のうち、冷媒通路23を経由して熱交換器15へ直接流れる流量が大きくなり、冷媒通路34を経由して冷却通路32へ流れHV機器31を冷却する冷媒の流量が小さくなる。流量調整弁28の弁開度を小さくすれば、熱交換器14から冷媒通路22へ流れる冷媒のうち、冷媒通路23を経由して熱交換器15へ直接流れる流量が小さくなり、冷却通路32を経由して流れHV機器31を冷却する冷媒の流量が大きくなる。
【0077】
流量調整弁28の弁開度を大きくするとHV機器31を冷却する冷媒の流量が小さくなり、HV機器31の冷却能力が低下する。流量調整弁28の弁開度を小さくするとHV機器31を冷却する冷媒の流量が大きくなり、HV機器31の冷却能力が向上する。流量調整弁28を使用して、HV機器31に流れる冷媒の量を最適に調節できるので、HV機器31の過冷却を確実に防止することができ、加えて、HV機器31の冷却系の冷媒の流通に係る圧力損失および冷媒を循環させるための圧縮機12の消費電力を、確実に低減することができる。
【0078】
冷却装置1はさらに、連通路51を備える。連通路51は、圧縮機12と熱交換器14との間を冷媒が流通する冷媒通路21と、冷却部30に冷媒を流通させる冷媒通路34,36のうち冷却部30に対し下流側の冷媒通路36と、を連通する。冷媒通路36および連通路51には、連通路51と冷媒通路21,36との連通状態を切り換える切換弁52が設けられている。切換弁52は、その開閉を切り換えることにより、連通路51を経由する冷媒の流通を可能または不可能にする。冷媒通路36は、連通路51との分岐よりも上流側の冷媒通路36aと、連通路51との分岐よりも下流側の冷媒通路36bと、に二分割される。
【0079】
切換弁52を使用して冷媒の経路を切り換えることにより、HV機器31を冷却した後の冷媒を、冷媒通路36b,24を経由させて熱交換器15へ、または、連通路51および冷媒通路21を経由して熱交換器14へ、のいずれかの経路を任意に選択して、流通させることができる。
【0080】
より具体的には、切換弁52として二つの弁57,58が設けられている。蒸気圧縮式冷凍サイクル10の冷房運転中には、弁57を全開(弁開度100%)とし弁58を全閉(弁開度0%)とし、流量調整弁28の弁開度を冷却部30に十分な冷媒が流れるように調整する。これにより、HV機器31を冷却した後の冷媒通路36aを流通する冷媒を、冷媒通路36bを経由させて、確実に熱交換器15へ流通させることができる。一方、蒸気圧縮式冷凍サイクル10の停止中には、弁58を全開とし弁57を全閉とし、さらに流量調整弁28を全閉とする。これにより、HV機器31を冷却した後の冷媒通路36aを流通する冷媒を、連通路51を経由させて熱交換器14へ流通させ、冷却部30と熱交換器14との間に冷媒を循環させる環状の経路を形成することができる。
【0081】
図5は、蒸気圧縮式冷凍サイクル10の運転中の、HV機器31を冷却する冷媒の流れを示す模式図である。図6は、蒸気圧縮式冷凍サイクル10の停止中の、HV機器31を冷却する冷媒の流れを示す模式図である。図7は、冷却装置1の運転モード毎の流量調整弁28および切換弁52(弁57,58)の開度を示す図である。図7中に示す運転モードのうち「エアコン運転モード」とは、図5に示す蒸気圧縮式冷凍サイクル10を運転させる場合、すなわち圧縮機12を運転させて蒸気圧縮式冷凍サイクル10の全体に冷媒を流通させる場合を示す。一方「ヒートパイプ運転モード」とは、図6に示す蒸気圧縮式冷凍サイクル10を停止させる場合、すなわち、圧縮機12を停止させ、冷却部30と熱交換器14とを結ぶ環状の経路を経由させて冷媒を循環させる場合を示す。
【0082】
図5および図7に示すように、圧縮機12を駆動させ蒸気圧縮式冷凍サイクル10が運転している「エアコン運転モード」のときには、流量調整弁28は、冷却部30に十分な冷媒が流れるように、弁開度を調整される。切換弁52は、冷媒を冷却部30から熱交換器15を経由して膨張弁16へ流通させるように操作される。すなわち、弁57を全開にし弁58を全閉にすることで、冷媒が冷却装置1の全体を流れるように冷媒の経路が選択される。そのため、蒸気圧縮式冷凍サイクル10の冷却能力を確保できるとともに、HV機器31を効率よく冷却することができる。
【0083】
図6および図7に示すように、圧縮機12を停止させ蒸気圧縮式冷凍サイクル10が停止している「ヒートパイプ運転モード」のときには、冷媒を冷却部30から熱交換器14へ循環させるように切換弁52を操作する。すなわち、弁57を全閉にし弁58を全開にし、さらに流量調整弁28を全閉にすることで、冷媒は冷媒通路36bへは流れず連通路51を経由して流通する。これにより、熱交換器14から、冷媒通路22と冷媒通路34とを順に経由して冷却部30へ至り、さらに冷媒通路36a、連通路51、冷媒通路21を順に経由して熱交換器14へ戻る、閉じられた環状の経路が形成される。
【0084】
この環状の経路を経由して、圧縮機12を動作することなく、熱交換器14と冷却部30との間に冷媒を循環させることができる。冷媒は、HV機器31を冷却するとき、HV機器31から蒸発潜熱を受けて蒸発する。HV機器31との熱交換により気化された冷媒蒸気は、冷媒通路36a、連通路51および冷媒通路21を順に経由して、熱交換器14へ流れる。熱交換器14において、車両の走行風またはエンジン冷却用のラジエータファンからの通風により、冷媒蒸気は冷却されて凝縮する。熱交換器14で液化した冷媒液は、冷媒通路22,34を経由して、冷却部30へ戻る。
【0085】
このように、冷却部30と熱交換器14とを経由する環状の経路によって、HV機器31を加熱部とし熱交換器14を冷却部とする、ヒートパイプが形成される。したがって、蒸気圧縮式冷凍サイクル10が停止しているとき、すなわち車両用の冷房が停止しているときにも、圧縮機12を起動する必要なく、HV機器31を確実に冷却することができる。HV機器31の冷却のために圧縮機12を常時運転する必要がないことにより、圧縮機12の消費動力を低減して車両の燃費を向上することができ、加えて、圧縮機12を長寿命化できるので圧縮機12の信頼性を向上することができる。
【0086】
図5および図6には、地面60が図示されている。地面60に対して垂直な鉛直方向において、冷却部30は、熱交換器14よりも下方に配置されている。熱交換器14と冷却部30との間に冷媒を循環させる環状の経路において、冷却部30が下方に配置され、熱交換器14が上方に配置される。熱交換器14は、冷却部30よりも高い位置に配置される。
【0087】
この場合、冷却部30で加熱され気化した冷媒蒸気は、環状の経路内を上昇して熱交換器14へ到達し、熱交換器14において冷却され、凝縮されて液冷媒となり、重力の作用により環状の経路内を下降して冷却部30へ戻る。つまり、冷却部30と、熱交換器14と、これらを連結する冷媒の経路とによって、サーモサイフォン式のヒートパイプが形成される。ヒートパイプを形成することでHV機器31から熱交換器14への熱伝達効率を向上することができるので、蒸気圧縮式冷凍サイクル10が停止しているときにも、動力を加えることなく、HV機器31をより効率よく冷却することができる。
【0088】
連通路51と冷媒通路21,36との連通状態を切り換える切換弁52としては、上述した一対の弁57,58を使用してもよく、または、冷媒通路36と連通路51との分岐に配置された三方弁を使用してもよい。いずれの場合でも、蒸気圧縮式冷凍サイクル10の運転時および停止時の両方において、HV機器31を効率よく冷却することができる。弁57,58は、冷媒通路の開閉ができる単純な構造であればよいので安価であり、二つの弁57,58を使用することにより、より低コストな冷却装置1を提供することができる。一方、二つの弁57,58を配置するよりも三方弁の配置に要する空間はより小さくてよいと考えられ、三方弁を使用することにより、より小型化され車両搭載性に優れた冷却装置1を提供することができる。
【0089】
冷却装置1はさらに、逆止弁54を備える。逆止弁54は、圧縮機12と熱交換器14との間の冷媒通路21の、冷媒通路21と連通路51との接続箇所よりも圧縮機12に近接する側に、配置されている。逆止弁54は、圧縮機12から熱交換器14へ向かう冷媒の流れを許容するとともに、その逆向きの冷媒の流れを禁止する。このようにすれば、図6に示すヒートパイプ運転モードのとき、熱交換器14と冷却部30との間に冷媒を循環させる閉ループ状の冷媒の経路を、確実に形成することができる。
【0090】
逆止弁54がない場合、冷媒が連通路51から圧縮機12側の冷媒通路21へ流れる虞がある。逆止弁54を備えることによって、連通路51から圧縮機12側へ向かう冷媒の流れを確実に禁止できるので、環状の冷媒経路で形成するヒートパイプを使用した、蒸気圧縮式冷凍サイクル10の停止時のHV機器31の冷却能力の低下を防止できる。したがって、車両の車室用の冷房が停止しているときにも、HV機器31を効率よく冷却することができる。
【0091】
また、蒸気圧縮式冷凍サイクル10の停止中に、閉ループ状の冷媒の経路内の冷媒の量が不足する場合には、圧縮機12を短時間のみ運転することで、逆止弁54を経由して閉ループ経路に冷媒を供給できる。これにより、閉ループ内の冷媒量を増加させ、ヒートパイプの熱交換処理量を増大させることができる。したがって、ヒートパイプの冷媒量を確保することができるので、冷媒量の不足のためにHV機器31の冷却が不十分となることを回避することができる。
【0092】
以下、本実施の形態の冷却装置1の制御について説明する。図2に示す、冷却装置1を制御する制御装置としての制御部80は、前述したように、気液分離器40内の冷媒液43の量を測定する冷媒量測定部70から、冷媒量の測定値を示す信号L1を受ける。制御部80はまた、冷却装置1の近傍の外気の温度を測定する外気温度測定部61から、外気温度の測定値を示す信号T1を受ける。制御部80はまた、熱交換器18における熱交換によって温度が調節された、ダクト90内を流通する空調用空気の温度を測定する空調用空気温度測定部62から、空調用空気温度の測定値を示す信号T2を受ける。
【0093】
制御部80はまた、圧縮機12に対し起動または停止を指令する信号C1と、流量調整弁28の開度を指令する信号M1と、切換弁52(弁57,58)の開閉を指令する信号S1,S2と、を出力する。制御部80はさらに、ケーブル111を介して、エンジン100(図1参照)の制御を行なうエンジン制御部110に接続されている。エンジン制御部110は、エンジン100に対し、エンジン100の運転状態を指令する信号E1を出力する。
【0094】
図8は、制御部80の構成の詳細を示すブロック図である。実施の形態1の制御部80は、圧縮機12の起動および停止を制御する圧縮機制御部81と、外部からの操作を受け付ける操作入力部82と、を備える。制御部80はまた、外気温度測定部61で測定された外気の温度が所定の温度に対して高いか低いかを判定する外気温度判定部83と、空調用空気温度測定部62で測定された空調用空気の温度が所定の温度に対して高いか低いかを判定する空調用空気温度判定部84と、冷媒量測定部70で測定された気液分離器40内の冷媒の量が所定量に対して多いか少ないかを判定する冷媒量判定部85と、を備える。制御部80はまた、切換弁52の開閉状態を制御する切換弁制御部86と、流量調整弁28の開度を制御する流量調整弁制御部87と、を備える。
【0095】
操作入力部82は、空調用のコントロールパネルに設けられている。冷却装置1を使用するユーザは、操作入力部82を操作して、圧縮機12を起動させて発熱源の冷却を行なうエアコン運転モードと、圧縮機12を停止させた状態で発熱源の冷却を行なうヒートパイプ運転モードと、のいずれかの運転モードを選択する。ユーザは、いずれの運転モードで冷却装置1を運転するのかを、操作入力部82によって制御部80へ入力する。エアコン運転モードが選択されたとき、操作入力部82は、圧縮機12を起動するよう指示する制御命令を圧縮機制御部81へ伝送する。ヒートパイプ運転モードが選択されたとき、操作入力部82は、圧縮機12を停止するよう指示する制御命令を圧縮機制御部81へ伝送する。
【0096】
外気温度判定部83は、外気の温度を測定する外気温度測定部61から外気温度の測定値を示す信号T1を受け取り、外気温度が所定の温度よりも高いか低いかを判定する。外気温度が所定の温度(たとえば25℃)よりも高いとき、外気温度判定部83は、圧縮機12を起動するよう指示する制御命令を圧縮機制御部81へ伝送する。外気温度が所定の温度(たとえば25℃)以下であるとき、外気温度判定部83は、圧縮機12を停止するよう指示する制御命令を圧縮機制御部81へ伝送する。
【0097】
空調用空気温度判定部84は、空調用空気の温度を測定する空調用空気温度測定部62から空調用空気の測定値を示す信号T2を受け取り、空調用空気の温度が所定の温度よりも高いか低いかを判定する。空調用空気が所定の温度(たとえば20℃)よりも高いとき、空調用空気温度判定部84は、圧縮機12を起動するよう指示する制御命令を圧縮機制御部81へ伝送する。空調用空気が所定の温度(たとえば20℃)以下であるとき、空調用空気温度判定部84は、圧縮機12を停止するよう指示する制御命令を圧縮機制御部81へ伝送する。
【0098】
冷媒量判定部85は、気液分離器40の内部に貯留された冷媒液43の量を測定する冷媒量測定部70から冷媒の量を示す信号L1を受け取り、気液分離器40内の冷媒液43の量が所定の量よりも多いか少ないかを判定する。冷媒液43の量が所定の量よりも少ないとき、冷媒量判定部85は、圧縮機12を起動するよう指示する制御命令を圧縮機制御部81へ伝送する。冷媒液43の量が所定の量以上であるとき、冷媒量判定部85は、圧縮機12を停止するよう指示する制御命令を圧縮機制御部81へ伝送する。
【0099】
圧縮機制御部81は、操作入力部82、外気温度判定部83、空調用空気温度判定部84または冷媒量判定部85から伝送された制御命令を受け取り、圧縮機12の起動または停止を指令する信号C1を圧縮機12へ伝送する。
【0100】
圧縮機制御部81はまた、エンジン100の制御を行なうエンジン制御部110から、エンジン100の運転状態を示す信号を受け取り、エンジン制御部110からの指示に従って、圧縮機12の起動または停止を指令する信号C1を圧縮機12へ伝送する。たとえば登坂走行時など、ハイブリッド車両1000(図1参照)の走行状況によっては、HV機器31の発熱量が大きくなる場合がある。冷却装置1がHV機器31を冷却する冷却能力は、圧縮機12を運転させるエアコン運転モードの方が、ヒートパイプ運転モードに比較して相対的に大きい。そのため、HV機器31の発熱量が大きい場合には、エアコン運転モードで冷却装置1を運転してHV機器31を冷却することにより、HV機器31の過熱を確実に防止することができる。
【0101】
エンジン制御部110は、PCU300に含まれる素子の温度、PCU300の基板の温度、PCU300に供給される電流値、駆動ユニット200に含まれるモータジェネレータのトルク値などを監視している。これらの値を使用することで、冷却装置1の運転モードの予測制度を向上できる。エンジン制御部110から圧縮機12を起動または停止するよう指示する制御命令を圧縮機制御部81へ伝送することにより、より省動力で冷却装置1を運転させることができる。
【0102】
圧縮機12の起動または停止に対応して、圧縮機制御部81から、切換弁52の開閉を切り換えるよう指示する制御命令が切換弁制御部86へ伝送され、流量調整弁28の開度を変更するよう指示する制御命令が流量調整弁制御部87へ伝送される。具体的には、図7を参照して説明したように、エアコン運転モードでの発熱源の冷却のために圧縮機12を起動させる場合、流量調整弁28は冷却部30に十分な冷媒が流れるように弁開度を調整され、弁57は全開にされ弁58は全閉にされる。一方、圧縮機12を停止させる場合、弁57を全閉にし弁58を全開にし、さらに流量調整弁28を全閉にする。
【0103】
切換弁制御部86は、切換弁52の開閉を指令する信号S1,S2を切換弁52(弁57,58)へ伝送する。流量調整弁制御部87は、流量調整弁28の開度を指令する信号M1を流量調整弁28へ伝送する。
【0104】
図9は、冷却装置1の制御方法の一例を示すフローチャートである。図9に示すように、冷却装置1を使用して発熱源であるHV機器31の冷却が開始されると、まずステップ(S10)において、発熱源の冷却を終了するかどうか判断される。冷却を終了しないと判断されれば、次にステップ(S20)において、空調用のコントロールパネルの操作によってエアコンがONにされているかどうかが判断される。
【0105】
ステップ(S20)でエアコンがOFFであると判断された場合、次にステップ(S30)において、エアコン運転モードでの発熱源の冷却が必要であるかが判断される。エンジン制御部110、外気温度判定部83、または空調用空気温度判定部84から、圧縮機12を起動するよう指示する制御命令が圧縮機制御部81に伝送されると、エアコン運転モードでの発熱源の冷却が必要であると判断され、圧縮機制御部81は、圧縮機12の起動を指令する信号C1を圧縮機12へ伝送する。
【0106】
ステップ(S20)でエアコンがONであると判断された場合、蒸気圧縮式冷凍サイクル10の全体に冷媒を循環させるために圧縮機12が起動している状態であるので、次にステップ(S40)において、冷却装置1はエアコン運転モードにて発熱源を冷却する。すなわち、弁57を全開、弁58を全閉にし、流量調整弁28の開度を調整することにより、HV機器31の冷却のために十分な量の冷媒を冷却部30へ流通させる。これにより、熱交換器14で外気と熱交換し冷却された後の冷媒を冷却部30に流通させ、冷却通路32を流れる冷媒とHV機器31との間で熱交換することにより、HV機器31を冷却する。
【0107】
ステップ(S30)でエアコン運転モードでの発熱源の冷却が必要であると判断された場合もまた、ステップ(S40)に進み、圧縮機12が起動されてエアコン運転モードでの発熱源の冷却が開始される。
【0108】
ステップ(S40)の後ステップ(S10)に戻り、ステップ(S10)で冷却終了と判断されない場合において、ステップ(S20)でエアコンがONであると判断されれば、または、ステップ(S30)でエアコン運転モードが必要であると判断されれば、エアコン運転モードでの発熱源の冷却が続けられる。
【0109】
ステップ(S30)でエアコン運転モードでの発熱源の冷却が必要でないと判断された場合、次にステップ(S50)において、冷却装置1はヒートパイプ運転モードにて発熱源を冷却する。すなわち、弁57を全閉、弁58を全開にし、さらに流量調整弁28を全閉にすることにより、冷却部30と熱交換器14との間に冷媒を循環させる環状の経路を形成する。これにより、サーモサイフォン式のヒートパイプを形成して、熱交換器14において冷却された液相の冷媒を重力の作用により冷却部30へ流通させ、冷却通路32を流れる冷媒とHV機器31との間で熱交換することにより、HV機器31を冷却する。冷却部30で加熱され気化した冷媒蒸気は、環状の経路内を上昇して再度熱交換器14へ到達する。
【0110】
その後、ステップ(S60)に進み、圧縮機12の運転が必要であるか否かの判断が行なわれる。本実施の形態では、ステップ(S60)において、蓄液器として機能する気液分離器40内に貯留されている冷媒液43の量が所定値以上であるか否かが、冷媒量判定部85によって判断される(ステップ(S61))。
【0111】
ステップ(S61)で気液分離器40内の冷媒液43の量が所定値以上であると判断された場合、ステップ(S10)に戻る。ステップ(S10)で冷却終了と判断されず、ステップ(S20)でエアコンがOFFであると判断され、かつ、ステップ(S30)でエアコン運転モードが必要でないと判断される場合、ヒートパイプ運転モードでの発熱源の冷却が続けられる。
【0112】
ステップ(S61)で気液分離器40内の冷媒液43の量が所定値を下回ると判断された場合、次にステップ(S70)において、圧縮機12が起動される。気液分離器40内の冷媒液43の量が減少し所定値を下回った状態は、サーモサイフォン式のヒートパイプを形成する閉ループ状の冷媒の経路内を流通する冷媒の量が不足している状態であると判断される。そこで、このような場合には圧縮機12を起動させ、図6に示す逆止弁54を経由して閉ループ経路に冷媒を追加供給することにより、閉ループ内の冷媒量を増加させる、これにより、ヒートパイプを流通する冷媒量が確保され、冷媒量の不足のためにHV機器31の冷却能力が低下して冷却が不十分となる不具合を回避できる。
【0113】
圧縮機12が起動された後、ステップ(S80)において、所定時間(たとえば10秒間)が経過したかが判断される。つまり、所定時間圧縮機12の運転が続けられることになる。所定時間経過したと判断されると、次にステップ(S90)において、圧縮機12の運転が必要であるか否かの判断が、再度行なわれる。本実施の形態では、ステップ(S90)において、気液分離器40内に貯留されている冷媒液43の量が所定値以上であるか否かが、冷媒量判定部85によって再度判断される(ステップ(S91))。
【0114】
ステップ(S91)で気液分離器40内の冷媒液43の量が所定値を下回ると判断された場合、ステップ(S80)に戻り、圧縮機12の運転が所定時間継続される。ステップ(S91)で気液分離器40内の冷媒液43の量が所定値以上であると判断された場合、次にステップ(S100)において圧縮機12が停止され、ステップ(S10)に戻る。
【0115】
ステップ(S10)で発熱源の冷却を終了すると判断されれば、冷却部30への冷媒の供給が停止され、HV機器31の冷却が停止される。
【0116】
以上説明したように、本実施の形態の冷却装置1は、圧縮機12を駆動させる「エアコン運転モード」と圧縮機12を停止させる「ヒートパイプ運転モード」との両方の運転モードで、発熱源であるHV機器31を冷却できる。ヒートパイプ運転モードでは、圧縮機12を起動する必要なくHV機器31を確実に冷却できるので、HV機器31の冷却のために圧縮機12を常時運転する必要はない。そのため、圧縮機12の消費動力を低減して車両の燃費を向上することができ、加えて、圧縮機12を長寿命化できるので圧縮機12の信頼性を向上することができる。
【0117】
冷却装置1の運転モードの切り換えは、操作入力部82を介してユーザが手動で入力することにより行なうことができる。空調が必要ない場合に、ユーザが操作入力部82を操作してヒートパイプ運転モードで発熱源を冷却するように選択すれば、不要な圧縮機12の運転を確実に抑制することができる。
【0118】
冷却装置1の運転モードは、外気の温度または空調用空気の温度を測定した測定値に基づいて必要な場合に自動的に切り換えられる。冷却装置1の運転モードはまた、エンジン100の運転状態を制御するための車両制御パラメータを既存の車載センサが測定した測定値に基づくエンジン制御部110からの指示に従って、自動的に切り換えられる。発熱源を適切に冷却された状態に保つために冷却装置1の運転モードが切り換えられ、必要な場合にのみエアコン運転モードで発熱源が冷却されるので、圧縮機12の起動を確実に抑制することができる。
【0119】
ヒートパイプ運転モードで発熱源が冷却されているときに、ヒートパイプを循環する冷媒の量が適切であることを、気液分離器40内の冷媒液43の量を測定することにより検知できる。ヒートパイプを循環する冷媒の量が不足していると判断された場合には、圧縮機を起動して冷媒の量を増加させることができる。したがって、発熱源を一層確実に冷却できる。加えて、気液分離器40内の冷媒量に基づいて圧縮機12の起動停止が制御されるので、必要な場合に限ってのみ圧縮機12の運転を行なうように、より確実に冷却装置1を制御することができる。
【0120】
冷却装置1の運転モードの切り換えのための圧縮機12の起動または停止に合わせて切換弁52の開閉状態を制御することにより、エアコン運転モードとヒートパイプ運転モードとの切り換えをさらに確実に行なうことができ、各運転モード毎の適切な経路に冷媒を流通させることができる。
【0121】
(実施の形態2)
図10は、実施の形態2の冷却装置1の構成を示す模式図である。図2と図10とを比較して、実施の形態2の冷却装置1は、気液分離器40内の冷媒量を測定する冷媒量測定部70に替えて、冷却部30に流入する冷媒の温度を測定する冷却部入口温度測定部63と、冷却部30から流出する冷媒の温度を測定する冷却部出口温度測定部64と、を備える点で、実施の形態1と異なっている。制御部80は、冷却部入口温度測定部63から、冷却部30に流入する冷媒の温度の測定値を示す信号T3を受け、また冷却部出口温度測定部64から、冷却部30から流出する冷媒の温度の測定値を示す信号T4を受ける。
【0122】
図11は、実施の形態2の制御部80の構成の詳細を示すブロック図である。実子の形態2の制御部80は、実施の形態1の冷媒量判定部85に替えて、冷却部30に流入する冷媒の温度と冷却部30から流出する冷媒の温度との温度差が所定の値に対して高いか低いかを判定する、冷却部入口出口温度差判定部88を備える。
【0123】
冷却部入口出口温度差判定部88は、冷却部入口温度測定部63から信号T3を受け取り、冷却部出口温度測定部64から信号T4を受け取り、これらに基づいて冷却部30の出口における冷媒の温度と冷却部30の入口における冷媒の温度と、の温度差を算出する。冷却部入口出口温度差判定部88はさらに、当該温度差が所定の温度よりも高いか低いかを判定する。温度差が所定の温度を越えたとき、冷却部入口出口温度差判定部88は、圧縮機12を起動するよう指示する制御命令を圧縮機制御部81へ伝送する。
【0124】
図12は、実施の形態2の冷却装置1の制御方法を示すフローチャートである。図12に示すように、実施の形態2では、圧縮機12の運転が必要であるか否かを判断するステップ(S60)において、冷却部30に流入する冷媒の温度と冷却部30から流出する冷媒の温度との温度差が所定の値よりも大きいか否か、典型的には冷却部出口の冷媒の温度が冷却部入口の冷媒の温度を上回るか否かが、冷却部入口出口温度差判定部88によって判断される(ステップ(S62))。
【0125】
ステップ(S62)で冷却部出口の冷媒の温度が冷却部入口の冷媒の温度以下であると判断された場合、ステップ(S10)に戻る。ステップ(S62)で冷却部出口の冷媒の温度が冷却部入口の冷媒の温度を上回ると判断された場合、次にステップ(S70)において、圧縮機12が起動される。
【0126】
冷却部出口の冷媒の温度が冷却部入口の冷媒の温度を上回る状態は、サーモサイフォン式のヒートパイプを形成する閉ループ内の冷媒量が減少し、その結果、発熱源の冷却能力が低下している状態であると判断される。そこで、このような場合には圧縮機12を起動させ、閉ループ内の冷媒量を増加させる。これにより、ヒートパイプを流通する冷媒量が確保され、冷媒量の不足のためにHV機器31の冷却能力が低下して冷却が不十分となる不具合を回避できる。
【0127】
圧縮機12が起動された後、ステップ(S80)において、所定時間(たとえば10秒間)が経過したかが判断される。つまり、所定時間圧縮機12の運転が続けられることになる。所定時間経過したと判断されると、次にステップ(S90)において、圧縮機12の運転が必要であるか否かの判断が、再度行なわれる。本実施の形態では、ステップ(S90)において、冷却部出口の冷媒の温度が冷却部入口の冷媒の温度を上回るか否かが、冷却部入口出口温度差判定部88によって再度判断される(ステップ(S92))。
【0128】
ステップ(S92)で冷却部出口の冷媒の温度が冷却部入口の冷媒の温度を上回ると判断された場合、ステップ(S80)に戻り、圧縮機12の運転が所定時間継続される。ステップ(S92)で冷却部出口の冷媒の温度が冷却部入口の冷媒の温度以下であると判断された場合、次にステップ(S100)において圧縮機12が停止され、ステップ(S10)に戻る。
【0129】
以上のように、実施の形態2の冷却装置1では、ヒートパイプ運転モードで発熱源が冷却されているときに、ヒートパイプを循環する冷媒の量が適切であることを、冷却部30に流入する冷媒の温度と冷却部30から流出する冷媒の温度とを測定してこれらの温度の差を求めることにより検知できる。ヒートパイプを循環する冷媒の量が不足していると判断された場合には、圧縮機を起動して冷媒の量を増加させることができる。したがって、発熱源を一層確実に冷却できる。加えて、冷却部30の入口および出口の冷媒の温度差に基づいて圧縮機12の起動停止が制御されるので、必要な場合に限ってのみ圧縮機12の運転を行なうように、より確実に冷却装置1を制御することができる。
【0130】
なお、これまでの実施の形態においては、HV機器31を例として車両に搭載された電気機器を冷却する冷却装置1について説明した。電気機器としては、少なくとも作動によって熱を発生させる電気機器であれば、インバータ、モータジェネレータなどの例示された電気機器に限定されるものではなく、任意の電気機器であってもよい。冷却の対象となる電気機器が複数個ある場合においては、複数の電気機器は、冷却の目標となる温度範囲が共通していることが望ましい。冷却の目標となる温度範囲は、電気機器を作動させる温度環境として適切な温度範囲である。
【0131】
さらに、本発明の冷却装置1により冷却される発熱源は、車両に搭載された電気機器に限られず、熱を発生する任意の機器、または任意の機器の発熱する一部分であってもよい。
【0132】
以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組合せてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
【産業上の利用可能性】
【0133】
本発明の冷却装置は、モータジェネレータおよびインバータなどの電気機器を搭載するハイブリッド車、燃料電池車、電気自動車などの車両における、車内の冷房を行なうための蒸気圧縮式冷凍サイクルを使用した電気機器の冷却に、特に有利に適用され得る。
【符号の説明】
【0134】
1 冷却装置、10 蒸気圧縮式冷凍サイクル、12 圧縮機、14,15,18 熱交換器、16 膨張弁、21〜27,34,36,36a,36b 冷媒通路、28 流量調整弁、30 冷却部、31 HV機器、32 冷却通路、40 気液分離器、43 冷媒液、44 冷媒蒸気、45 液面、51 連通路、52 切換弁、57,58 弁、61 外気温度測定部、62 空調用空気温度測定部、63 冷却部入口温度測定部、64 冷却部出口温度測定部、70 冷媒量測定部、80 制御部、81 圧縮機制御部、82 操作入力部、83 外気温度判定部、84 空調用空気温度判定部、85 冷媒量判定部、86 切換弁制御部、87 流量調整弁制御部、88 冷却部入口出口温度差判定部、100 エンジン、110 エンジン制御部、1000 ハイブリッド車両、C1,E1,L1,M1,S1〜S2,T1〜T4 信号。

【特許請求の範囲】
【請求項1】
発熱源を冷却する冷却装置であって、
冷媒を循環させるための圧縮機と、
前記冷媒と外気との間で熱交換する第一熱交換器と、
前記冷媒を減圧する減圧器と、
前記冷媒と空調用空気との間で熱交換する第二熱交換器と、
前記第一熱交換器と前記減圧器との間を流通する前記冷媒の経路上に設けられ、前記冷媒を用いて前記発熱源を冷却する冷却部と、
前記圧縮機と前記第一熱交換器との間を前記冷媒が流通する第一通路と、
前記冷却部と前記減圧器との間を前記冷媒が流通する第二通路と、
前記第一通路と前記第二通路とを連通する連通路と、
前記冷却装置を制御する制御部と、を備え、
前記制御部は、
前記圧縮機の起動および停止を制御する圧縮機制御部と、
外部からの操作を受け付ける操作入力部と、を含み、
前記圧縮機制御部は、前記操作入力部からの指示に従って前記圧縮機を起動または停止させる、冷却装置。
【請求項2】
前記外気の温度を測定する外気温度測定部をさらに備え、
前記圧縮機制御部は、前記外気温度測定部の測定値に基づいて前記圧縮機を起動または停止させる、請求項1に記載の冷却装置。
【請求項3】
前記空調用空気の温度を測定する空調用空気温度測定部をさらに備え、
前記圧縮機制御部は、前記空調用空気温度測定部の測定値に基づいて前記圧縮機を起動または停止させる、請求項1または請求項2に記載の冷却装置。
【請求項4】
前記第一熱交換器と前記冷却部との間の前記冷媒の経路に設けられ、液状の前記冷媒を貯留する蓄液器と、
前記蓄液器の内部に貯留された前記冷媒の量を測定する冷媒量測定部と、をさらに備え、
前記圧縮機制御部は、前記冷媒量測定部の測定値に基づいて前記圧縮機を起動または停止させる、請求項1から請求項3のいずれかに記載の冷却装置。
【請求項5】
前記冷却部に流入する前記冷媒の温度を測定する冷却部入口温度測定部と、
前記冷却部から流出する前記冷媒の温度を測定する冷却部出口温度測定部と、をさらに備え、
前記圧縮機制御部は、前記冷却部入口温度測定部および前記冷却部出口温度測定部の測定値に基づいて前記圧縮機を起動または停止させる、請求項1から請求項4のいずれかに記載の冷却装置。
【請求項6】
前記冷却装置は、車両に搭載されており、
前記車両は、エンジンと、前記エンジンを制御するエンジン制御部と、を有し、
前記圧縮機制御部は、前記エンジン制御部からの指示に従って前記圧縮機を起動または停止させる、請求項1から請求項5のいずれかに記載の冷却装置。
【請求項7】
開閉可能な切換弁をさらに備え、
前記切換弁は、前記連通路と、前記第一通路および前記第二通路と、の連通状態を切り換え、
前記制御部は、前記切換弁の開閉状態を制御する切換弁制御部をさらに含み、
前記切換弁制御部は、前記圧縮機制御部が前記圧縮機を起動または停止させる指示に従って、前記切換弁を閉状態または開状態にする、請求項1から請求項6のいずれかに記載の冷却装置。
【請求項8】
発熱源を冷却する冷却装置の制御方法であって、
前記冷却装置は、
冷媒を循環させるための圧縮機と、
前記冷媒と外気との間で熱交換する第一熱交換器と、
前記冷媒を減圧する減圧器と、
前記冷媒と空調用空気との間で熱交換する第二熱交換器と、
前記第一熱交換器と前記減圧器との間を流通する前記冷媒の経路上に設けられ、前記冷媒を用いて前記発熱源を冷却する冷却部と、
前記圧縮機と前記第一熱交換器との間を前記冷媒が流通する第一通路と、
前記冷却部と前記減圧器との間を前記冷媒が流通する第二通路と、
前記第一通路と前記第二通路とを連通する連通路と、を含み、
前記圧縮機の運転が必要であるか否かを判断するステップと、
前記判断するステップで前記圧縮機の運転が必要と判断された場合に、前記圧縮機を運転するステップと、を備える、冷却装置の制御方法。
【請求項9】
前記圧縮機を運転させる外部からの操作を受け付けたか否かを判断するステップと、
前記操作を受け付けたと判断された場合に、前記圧縮機を運転するステップと、を備える、請求項8に記載の冷却装置の制御方法。
【請求項10】
前記冷却装置は、前記第一熱交換器と前記冷却部との間の前記冷媒の経路に設けられ、液状の前記冷媒を貯留する蓄液器をさらに含み、
前記圧縮機の運転が必要であるか否かを判断するステップは、前記蓄液器の内部に貯留された前記冷媒の量を判定するステップを含む、請求項8または請求項9に記載の冷却装置の制御方法。
【請求項11】
前記冷却装置は、前記冷却部に流入する前記冷媒の温度を測定する冷却部入口温度測定部と、前記冷却部から流出する前記冷媒の温度を測定する冷却部出口温度測定部と、をさらに含み、
前記圧縮機の運転が必要であるか否かを判断するステップは、前記冷却部に流入する前記冷媒の温度と、前記冷却部から流出する前記冷媒の温度と、の差を判定するステップを含む、請求項8から請求項10のいずれかに記載の冷却装置の制御方法。
【請求項12】
前記冷却装置は、車両に搭載されており、
前記車両は、エンジンと、前記エンジンを制御するエンジン制御部と、を有し、
前記エンジンの運転状況に関する信号を前記エンジン制御部から受け取り、前記圧縮機の運転が必要であるか否かを判断するステップを備える、請求項8から請求項11のいずれかに記載の冷却装置の制御方法。
【請求項13】
発熱源を冷却する冷却装置の制御装置であって、
前記冷却装置は、冷媒を循環させるための圧縮機と、前記冷媒と外気との間で熱交換する第一熱交換器と、前記冷媒を減圧する減圧器と、前記冷媒と空調用空気との間で熱交換する第二熱交換器と、前記第一熱交換器と前記減圧器との間を流通する前記冷媒の経路上に設けられ、前記冷媒を用いて前記発熱源を冷却する冷却部と、前記圧縮機と前記第一熱交換器との間を前記冷媒が流通する第一通路と、前記冷却部と前記減圧器との間を前記冷媒が流通する第二通路と、前記第一通路と前記第二通路とを連通する連通路と、を含み、
前記制御装置は、
前記圧縮機の起動および停止を制御する圧縮機制御部と、
外部からの操作を受け付ける操作入力部と、を備え、
前記圧縮機制御部は、前記操作入力部からの指示に従って前記圧縮機を起動または停止させる、冷却装置の制御装置。
【請求項14】
前記冷却装置は、前記外気の温度を測定する外気温度測定部を含み、
前記外気温度測定部で測定された前記外気の温度を判定する外気温度判定部をさらに備え、
前記圧縮機制御部は、前記外気温度判定部の判定結果に従って前記圧縮機を起動または停止させる、請求項13に記載の冷却装置の制御装置。
【請求項15】
前記冷却装置は、前記空調用空気の温度を測定する空調用空気温度測定部を含み、
前記空調用空気温度測定部で測定された前記空調用空気の温度を判定する空調用空気温度判定部をさらに備え、
前記圧縮機制御部は、前記空調用空気温度判定部の判定結果に従って前記圧縮機を起動または停止させる、請求項13または請求項14に記載の冷却装置の制御装置。
【請求項16】
前記冷却装置は、前記第一熱交換器と前記冷却部との間の前記冷媒の経路に設けられ、液状の前記冷媒を貯留する蓄液器と、前記蓄液器の内部に貯留された前記冷媒の量を測定する冷媒量測定部と、を含み、
前記冷媒量測定部で測定された前記冷媒の量を判定する冷媒量判定部をさらに備え、
前記圧縮機制御部は、前記冷媒量判定部の判定結果に従って前記圧縮機を起動または停止させる、請求項13から請求項15のいずれかに記載の冷却装置の制御装置。
【請求項17】
前記冷却装置は、前記冷却部に流入する前記冷媒の温度を測定する冷却部入口温度測定部と、前記冷却部から流出する前記冷媒の温度を測定する冷却部出口温度測定部と、を含み、
前記冷却部入口温度測定部で測定された前記冷媒の温度と、前記冷却部出口温度測定部で測定された前記冷媒の温度と、の差を判定する冷却部入口出口温度差判定部をさらに備え、
前記圧縮機制御部は、前記冷却部入口出口温度差判定部の判定結果に従って前記圧縮機を起動または停止させる、請求項13から請求項16のいずれかに記載の冷却装置の制御装置。
【請求項18】
前記冷却装置は、車両に搭載されており、
前記車両は、エンジンと、前記エンジンを制御するエンジン制御部と、を有し、
前記圧縮機制御部は、前記エンジン制御部からの指示に従って前記圧縮機を起動または停止させる、請求項13から請求項17のいずれかに記載の冷却装置の制御装置。
【請求項19】
前記冷却装置は、開閉可能な切換弁をさらに含み、前記切換弁は、前記連通路と、前記第一通路および前記第二通路と、の連通状態を切り換え、
前記切換弁の開閉状態を制御する切換弁制御部をさらに備え、
前記切換弁制御部は、前記圧縮機制御部が前記圧縮機を起動または停止させる指示に従って、前記切換弁を閉状態または開状態にする、請求項13から請求項18のいずれかに記載の冷却装置の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−245857(P2012−245857A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−118278(P2011−118278)
【出願日】平成23年5月26日(2011.5.26)
【出願人】(000004695)株式会社日本自動車部品総合研究所 (1,981)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】