説明

医療装置を管腔内の選択位置に搬送するための方法及びシステム

【課題】医療装置の選択位置に対する相対位置を検出して画像表示し、医療装置を搬送する方法及びシステムの提供。
【解決手段】経路608は、管腔108に対するカテーテル596の遠位部分の起点612と終点614の間の3次元曲線である。起点612及び終点614は撮像システム592の視野内にある。経路608は医療操作前の撮像セッション中に決定され、記憶ユニットに記憶される。コントローラ584は経路608をCアーム画像装置を用いて管腔108から取得した複数の2次元画像により計算する。Cアームは管腔108の2つのECGゲート2次元画像を、平行ではない2つのECGゲート画像平面において取得する。操作者が起点612及び終点614を指示すると、Cアームは3次元で経路608を構成する。コントローラ584は経路608を、1つ以上の画像処理アルゴリズムに基づき、管腔108の背景に対するコントラスト変化に応じて計算する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般に医療操作に関するものであって、特にステントを患者の体内に配置する方法及びシステムに関するものである。
【背景技術】
【0002】
患者の体内における閉塞血管は、例えばバルーンを膨張させること(即ち、バルーン血管形成)により閉塞物質(例えば、血管内膜)を分断することによって開通される。この分断処置により血管における治癒過程が開始され、これにより新たな組織細胞が生成されるが、それによって血管を通る通路が再び狭窄する。組織細胞の成長は術後数ヶ月の時間を経て生じる。通路をより長い期間開通させ、治癒の結果として生じる組織細胞の成長を防ぐには、血管内において、血管の閉塞物質を分断した部分に硬く薄い壁を有し、壁がワイヤメッシュの形態をしているチューブを配置する。
【0003】
血管において閉塞物質を分断した後にステントカテーテルを所望の位置に向けて操作する方法及びシステムは現在技術において知られている。例えば、放射線不透過バンドの組をカテーテルのステント付近に取り付け、これにより術者が血管のリアルタイムX線画像における標識バンドを見ながらカテーテルを誘導できる。他の例では、カテーテルのステント付近に取り付けた医療測位システム(MPS)により取得した位置及び方向データに従って、術者はリアルタイムX線画像上におけるステントの位置及び方向の表示を見ることができる。
【0004】
【特許文献1】米国特許5,928,248
【0005】
Ackerらによる米国特許第5,928,248号、発明の名称”Guided Development of Stents”は、ステントを患者の管状構造内に入れる装置についてのものである。この装置には、カテーテル、ハブ、圧制御装置、バルーン、ステント、プローブ電磁界トランスデューサ、複数の外部電磁界トランスデューサ、電磁界送信及び受信装置、コンピュータ、入力装置及びディスプレイが含まれている。カテーテルには孔が含まれている。ハブはカテーテルの近位端に固着されている。バルーンはカテーテルの遠位端に装着されている。圧制御装置はハブ及び孔を通してバルーンに接続されている。ステントは形状記憶合金から作られており、バルーン上に設置されている。
【0006】
プローブ電磁界トランスデューサはカテーテル内の遠位端に設置されている。外部電磁界トランスデューサは患者の外に設置されている(例えば、患者支持ベッドに接続されている。)。電磁界送信及び受信装置は外部電磁界トランスデューサに接続されており、プローブ電磁界トランスデューサはコンピュータに接続されている。コンピュータはディスプレイ及び入力装置に接続されている。
【0007】
使用者は外部電磁界トランスデューサを用いて参照外部電磁界内で電磁界送信及び受信装置を調整する。電磁界送信及び受信装置はコンピュータと共に、参照外部電磁界内のプローブ電磁界トランスデューサの位置及び方向を測定する。使用者は、患者の管状構造内に配置されたステントの表示の位置及び方向をディスプレイ上で見る。使用者が、遠位端が管状構造内の所望の位置に配置されたと判断した際には、使用者は圧制御装置を操作してバルーンを膨張させることによりステントを拡張させ、これによりステントを所望の位置に位置決めする。
【0008】
【特許文献2】米国特許5,830,222
【0009】
Makowerによる米国特許第5,830,222号、発明の名称”Device, System and Method for Interstitial Transvascular Intervention”は、隣接した病変のない血管を通して病変した血管に経皮的に到達する方法についてのものである。この方法を用いて、冠静脈のような病変していない血管を通して、冠動脈のような病変した血管をバイパスすることができる。病変下血管には、血流を制限する閉塞が含まれる可能性がある。ガイドカテーテルを大静脈を経由して心臓の右心房内にある冠状静脈洞内へと進める。経血管組織内手術(TVIS)ガイドカテーテルを、ガイドカテーテルを通して挿入し、冠静脈を通るガイドワイヤ上を、冠動脈に隣接した所望の位置まで進める。
【0010】
TVISガイドカテーテルには、バルーン、TVISプローブ並びに、能動的方向検出手段及び受動的方向検出手段の双方又はいずれか一方が含まれる。TVISプローブは硬いワイヤ、アンテナ、光ガイド又は組織内に挿入することのできるエネルギーガイドである。受動的方向検出手段により、TVISプローブの位置及び方向をX線撮影、X線透視法、磁気的又は超音波検出することができる。能動的方向検出手段とは送信機のことである。第2ガイドワイヤには更にワイヤ束を含んでおり、これは受信機により検出された信号を返すことが可能であり、これにより操作者はTVISプローブの位置及び場所を判断することができる。
【0011】
TVISガイドカテーテルの方向を確認したら、バルーンを心臓静脈壁に対して拡張し、これにより血流を遮断し、TVISガイドカテーテルを心臓静脈内で安定化し、流路を拡張する。TVISプローブを次に心臓静脈の壁を通して冠動脈内へ進め、これにより冠動脈の病変した部分をバイパスする。
【0012】
【特許文献3】米国特許公開番号20020049375
【0013】
米国特許公開番号第20020049375号、発明の名称”Method and Apparatus for Real Time Quantitative Three-Dimensional Image Reconstruction of a Moving Organ and intra-Body Navigation”は、患者の心拍により生じる管腔の動きを考慮しながら、外科的カテーテルを挿入する患者の管腔の画像を表示するためのシステムについてのものである。本システムには、外科的カテーテル、画像カテーテル、画像システム、医療測位システム(MPS)、送信機、体MPSセンサ、プロセッサ、複数の心電図(ECG)電極、ECGモニタ、データベース、及びディスプレイが含まれている。外科的カテーテルは先端に設置されたカテーテルMPSセンサが含まれている。画像カテーテルは画像MPSセンサ及び画像検出器が含まれており、これらはともに画像カテーテルの先端に設置されている。
【0014】
ECG電極は患者の体及びECGモニタに取り付けられている。体MPSセンサは患者の体及びMPSに取り付けられている。プロセッサは画像システム、MPS、ECGモニタ、データベース及びディスプレイに接続されている。MPSは送波器に接続されている。走査手順中にはMPSは画像MPSセンサに接続されている。外科的手順中にはMPSはカテーテルMPSセンサに接続されている。画像システムは画像検出器に接続されている。画像MPSセンサ及びカテーテルMPSセンサはそれぞれ画像カテーテル及び外科手術カテーテルの先端の位置及び方向に関する信号をMPSに送信する。
【0015】
走査手順中に、操作者は画像カテーテルを管腔内に挿入してこれを進め、この間に画像検出器は管腔の内壁を走査し検出した2次元画像を画像システムに送信する。プロセッサは2次元画像及びMPSにより決定された画像カテーテルの先端の座標に従って、複数の3次元画像を再構成し、この間にプロセッサは各3次元画像を患者の心臓のそれぞれの活動状態に関連づける。
【0016】
外科手術手順中に、操作者は外科手術カテーテルを管腔内に挿入し、カテーテルMPSセンサは外科手術カテーテルの先端の位置及び方向に関する位置信号をMPSに送信する。操作者が外科手術カテーテルを管腔内において動かす際に、プロセッサは、データベースからデータを読み出すことにより、外科手術カテーテルの先端の現在の位置及び方向並びに患者の心臓の現在の活動状態に従い、管腔の連続した3次元画像を決定する。ディスプレイはプロセッサから受信した映像信号に従って、3次元画像を順に表示する。
【0017】
【特許文献4】米国特許6,035,856
【0018】
LaFontaineらによる米国特許第6,035,856号、発明の名称”Percutaneous Bypass with Branching Vessel”は、大動脈の分枝血管の第1閉塞部位においてバイパスを施行する方法についてのものである。冠動脈は第1閉塞部位を含んでおり、分枝血管は大動脈から分枝している。標準的ガイドカテーテルを大動脈を通して分枝血管の口まで進める。閉塞形成装置とガイドカテーテルを通して分枝血管内に進め、分枝血管内に第2閉塞部位を形成する。閉塞装置には延長部分及び加熱バルーンが含まれる。
【0019】
閉塞形成装置を大動脈からガイドカテーテルを通して取り外し、切断装置を第2閉塞部位の近位のガイドワイヤを通してすすめる。切断装置には延長部材、可動ガイドワイヤ、近位閉塞バルーン、遠位バルーン、ステント、切断ブレード、磁性材料の第1要素及び送信機が含まれる。切断ブレードは遠位バルーンの遠位に設置されており、磁性材料の第1要素は切断ブレードと遠位バルーンの間に設置されており、送信機は遠位バルーン内に設置されている。遠位バルーンはステント内に設置されている。送信機は高周波信号を発生する。
【0020】
分枝血管の壁を切断ブレードを用いて切断する。遠位バルーンを拡張位に保ち、分枝血管を切断後に分枝血管を閉塞する。分枝血管の切断端は、ガイドワイヤを操作することにより、又は磁性材料の第2要素(ここで、磁性材料の第2要素は患者の体外に設置されている)により磁性材料の第1要素を操作することにより、第1閉塞部位の遠位の冠動脈領域に向かって切断されている。
【0021】
送信機の真の位置及び相対位置、更に分枝血管の切断端の位置を三角測量及び座標地図作製システムを用いることにより測定する。三角測量及び地図作製システムには患者の体外に設置された3つの参照電極が含まれる。参照電極のうち2つは心臓の対側に設置され、3番目の参照電極は背中に設置される。3つの参照電極は送信機上において三角測量を行うために用いられる。
【0022】
分枝血管の断端が適切に位置していれば、切断ブレードを用いることにより開口部が冠動脈において第1閉塞部位に対して形成される。分枝血管の切断端を冠動脈内に開口部から挿入し、遠位バルーンを膨張させることによりステントを拡張させ、これにより冠動脈の管腔に対して分枝血管の切断端を取り付ける。
【0023】
【特許文献5】米国特許6,385,476 B1
【0024】
Osadchyらによる米国特許第6,385,476B1、発明の名称”Method and Apparatus for Intracardially Surveying a Condition of a Chamber of a Heart”は患者の心臓内においてカテーテルを誘導し、心臓の腔の状態に関する情報を取得する方法に関するものである。造影剤を心臓内に注入し、左心室の第1画像(即ち、造影X線透視画像)を取得する。カテーテルを心臓腔内に進め、カテーテルが入っていることを示す腔の第2画像を取得する。第2画像はX線透視法、心エコー図、磁気共鳴画像診断法(MRI)、又はコンピュータ断層撮影法(CT)による。外形情報を、手動で、心室外形の縁をなぞって描くことにより、自動的に、外形抽出アルゴリズムにより、又は半自動的に、第1画像から得る。
【0025】
左心室の外形上にカテーテル先端を示している第1画像上に第2画像を重ね合わせる。重ね合わせ画像は、静的カテーテル先端画像上に重ね合わせた静的外形画像、動的カテーテル先端画像上に重ね合わせた静的外形画像又は動的カテーテル先端画像上に重ね合わせた動的重ね合わせ画像とすることができる。心臓腔の状態に関する情報を取得する心臓腔内における位置はディスプレイ上に表示することができ、これにより心臓専門医が状態に関する情報を取得する全ての点を視覚的に支持することができる。
【0026】
【特許文献6】米国特許6,317,621 B1
【0027】
Graumannらによる米国特許第6,317,621 B1、発明の名称”Method and Device for Catheter Navigation in Three-Dimentional Vascular Tree Exposures”は、脳の画像に従い、術中の放射線照射なしに、また術中の造影剤を投与することなしにカテーテルを患者の脳内において誘導する方法についてのものである。複数のマーカーを患者の頭部外表面に取り付ける。位置検出システムの送信機コイルは患者の近くに設置され、受信機はカテーテルの先端内に作られている。CアームX線装置を用いて患者の頭部を様々な方向から照射し、患者の頭部について少なくとも2つの2次元投影画像を生成する。
【0028】
各2次元投射画像には各マーカーの画像が含まれている。各マーカー位置画像を投影画像特有の投影マトリックスを用いて投影する。3次元画像における各マーカーの位置をマーカーの投影円錐の交差体積に従い決定する。3次元画像における各マーカーにマウスで接近し、カテーテルの先端を同マーカーに接触させることにより、3次元画像におけるマーカー位置をカテーテルの先端に位置合わせする。ディスプレイは、分割及びその後のボリューム・レンダリングにより生成した血管樹の3次元画像と合わせてカテーテルの先端を表示する。
【0029】
本発明は、以下の図面と併せて下記の詳細な説明によって、より十分に理解及び認識されるであろう。
【発明を実施するための最良の形態】
【0030】
本発明は、管腔の画像、医療装置(例えば、PCI装置、拡張バルーン、ステント搬送システム)の位置を図形的に示し、いつ医療装置が選択位置に到達したかを示すことにより従来技術の欠点を克服する。医療装置はカテーテル先端に取り付けられている。医療測位システム(MPS)センサは選択位置に対して相対的に医療装置の位置を常に検出する。この位置は、リアルタイム画像(例えば生の透視画像)、擬似リアルタイム画像又は以前に記録した管腔の静止画フレーム上に表示され、これにより患者の検査臓器に繰り返し放射線を照射する必要もなく、患者の体内に造影剤を繰り返し注入する必要もない。医療スタッフは、画像表示や音声出力といった適切なユーザーインターフェイスからのフィードバックに従い手動でカテーテルを誘導する、又はカテーテルを選択位置に向けて自動的に誘導するカテーテル誘導システムを作動させることができる。
【0031】
本明細書で以下に用いる用語「位置」は、空間における点の位置、空間における点の方向、又はその組み合わせを意味する。本明細書で以下に用いる用語「管腔」とは、ヒト患者又は手術動物の生体管状構造を意味しており、動脈、静脈、心臓血管、脳血管、泌尿生殖器系の一部、腎臓系、肝臓系、気管支樹などがある。本明細書で以下に用いる用語「医療装置」とは、患者の体内の管腔内において最小限の侵襲の手術を実施する際に用いるものを意味する。医療装置は、拡張バルーン、ステント搬送システム、バルーン拡張ステント、自己拡張型ステント、経皮的弁システム、経皮的冠動脈介入(PCI)のような血管拡張ユニット、レーザーのようなアブレーションユニット、低温液体ユニット、電気刺激ユニット、カッティングバルーン、回転式アテローマ(動脈粥腫)切除ユニット(すなわち、ローターブレーター)、指向性アテローマ切除ユニット、経管的摘出ユニット、被覆又は薬剤溶出金属ステント、生体吸収性ステント、薬剤搬送バルーンのような物質搬送ユニット、ガイドワイヤなどであってよい。本明細書で以下に用いる用語「ステント」及び「PCI」は「医療装置」の2種類の異なった具体例であることを指摘しておく。
【0032】
本明細書で以下に用いる用語「臓器タイミング信号」とは、心臓サイクル又は肺の呼吸サイクルを示す信号を意味する。臓器タイミング信号はECGモニタ、呼吸数モニタといった従来の方法を用いて取得され、これらは本明細書で以下に用いる用語「臓器タイミング信号モニタ」として示される。あるいは又、臓器タイミング信号は心臓サイクル又は呼吸サイクルによる管腔の動きを測定することにより取得してもよい。心臓サイクル又は呼吸サイクルによる管腔の動きはカテーテルに取り付けられたMPSセンサにより測定することができる。この場合には、MPSが図9と併せて以下に本明細書に記載の方法により個々の臓器タイミング信号を決定する。
【0033】
本明細書で以下に用いる用語「シネループ」とは、あらかじめ記録した管腔の2次元連続画像を意味するものであり、これらは患者の検査臓器のリアルタイム臓器タイミング信号と同期して繰り返し(即ち、ループで)再生することができる。2次元画像はX線透視検査、Cアームといった2次元画像取得装置により取得され、画像取得時に対応する検査臓器の活動状態に対応させて個々に記憶される。個々の場合において、患者の体内に注入した造影剤が活性状態にある間に2次元画像を取得することにより血管造影図が生成される。本明細書で以下に用いる用語「透視図」とは、管腔の画像であり、これは異なった観察角から取得されている、異なった種類の複数の画像取得装置により取得されている、ほぼ同じ種類の複数の画像取得装置により取得されている、又はその組み合わせである。
【0034】
本明細書で以下に用いる用語「連続画像」とは患者の管腔の画像を意味するものであって、プロセッサと組み合わせた画像取得装置により取得されるものである。システムが複数の画像取得装置を有する場合には、個々の画像取得装置は異なった組の連続画像を取得する。プロセッサは連続画像のうちの1組から画像を選択することにより管腔の静止画像を生成することができる。連続画像は2次元であってもよい(即ち、2次元画像取得装置により取得されてもよい)。本明細書で以下に用いる用語「ナビゲーション画像」とは、操作者がカテーテルを管腔系内で操作するために見る画像を意味する。ナビゲーション画像は2次元であっても3次元であってもよい。ナビゲーション画像は静止画像であっても、リアルタイム画像であっても、管腔系のシネループであってもよい。
【0035】
或いは又、連続画像は3次元であってもよい。この場合には、プロセッサは3次元連続画像は複数の2次元画像を再構成して3次元連続画像を生成するが、これは検査臓器の臓器タイミング信号に従い、個々の2次元画像の座標に対応する位置情報によるものであり、これらはMPSがMPSセンサの出力に従って測定するものである。プロセッサは連続画像のうちの1組から画像を選択することにより管腔の静止画像(即ち、2次元又は3次元)を生成することができる。
【0036】
本明細書で以下に用いる用語「リアルタイム画像」とは、操作者がカテーテルを管腔系内で操作するためにリアルタイムで見る画像を意味する。リアルタイム画像は管腔系と一緒に管腔系内のカテーテルをリアルタイムで示す。リアルタイム画像は2次元であっても3次元であってもよい。本明細書で以下に用いる用語「医療測位システム(MPS)」とは電磁気学的位置検出システムを意味し、このシステムは電磁的送信機の電磁放射に反応する3軸コイルの出力により物体の位置を検出する。
【0037】
次に図1A、1B、2A、2B、3A及び3Bを参照しながら説明する。図1Aは通常100で参照されるグラフィカルユーザーインターフェース(GUI)の概略図であり、ここには患者の体内の管腔系の2次元画像における医療装置の例が示されており、これは発明の実施例により構成され、動作するものである。図1Bは全体を102で参照するGUIの概略図であり、ここには図1Aの管腔系の管腔の3次元画像における医療装置の他の例が示されており、これは本発明の実施例により構成され、動作するものである。図2Aは図1AのGUIの概略図であり、図1Aの2次元画像上に管腔系内の選択位置に対応する一連のマーク及び選択位置に向かって進められている医療装置の現在位置の例を示す。図2Bは図1BのGUIの概略図であり、図1Bの3次元画像上に図2Aの一連のマークに対応する他の一連のマーク、及び医療装置の現在位置の他の例を示す。図3Aは、医療装置が選択位置に到達した際の図1AのGUIの概略図を示す。図3Bは、医療装置が選択位置に到達した際の図1のGUIの概略図を示す。
【0038】
図1Aに示すように、患者(図示せず)の体内の管腔系(例えば、冠動脈−図示せず)が複数の2次元画像取得装置(図示せず)により撮像される際に、操作者(例えば、医師)はカテーテル(図示せず)を管腔系内に挿入する。GUI100には管腔系の2次元画像104が含まれており、これは各2次元画像取得装置により検出される。
【0039】
2次元画像104はX線透視画像(例えば、血管造影図)、超音波画像、光コヒーレンストモグラフィー(OCT)により検出された画像などであってよい。X線透視画像又は血管造影図の場合には、造影剤が管腔系内に存在する間は、2次元画像104は管腔系から取得されるリアルタイム画像である。超音波画像は同じ管腔系内でカテーテルを引き戻す際に取得されるものであり、当該技術分野において仮想血管内超音波(即ち、仮想IVUS)画像として知られている。仮想IVUS画像は管腔系のリアルタイム画像とともに表示することができる。仮想IVUS画像は管腔系の静止画像であっても、そのシネループ(即ち、連続画像)であってもよい。管腔系の仮想IVUS画像は管腔系内におけるカテーテルの現在位置に対応し、これはカテーテル先端に配置したMPSセンサ(図示せず)により検出される。この仮想IVUS画像は患者の臓器(図示せず)の臓器タイミング信号のうち選択した位相において表示することができる。従って、2次元画像104はリアルタイム画像であっても、静止画像であっても、又はシネループであってもよい。
【0040】
シネループはリアルタイム画像とは異なった観察角から取得することができ、これにより操作者は1つの観察角からの管腔系のリアルタイム視野及び管腔系の同じ部分の異なった観察角(2面モード操作)からのシネループ視野(即ち、ナビゲーション画像)を得ることができる。或いは又、2面モードは2つの異なった観察角から取得した2つのシネループを有することが可能であり、これにより操作者は2つの異なった観察角から取得した2つのシネループを得ることができる。2つ以上の観察角からの2つ以上の異なった画像組を用いることが可能であり、これにより多面操作モードが可能となるということを指摘しておく。
【0041】
2次元画像104は管腔系の静止画像(即ち、シネループの複数の画像のうちの1枚で、操作者が選択したもの)であってもよい。この場合には、選択した2次元画像は例えばコントラストが他のすべてよりも良好な(例えば、画像の暗い画素と明るい画素の明るさの違いが大きい)画像であって、医療装置を管腔系内で誘導する際に操作者が医療装置の選択位置を示す又はステントのリアルタイム表示を見るのに十分に管腔系を表現する画像とすることができる。
【0042】
図1Bに示すように、GUI102にはGUI100に示された管腔系の管腔(108として参照)の3次元画像106が含まれており、ここに貫通するようにカテーテルが操作されている。3次元画像106は画像取得段階を通じて2次元画像取得装置により検出された複数の2次元画像から当該技術分野において知られている技術により再構成したものである。
【0043】
3次元画像106は管腔108の3次元シネループ(即ち、ナビゲーション画像)であり、ループで再生され、検査臓器のリアルタイム臓器タイミング信号に同期している。或いは又、3次元画像106は管腔108の静止画像であり、シネループの複数の3次元画像の中から選択されたものである。操作者はシネループを再生したり巻き戻したりして静止画像を選択することができる。さらに又は、3次元画像106は検査臓器の選択した活動状態で固定した管腔108の静止画像である。
【0044】
3次元画像106は検査臓器(例えば、検査管腔−図示せず)の動きに対応したリアルタイム臓器タイミング信号(例えば心臓サイクル)に同期している。臓器タイミング信号は例えば、患者に取り付けたECGモニタ(図示せず)により取得することができる。或いは又、図9、10A及び10Bに関連して本明細書で以下に記載するとおり、臓器タイミング信号(例えば、患者の心拍又は呼吸)はMPS(図示せず)により測定することができる。
【0045】
本発明によるシステムは、患者のリアルタイム臓器タイミング信号に同期して、あらかじめ記録した連続画像のリストの中から選択した連続画像(対応する2次元画像取得装置により検出された連続した2次元画像、又は複数の2次元画像から再構成した連続した3次元画像−即ち、シネループ又はビデオクリップ)を表示することができる。システムは選択した連続画像の中の静止画像を表示することができる。或いは又システムは、あらかじめ同じ2次元画像取得装置又は他の2次元画像取得装置により取得した検査臓器のナビゲーション2次元連続画像と並べ、検査臓器のリアルタイム臓器タイミング信号と同期して再生させながら、2次元画像取得装置のうちの一つにより第1観察角から取得した検査臓器のリアルタイム2次元画像を表示できる。
【0046】
操作者は臓器のリアルタイム臓器タイミング信号と同期した2次元連続画像(例えば、X線透視図)を見ることができ、これにより造影剤を繰り返し注入する必要がなくなり、患者及び操作者が不必要に被曝しなくなる。或いは又システムは、図7と合わせて本明細書で以下に記載するように、臓器の選択した活動状態に対応する画像(即ち、静止画像)を表示することができる。
【0047】
MPSセンサ(図示せず)はカテーテル先端に強固に固定されている。3次元画像106は2次元画像104と位置合わせされ、2次元画像104中の各点は3次元画像106中のそれぞれの点に対応する。このように3次元画像106の各点の座標は2次元画像104上に投影することができる。或いは又、2次元画像104の各点は3次元画像106に変換することができる(例えば、異なった観察角からの一連の2次元画像を取得することによって)。図6Cと合わせて本明細書で以下に記載するように、MPSセンサのリアルタイム表示110(図1A)を管腔108に重ね合わせることができる。MPSセンサのリアルタイム112(図1B)を3次元画像106に重ね合わせることができる。
【0048】
リアルタイム表示110に加えて、操作者は管腔108のリアルタイム2次元画像上でカテーテルに取り付けられた1個以上の放射線不透過性マーカー(例えば、金属バンド)を見ることができる。このような特徴により、管腔108内にほとんど又は全く造影剤が存在しない、又は管腔108内の造影剤が感知不能である場合であっても、操作者はリアルタイム2次元画像を使い続けることができる。
【0049】
管腔108を通って進む際のカテーテルの軌跡114(図1B)は、図6B及び6Cと合わせて本明細書で以下に記載するようにGUI102内に構成され表示される。軌跡114は管腔108の動きと同期し、MPSセンサにより取得される位置情報に従って常に更新される。更にこのようにして、3次元画像106を管腔108の座標系と比較して表示する。管腔108の動きは例えば、患者の心拍、呼吸、付近の筋肉の収縮などによって生じ得る。
【0050】
操作者はユーザーインターフェイス(図示せず)を介してシステムを操作することによりディスプレイ上にGUI100及びGUI102を入れ替わりで表示することができる。ユーザーインターフェイスは図4Dと合わせて本明細書で以下に記載するとおりスイッチ、フットペダルなどとすることができる。或いは又、ディスプレイはGUI100及びGUI102を隣り合わせて同時に表示することができる。更に又、システムはプロセッサと組み合わせたディスプレイを複数有することが可能であり、各ディスプレイには異なった連続画像が表示される。操作者は例えばフットペダルを踏むことによりシステムを操作して管腔系のリアルタイム2次元画像を表示することができ、これにより対応する2次元画像取得装置を作動させることができる。或いは又、操作者はユーザーインターフェイスを介してシステムを操作し、あらかじめ取得した管腔系の2次元シネループを管腔系のリアルタイム2次元画像に代わって表示することができる。この場合には、システムは最後に再生した2次元シネループを表示する。もしシステムにシネループ(即ち、事前記録された時間タグ付き連続画像)が含まれていない場合には、システムは直近のリアルタイム2次元画像のシネループを表示する。更に又は、操作者はシステムを操作してリアルタイム2次元画像及び選択したシネループを同じディスプレイ上に隣り合わせて表示することができる。
【0051】
GUI100及びGUI102を利用して、操作者はカテーテルを手動で操作して、カテーテルを管腔系内の所定領域に到達させる。或いは又、図11及び12に関連して本明細書で以下に記載するように、操作者は自動システム(図示せず)を用いて、カテーテルを所定領域まで自動的に操作することができる。
【0052】
図2Aに、計画セッションの間に操作者は管腔108の選択位置として2次元画像104上に複数のマーク116、118及び120を図式的に示し、これらのマークは医療装置(図示せず)を搬送すべき位置である。操作者は管腔108の静止させた2次元画像上又は管腔108の静止させた再構成3次元モデル上にマーク付けを行う。操作者は例えば手動のような異なったやり方で、自動2次元又は3次元定量的心臓評価(QCA)などに従ってマーク付けを行う。
【0053】
計画セッション中に、複数のディスプレイのそれぞれに、予め管腔108を通して操作したカテーテルの軌跡を管腔108の画像上に重ね合わせたものを表示する。軌跡を2次元画像104上又は3次元画像106上(例えば、軌跡114)に表示することができる。
【0054】
この軌跡は例えば、誘導型血管内超音波カテーテル(GIVUS−図示せず)を用いることにより計画セッションに先立つ撮像セッションにおいて取得できる。GIVUSはその先端に画像検出器(例えば、超音波トランスデューサ)を有し、さらにこの画像検出器付近にMPSセンサを有するカテーテルである。操作者はGIVUSを管腔内で物理的に可能な限り先まで操作し、それから管腔を通してGIVUSを引き戻してくる。引き戻してくる間に、画像検出器は管腔の内側の2次元画像を複数検出する。
【0055】
本システムはMPSにより測定される画像検出器の対応する位置及び検査臓器の対応する活動状態の各々の2次元画像に関連するものである。本システムは引き戻してくる間に軌跡のシネループを決定することが可能であり、操作者は計画セッションに用いる静止させた軌跡を選択することができる。本システムは更にGIVUSにより取得した時間タグ付き2次元画像に従い3次元画像106を再構成することができる。
【0056】
計画セッション中に、対応するディスプレイの1つには、管腔118上に、ユーザーインターフェイスによって明示されたマーク116、118、120が表示されている。操作者は軌跡(例えば、図1Bの軌跡114)の全長に沿ってマーク116、118、120を動かすことができる。マーク118は医療装置の中央を示し、マーク116及び118はそれぞれ医療装置の後端及び前端を示している。システムはマーク116と120との間の距離を操作者が選択した種類(例えば、ステントの大きさ)に応じて測定する。マーク116、118及び120は一緒に軌跡上に自動追跡されており、操作して軌跡の上を動かすことができる。操作者は、医療装置を搬送していく軌跡に沿ったマーク118の位置を指定する。
【0057】
簡単のため、図2A、2B、3A及び3Bにおいて説明した医療装置を例えばステントとする。この場合には、マーク116、118及び120は各々ほぼ直線であり、これは管腔118に垂直である。例えば、マーク116及び120はステントの2つの端を示しており、マーク118はステントの中央を示している。マーク116、118及び120は管腔108内におけるステントの位置を規定するだけでなく、その方向も規定する。マーク付けは、ジョイスティック、押しボタン、ポインティングデバイス(例えば、マウス、スタイラス及びデジタルタブレット、トラックボール、タッチバッド)などのようなユーザーインターフェイス(図示せず)によって行う。
【0058】
複数のマーク122、124及び126は、マーク116、118及び120にそれぞれ対応するものであって、GUI102における3次元画像上に同時に表示される。マーク付けを行うために、2次元画像104及び3次元画像106をそれぞれ、検査臓器(例えば、心臓)の同一の活動状態において静止させる。このように静止させるという特徴により管腔108の静止画像が得られ、従って画像のぶれを防止し操作者がうまくマーク付けすることが可能となる。
【0059】
マークを手動で指示するのではなく、アルゴリズムを用いて自動的に選択位置を識別し(例えば、管腔内におけるプラーク(粥腫)による閉塞の割合を選択してアルゴリズムに入力することにより)、マーク116、118、120、122、124及び126を自動的に指示することができる。本発明のこの実施例については本明細書で以下に図8A、8B及び8Cに関連して記載してある。本システムは3次元画像106における閉塞データに関連するものであり、この閉塞データを2次元画像上104に投影し、これによりマーク116、118及び120を指示するものである。
【0060】
計画セッションに続く医療操作中には、ステント(図示せず)を含むカテーテルを管腔内においてマーク116、118及び120に向けて操作する。MSPセンサ(図示せず)はカテーテルのステント付近に取り付けられている。図2A及び2Bに示すように、ステントの前端及び後端の位置はリアルタイムで、2次元画像104にはおいてそれぞれ番号128及び130として、3次元画像106ではそれぞれ番号132及び134として表示されている。図2A及び図2Bに示す実施例では、番号128及び130は長手方向の直線136及び138に沿った長方形の形態をとっており、これらの直線は各々長方形を2分している。カテーテルの実際の軌跡は3次元画像106上に重ね合わせて番号140(図2B)により表されている。カテーテルの実際の軌道は2次元画像104上に重ね合わせて他の番号(図示せず)により表されている。
【0061】
医療操作中には、カテーテルを管腔108を通して操作する間に、本システムは番号128及び130をマーク116、118及び120とともに管腔108のリアルタイム2次元画像(血管造影図)上、管腔108の2次元シネループ上、又は管腔108の静止させた2次元画像上に重ね合わせる。加えて、本システムは番号132及び134をマーク122、124及び126とともに管腔108のリアルタイム3次元画像上、管腔108の静止3次元画像上、又は管腔108のシネループ上に重ね合わせる。更に、これに加えて、本システムは番号132及び134をマーク122、124及び126とともに管腔108のリアルタイム2次元画像上だけでなく、リアルタイム2次元画像とは異なった観察角から取得した1種類以上の管腔108のナビゲーション画像(例えば、仮想IVUS画像−静止画像又はシネループ)上に重ね合わせる。
【0062】
本システムは操作者が管腔108内に設置するために選択したステントの種類(即ち、大きさ)に応じて番号128と番号130との間の中心間距離を測定する。対応するディスプレイに表示されたこの距離は、ステントを管腔108を通して操作する際にはほぼ固定である。番号128及び130は、ステントを管腔198を通して操作する際には図104上で一緒に動く。対応するディスプレイには、カテーテル(図示せず)を管腔108を通して操作する際、又は患者に対する医療操作後の再生セッション中に軌跡140及び142を表示することができる。
【0063】
本システムは番号128、130、132及び134、並びにマーク116、118、120、122、124及び126を管腔108の対応する画像上に、検査臓器のリアルタイム臓器タイミング信号に従って重ね合わせる、ということを指摘しておく(即ち、本システムは、カテーテルを管腔108を通して操作する際に、検査臓器の動きによる管腔108の動きを考慮している。)。本発明のこうした特徴により、本システムはマーク116、118、120、122、124及び126を管腔108の振動する画像上に、はじめに操作者が管腔108に対して指示したのとほぼ同じ位置に表示することができる。もし本システムがこのように作動しなければ、マーク116、118、120、122、124及び126は管腔108のぶれる画像に対して安定することはないであろう。同様に、番号128、130、132及び134は管腔108のぶれる画像に対してほぼ静止している。
【0064】
操作者は本システムを操作することにより、ユーザーインターフェイスを介して、任意のマークの重ね合わせ表示、ステントの位置、軌跡又はこれらの組み合わせの表示を行うことも消去することもできる。色、形、大きさなどいかなる属性も、異なってさえいれば、マークの表示及びステントの表示用に選択することができる。しかし、マーク又はステント表示は2次元画像104と3次元画像106において同じ属性で表示される。例えば、マーク116、118、120、122、124及び126は緑色で表示され、番号128、130、132及び134は青色で表示され、軌跡140は赤色で表示される。
【0065】
図3A及び3Bに示すように、カテーテルを管腔108を通して操作する間に、2次元画像104及び3次元画像106はそれぞれ管腔108の座標系に対して(即ち、カテーテルに取り付けられ、管腔108とともに常に動くMPSセンサに対して)表示される。ステントが選択位置に到達した(即ち、ステントの前端がマーク120にほぼ位置合わせされ、ステントの後端がマーク116にほぼ位置合わせされた)際には、ユーザーインターフェイス(例えば、音声、視覚又は触覚装置−図示せず)が操作者にそのことを伝える。
【0066】
図3Aにて説明した実施例において、ステントが選択位置に位置合わせされた際には、それぞれの組の長手方向の直線とマークとが交差する(即ち、長手方向の直線136はマーク120と共に交差を形成し、長手方向の直線138はマーク116と共に別な交差を形成する)。加えて、ユーザーインターフェイスはステントが選択位置から離れる際には比較的弱い出力を、選択位置に近づく際には比較的強い出力を生成することができる。例えば、ステントとマーク118との間の距離が縮まる際には、音声信号の音量は大きくなり、他の場合には音量は小さくなる。選択位置に向かって操作する際のカテーテルの軌跡は、3次元画像106上に重ね合わせられた142(図3B)で参照される特徴によって示されている。
【0067】
図4A、4B、4C及び4Dについて更に説明する。図4Aは、検査臓器の活動状態Tにおける図1Aの管腔の2次元画像の概略図であり、全体を144で参照する。図4Bは、活動状態Tにおける図1Aの管腔の他の2次元画像の概略図であり、全体を146で参照する。図4Cは、活動状態Tにおける図1Aの管腔の更なる2次元画像の概略図であり、全体を148で参照する。図4Dは、全体を150で参照するGUIの概略図であり、ここには図1Aの管腔に設置されたカテーテルのMPSセンサのリアルタイムかつほぼ安定した表示が含まれており、図4Bの管腔に重ね合わされている。本GUIは本発明の更なる実施例により構成され、動作するものである。
【0068】
本明細書において以下に記載の画像144、146及び148はそれぞれ2次元画像であっても3次元画像であってもよい。画像144、146及び148は、計画セッションに先立って取得された管腔108(図1A)の画像組に含まれるものである。図4Bについて、活動状態Tにおける管腔108は、点152によって示されており、活動状態Tにおける位置に対してY軸負の方向に沿って距離Sだけ移動している。図4Cについて、活動状態Tにおける管腔108は、活動状態Tにおける位置に対してY軸負の方向に沿って距離Sだけ移動している。
【0069】
患者の管腔系内に注入された造影剤は管腔108内に非常に短い期間だけ残留する。この期間中には、画像組のコントラストがピークまで次第に増加し、次に次第に減少して画像は完全に消失する。操作者は画像144、146及び148の中から1つ(例えば、画像146)を選択し、マーク116、118及び120(図2A)を指示し、その後図146に重ね合わせて特徴128及び130より示されるカテーテルのリアルタイムの進行を観察する。操作者は、例えば画像146は、画像144及び148よりコントラスト比が高く、かつ画像144及び148に比べて特徴128及び130が最も鮮明に見えるなどの理由により、画像146を選択する。画像146(図4D)は活動状態Tにおける管腔108の画像である。
【0070】
或いは又、本システムは検査臓器のサイクル(例えば、心臓サイクル)により管腔108の動きを補正し、これによりほぼ静止している管腔108の画像(図示せず)に医療装置のほぼ静止したリアルタイム表示を重ね合わせる。この場合には、本システムはカテーテルに取り付けられたMPSセンサの座標系内に画像を生成する。従って、検査臓器のサイクルにより管腔108は実際には動いているにも関わらず、操作者は医療装置のリアルタイムのほぼ静止した表示とともに管腔108のほぼ静止した画像を見ることができる。この技術がなければ、操作者は医療装置のリアルタイム表示とともに管腔108の不安定で速く震える画像を見ることになり、これは目を煩わせるものである、ということを指摘しておく。
【0071】
図4Dに示すように、GUI150には活動状態Tで静止させた管腔108の画像上に重ね合わせた医療装置のリアルタイム表現154を表示し、表現154は活動状態T及びTを含む全活動状態においてほぼ静止している。この場合には、本システムは表示座標系において画像146を生成し、ここではMPSセンサはほぼ静止している(例えば、ステントが管腔内を動くにつれて周りの風景は変化するが、ステントは画像の中心に固定されている。)。本発明のこのような特徴により、本システムは医療装置をほぼ静止して表示することができ、心臓サイクルによる振動をほぼなくすことができる、ということを指摘しておく。このようにして本システムは、カテーテルを管腔108を通して操作する際に、管腔108上への表示154の重ね合わせを画像の境界内に保つ。心臓サイクルによる動きが補正されない場合、表示154は点156と158(それぞれ、距離S及びSに対応する。)の間を激しく行き来し、操作者を煩わせる。
【0072】
或いは又、本システムは管腔108の静止させた画像に対応する活動状態にある医療装置の表示のみを重ね合わせ、管腔108の他の活動状態はすべて用いないことができる。図4Dについて、本システムは表示154が活動状態Tに対応する際にのみ、表示154を管腔108の画像に重ね合わせことができる。この種の表示もまた操作者にとってはほぼ満足のいく見え方であり、これは例えば非常に速いレート(周波数)の心臓サイクルの場合には、このようなデータ損失は人の目にはほとんど感知できないものであるからである。
【0073】
本システムは、管腔108の内側から取得した(例えば、GIVUSを用いることにより)一連の管腔108の時間タグ付き2次元画像から再構成した3次元画像の組により、距離S及びSを測定することができる。或いは又、本システムは距離S及びSを管腔108の外側から取得した2次元画像の組(例えば、画像144、146及び148)を処理して比較することにより測定することができる。
【0074】
操作者は本システムを操作してユーザーインターフェイス(図示せず−例えば、フットペダル)を用いてGUI150と管腔108のリアルタイム2次元画像(例えば、血管造影図)どうしを入れ替えることができる。操作者がフットペダルを踏むと、2次元画像取得装置は患者の体の一部分を照射し、GUI150に代わりリアルタイム2次元画像がシステムに表示される。或いは又、本システムはリアルタイム2次元画像をGUI150上に重ね合わせることができる。更に又、本システムはリアルタイム2次元画像をGUI150に並べて表示することができる。
【0075】
次に図5を参照して説明するが、図5は医療装置を患者の体内の管腔内の選択位置まで到達させる方法の概略図であり、本発明の他の実施例により動作する。手順160において、患者の体内の管腔内における選択位置に対応する位置情報が受信されるが、この位置情報は管腔の画像に関連づけられ、画像は座標系に関連づけられ、座標系は更に医療測位システム(MPS)に関連づけられる。
【0076】
図2Aに示すように、システムのプロセッサはユーザーインターフェイスを介して、操作者が2次元画像104上で指示したマーク116、118及び120に対応する位置情報を受信する。マーク116、118及び120は医療装置が搬送されるべき選択位置を示している。マーク116、118及び120は2次元画像104に関連づけられ、この2次元画像104は座標系に関連づけられ、更にこの座標系はMPSに関連づけられている。プロセッサは、マーク116、118及び120のMPS座標系における座標を特定する(手順162)。プロセッサは更に、3次元画像106におけるマーク122、124及び126のMPS座標系における座標を特定し、これらのマークはそれぞれマーク116、118及び120に対応する(手順162)。
【0077】
手順164において、少なくとも1つの連続画像を複数の連続画像から選択するが、連続画像はそれぞれ異なった視野から取得されたものである。プロセッサは1つの連続画像を複数の連続画像から選択するが、それぞれの連続画像は異なる画像取得装置により、異なる観察角から、又はこれらの組み合わせで取得されたものである。
【0078】
手順166において、MPS座標系における医療装置の現在位置を測定する。図1Aについて、MPSは、MPS座標系における医療装置の現在位置をMPSセンサの出力により測定する。この現在位置がリアルタイム表示110により表示される。
【0079】
手順168においては、選択した連続画像により、そして患者臓器に対応する臓器タイミング信号により、管腔のナビゲーション画像を生成する。図2Aに示すように、プロセッサは、プロセッサが手順164において選択した連続画像により、そして患者臓器(例えば、心臓)のリアルタイム臓器タイミング信号により、2次元画像104を生成する。或いは又、図2Bに示すように、プロセッサは同様に3次元画像106を生成する。
【0080】
手順170において、選択位置をあらわすマーク表現及び医療装置の現在位置に対応する現在位置表現をナビゲーション画像に重ね合わせ、これにより重ね合わせ画像を生成する。図2Aに示すように、プロセッサは、プロセッサが手順168において生成したナビゲーション画像上にマーク116、118及び120を重ね合わせ、更に特徴128及び130を重ね合わせることにより、2次元画像104を生成する。或いは又、プロセッサは同様に、3次元画像106を生成する。
【0081】
手順172において、カテーテルを管腔を通し、選択位置に対する医療装置の現在位置に応じて、選択位置に向かって操作する。図2Aについて、操作者はディスプレイ上の特徴128及び132、並びにマーク116、118及び120を見ながらカテーテルを手動で選択位置に向かって操作する。或いは又、操作者は図11と合わせて本明細書で以下に記載してあるとおり自動又は半自動でカテーテルを選択位置に向かって操作する。プロセッサが、医療装置の現在位置が選択位置にほぼ一致していると判断すると、プロセッサは通知出力を出す(手順174)。
【0082】
本発明の他の実施例によれば、手順164は上述した方法から除外することができる。この場合には、手順168において、プロセッサは単一の連続画像によりナビゲーション画像を生成し、操作者は異なった観察角から、又は異なった画像取得装置により取得した管腔108の異なる画像を見ることはできない。本発明の更なる実施例によれば、手順164、168及び170は最適であって、内部でカテーテルを操作中の管腔を表示するいかなる視覚的補助もなく手順172を実施する(即ち、視界ゼロで飛行する装置に似ている。)。
【0083】
システム(図示せず)は3次元画像106を2次元画像取得装置により取得した複数の2次元画像により、および管腔108の臓器タイミング信号により生成することができ、この3次元画像106の連続画像をリアルタイム臓器タイミング信号に同期して再生することができる。本システムはまた管腔108のシネループのリストから選択したシネループをリアルタイム臓器タイミング信号に同期して再生することができる。本システムは臓器タイミング信号の選択した活動状態(例えば、画像を停止させる)に対応した2次元画像104又は3次元画像106を表示することができる。
【0084】
本システムは選択したMPSセンサ(例えば、カテーテルに取り付けたMPSセンサ、患者の体に取り付けたMPSセンサ、又は手術台に取り付けられたMPSセンサ)の座標系に対して2次元画像104又は3次元画像106を表示することができる。本システムはシネループシーケンスから選択した静止画像を表示することができる。本システムは、ECGにより取得したデータの代わりにMPSデータを処理することによって臓器タイミング信号を取得することができる。本システムは2次元画像104又は3次元画像106上に重ね合わせたカテーテルの位置の表示、及び管腔内におけるカテーテルの実際の軌跡を表示することができる。本システムは選択した閉塞割合を有する管腔108におけるプラーク(粥腫)を識別し、このプラークの位置をマーク116、118及び120により示すことができる。
【0085】
2次元画像取得装置はコンピュータ断層撮影法(CT)、核磁気共鳴(MRI)、ポジトロン放出断層撮影法(PET)、単光子放出コンピュータ断層撮影法(SPECT)、透視法(即ち、X線装置)、Cアーム、ガイド下血管内超音波(GIVUS)、体外超音波法、光コヒーレンストモグラフィー(OCT)検出器などのような当該技術分野において知られるいかなる種類のものであってもよい。2次元画像取得装置はそれぞれ患者の体外から(例えば、Cアーム、CT、MRIを用いることにより)の管腔108(図1A)の2次元画像又は管腔108内における(例えば、GIVUSを用いて)管腔108の2次元画像を取得する。
【0086】
管腔の臓器タイミング信号のうち選択した活動状態におけるカテーテルの検出位置による、管腔内におけるカテーテルの軌跡の再構成についての以下に記載する。このようにして、選択した活動状態に対応する軌跡を同じ活動状態に対応する管腔の3次元画像とともに表示することが可能である。或いは又、管腔のリアルタイム3次元連続画像を管腔の臓器タイミング信号に従い、軌跡とともに表示することが可能である。
【0087】
更に図6A、6B及び6Cについて説明する。図6Aは患者のECGの概略図であり、その全体を300で参照する。図6Bは図1Aの管腔内に配置されたカテーテル先端の軌跡の概略図であり、図6AのECGの各々の活動状態に対応しており、本発明の他の実施例により構成されている。図6Cは、2次元画像取得装置、MPS及びECGモニタから取得した信号を処理することにより3次元的な臓器の動きに応じた連続画像を再構成するプロセスの概略図であり、追加的な画像データを重ね合わせてある。追加的な画像データは、管腔内におけるカテーテルの位置、管腔内におけるカテーテルの軌跡などを含むことができる。
【0088】
ECG300には複数の心臓サイクル302、304、306それぞれにおける活動状態T、T及びTのような複数の活動状態(例えば、ECGサイクルの位相)が含まれている。出願人は、心臓サイクル302、304及び306のそれぞれを通じて異なる活動状態では管腔108(図1A及び1B)の位置が異なる、ということを見出している。
【0089】
例えば、心臓サイクル302、304及び306それぞれの活動状態Tにおいて、管腔108の位置は位置330(図6B)における管腔画像によって示されている。心臓サイクル302、304及び306それぞれの活動状態Tにおいて、管腔108の位置は位置332における管腔画像によって示されている。心臓サイクル302、304及び306それぞれの活動状態Tにおいて、管腔108の位置は位置334における管腔画像によって示されている。位置330において、点336、338および340は活動状態Tにおけるカテーテル(図示せず)の異なる位置を示す。位置332において、点342、344および346は活動状態Tにおけるカテーテルの異なる位置を示す。位置334において、点348、350および352は活動状態Tにおけるカテーテルの異なる位置を示す。
【0090】
プロセッサ(図示せず)はECG信号300の任意サイクルにおける活動状態T中に検出されたすべての2次元画像(すなわち、点336、338及び340において取得した画像)どうしを関連付ける。同様に、プロセッサ192は、ECG信号300の任意サイクルにおける活動状態T中に検出されたすべての2次元画像(すなわち、点342、344及び346において取得した画像)どうしを関連付け、更にECG信号300の任意サイクルにおける活動状態T中に検出されたすべての2次元画像(すなわち、点348、350及び352において取得した画像)どうしを関連づける。
【0091】
プロセッサは3次元画像を所与の活動状態Tについて関連づけられたすべての2次元画像から再構成する。図6Bに示すように、プロセッサは、活動状態T(図6A)の検査臓器の画像である3次元画像330、及び活動状態Tの検査臓器の画像である3次元画像332を再構成する。同様に、プロセッサは活動状態Tの検査臓器の画像である3次元画像334を再構成する。
【0092】
プロセッサは活動状態Tに関連づけられた点336、338及び340から軌跡354を算出する。同様に、プロセッサは活動状態Tに関連づけられた点342、344及び346から軌跡356を算出し、更に活動状態Tに関連づけられた点348、350及び352から軌跡358を算出する。
【0093】
プロセッサは、所与の臓器活動状態について、算出した各軌跡と再構成した3次元画像のうちの一つとを関連づける。図6Bに示すように、プロセッサは活動状態Tについて、軌跡354と再構成した3次元画像330とを関連づける。同様に、プロセッサは活動状態Tについて、軌跡356と再構成した3次元画像332とを関連付け、更に活動状態Tについて、軌跡358と再構成した3次元画像334とを関連づける。
【0094】
軌跡を算出するために用いた点336、338、340、342、344、346、348、350及び352は対応する2次元画像を取得した点でもあるので、プロセッサはそれぞれの算出した軌跡を対応する再構成3次元画像上に重ね合わせることができる。例えば、プロセッサは軌跡354を3次元画像330上に、軌跡356を3次元画像332上に、軌跡358を3次元画像334上に重ね合わせる。
【0095】
図6Cに示すように、プロセッサは、MPS座標データ382に応じて、管腔108の3次元画像106(図1B)を複数の2次元画像380から再構成し、これらのMPS座標データはすべてECGデータ384のサイクル中の選択した活動状態に関係する。プロセッサは3次元画像106を、活動状態Tに属するすべての2次元画像から再構成する。加えて、プロセッサは活動状態Tに対応するカテーテルの軌跡114(図1B)を点342、344及び346(図6B)から生成する。プロセッサは軌跡114及びカテーテル先端390の表示112(図1B)を3次元画像106上に重ね合わせる。
【0096】
システム(図示せず)は、連続した再構成画像又は取得した元の2次元画像の選択したサイクルを、記憶しているECGデータに従って、あるいは所定の時間間隔で再生することができる。本システムはまた、連続した再構成画像又は取得した元の2次元画像の選択したサイクルを、リアルタイムで検出したECGデータと同期して再生することもできる。
【0097】
カテーテルはリアルタイムで管腔108内を動くので、そのような態様では臓器タイミング信号に同期する必要がない、ということを指摘しておく。しかし、プロセッサは、画像を取得した座標系を、カテーテルのMPSセンサの座標系と位置合わせしておくか、あるいは画像取得プロセス及び再生手術手順に同じMPSシステムを用いなければならない、ということを指摘しておく。
【0098】
以下にGUIについて記載するが、このGUIにより操作者が患者の臓器の選択した活動状態において管腔の3次元画像を静止させることができる。このGUIにより、操作者は活動状態に関して順送りの再生、又は逆戻りの再生することもできる。
【0099】
更に図7を参照して説明するが、図7はECG並存型の管腔ディスプレイ(即ち、GUI)の概略図であり、全体を410で参照し、本発明の更なる実施例により構成され、動作するものである。ECG並存型ディスプレイ410は、ECGタイミング信号412、再生ボタン414、逆再生ボタン416、静止ボタン418及び3次元画像106(図1B)を含む。
【0100】
3次元画像106は、ECGタイミング信号412における活動状態420に対応する。操作者が再生ボタン414を押すと、管腔108の連続した3次元画像がウィンドウ422内に表示される。3次元画像はそれぞれウィンドウ422内に再生され、ECGタイミング信号412中のそれぞれの活動状態に対応し、ECGタイミング信号412は矢印424に示される方向に進むように見える。
【0101】
操作者が逆再生ボタン416を押すと、管腔108の3次元画像列がウィンドウ422内に連続的に表示される。各3次元画像はウィンドウ422内に再生され、ECGタイミング信号412中のそれぞれの活動状態に対応し、ECGタイミング信号412は矢印426に示される方向に戻るように見える。
【0102】
操作者が静止ボタン418を押すと、管腔108の3次元画像がウィンドウ422内に表示され、3次元画像は選択した活動状態428に対応する。このようにして、ウィンドウ422内の管腔108の3次元画像は活動状態428において静止したままとなり、この間に術者が管腔108の3次元画像を調べることができる。
【0103】
各々の3次元画像は、ウィンドウ422内に表示され、走査プロセス中にシステム(図示せず)によって取得される。従って、操作者は、患者の心臓の拍動とタイミングを合わせた動画の3次元画像を、順送りまたは逆戻りのいずれでも見ることができる。或いは又、操作者は選択した時点に合わせて静止ボタン418を押すことにより、選択した患者の心臓サイクル中の選択した活動状態に対応する管腔108の3次元画像を見ることができる。参照リアルタイム画像のような(即ち、透視画像のようなナビゲーション中のロードマップとして役立つような)他の連続画像も静止させることができる、という点を指摘しておく。
【0104】
以下に、管腔内において選択した閉塞割合を有するプラークを識別するためのGUIについて記載する。アルゴリズムに従って、プロセッサは管腔のリアルタイム画像上に必要なマークを、医療装置を搬送すべき選択位置として自動的に示す。
【0105】
更に、図8A、8B及び8Cを参照して説明する。図8Aは図1Aの管腔の実例であり、複数の閉塞領域を有する。図8Bは図8Aの管腔の選択領域の横断面図である。図8Cは、GUIにおける図8Bの管腔の表示の概略図であり、その全体を450で参照し、本発明の他の実施例により動作するものである。
【0106】
管腔108はプラーク452、454及び456を含む。プラーク452、454及び456はその場所に固定されたものでも動的なものでもあり得る、ということを指摘しておく。プラーク452、454及び456はそれぞれ、管腔108の75%、60%及び80%を閉塞している。図8Bに示すように、斜線領域は管腔108内におけるプラーク452による閉塞部分を示しており、管路部分458が血流用に残されている。
【0107】
プロセッサ(図示せず)は、プラークの種類、プラークの密度などのパラメータを考慮しながら、多くの方法により閉塞割合を決定することができる。以下はそのような方法の簡単な具体例である。
【数1】

ここに、SLUMENは管路部分458の横断面積を示し、SARTERYは管腔108の全内面積を示す。
【0108】
GUI450には画像ウィンドウ460が含まれる。画像ウィンドウ460には3次元画像106及び割合選択ウィンドウ462が含まれる。割合選択ウィンドウには目盛りバー464、ポインタ466及び数値ボックス468が含まれる。操作者は閉塞割合の閾値をユーザーインターフェイス(図示せず)を介してポインタ466を目盛りバーに沿ってドラッグすることにより動的に設定することができる。或いは又、操作者はユーザーインターフェイスを介して選択した閉塞割合の閾値を数値ボックス468に入力することができる。図8Bで説明している具体例では、選択した割合の数値は70%であり、数値ボックス468に示されている。
【0109】
システム(図示せず)は次に3次元画像106上に選択した閉塞割合よりもより閉塞されている領域だけを標識する。図8Bに説明している具体例において、70%以上閉塞した管腔108の領域だけが3次元画像106において標識されている。粥腫452及び456は、70%を越えており、3次元画像106上でぞれぞれ標識領域470及び472として示されている。標識領域470及び472は3次元画像106の残りの部分からは、異なった色により着色する、斜線により標識する、動かすなどにより区別されている。
【0110】
本システムにより、操作者が自分の医学的知識及び経験に従って、例えばこのプラーク領域がシステムが示したものとは異なっていると認めた場合には、操作者は手動で画面上のマークを修正することができる、ということを指摘しておく。更に、本システムは管腔の様々な層(即ち、中膜、外膜及び内膜)をGUI450に様々な色で示すことができる、ということを指摘しておく。
【0111】
以下に管腔の臓器タイミング信号を検出する方法を記載するが、この臓器タイミング信号は心臓サイクル又は呼吸サイクルによるものであり、ECGモニタではなくMPSを用いて検出する方法である。本明細書で以下に用いる用語「時間タグ付け」とはデータ要素をそのデータ要素を取得した正確な時刻に関連付ける処理(例えば、MPS座標の測定値をその測定値を取得した正確な時刻に関連付ける)を称する。複数のMPSセンサ(例えば、カテーテル先端に取り付けられたもの、2次元画像取得装置に取り付けられたもの、患者の体に取り付けられたもの及び手術台に取り付けられたもの)により取得されたデータは時間タグ付けされている。本明細書で以下に記載しているように送信機590A(図11)、590B及び590Cと同様の複数の送信機を2次元画像取得装置に取り付けた場合には、MPSセンサを2次元画像取得装置に取り付ける必要はない、ということを指摘しておく。この場合の理由は、2次元画像取得装置の座標系はMPSの座標系と位置合わせされているからである。2次元画像取得装置により取得された2次元画像も又時間タグ付けされている。時間タグはデータベース(図示せず)に蓄えられたデータ要素を処理する際に考慮される。
【0112】
レイテンシ(応答待ち時間)補正は、時間タグ付けされたすべてのデータ要素に対して行われる。一般に、2次元画像取得装置により取得された2次元(2D)画像組からの画像フレームは、その時間タグが対応するMPSデータ組の時間タグと一致するようにシフト(移動)させる(即ち、同時に取得したMPS座標の読取り値と画像とを互いに一致させる。)。
【0113】
本明細書に以下で用いる用語「対応するデータ組」とは、同じ時間タグを有する一対のデータ組を称する。データ組の時間タグとは、データ組内の要素の時間タグの組を称する、ということを指摘しておく。例えば、MPSデータ組中の読取り値が2次元画像データ組中の画像と同じ時間タグを有する場合には、MPSデータ組は2次元画像データ組に対応している。
【0114】
対応するデータ組とは、医療手順における同一セッションで生成されたデータ組のことを称する。本明細書で以下に用いる用語「対応しないデータ組」とは、異なった時間タグを有する一対のデータ組のことを指す。例えば、MPSデータ組中の読取り値が2次元画像データ組中の全画像とは異なった時間タグを有する場合には、MPSデータ組は2次元画像データ組とは対応しない。対応しないデータ組とは(同一の又は別の医療手順における)異なったセッションで記録されたデータ組を示す。
【0115】
更に図9を参照して説明し、図9は 臓器の動きとともに動くMPSセンサの位置情報により患者の臓器の臓器タイミング信号を測定する方法の概略図であり、本発明の更なる実施例により動作するものである。手順500において、データ組はMPSから取得する。それぞれのデータ組には、2次元画像取得装置、カテーテル、患者の体の選択領域又は患者が横になっている手術台の1連の位置座標測定値が含まれており、これらはそれぞれのMPSセンサから受信される。
【0116】
MPSは検出した電磁界を処理して対応する位置座標測定値を取得し、これらはその後にデータベースに記憶される。各MPSセンサの位置座標測定値は時間タグ付けされている、又は測定値を取得した正確な時刻に関連づけられている。従って、各MPSデータ組は、カテーテル先端に取り付けられたMPSセンサから受信されたものであって、カテーテルが時間とともに動く正確な軌跡を示す座標測定値の集積を含む。
【0117】
手順502において、心臓の位相情報を心臓の動きから取得する。特に、心臓の位相情報を、カテーテル先端に取り付けたMPSセンサから出るデータストリームから取得する。手順502は手順504、506、508、510及び512より成る。
【0118】
手順504において、周期運動の周波数は、時間タグ付けされたMPSデータ組中で検出され識別される。カテーテルを管腔108内において操作する際、カテーテルの動きは2つの追加的要素により影響を受ける。第1の要素は収縮及び拡張といった心臓の活動、即ち心臓の動きに関するものである。心臓の動きは様々な角度、周期的な間隔での収縮又は拡張といった特定の態様で管腔108に影響を及ぼす。第2の要素は吸入及び呼出といった呼吸活動又は呼吸による動きに関するものである。呼吸による動きは様々な角度、周期的な間隔での収縮又は拡張といった特定の態様で管腔108に影響を及ぼす。合わせて、カテーテルの全体の動きはカテーテル操作に関連した動きに重ね合わせた心臓の運動及び呼吸の運動から成る(これは管腔系の局所解剖に対応する。)。
【0119】
心臓の運動及び呼吸性の運動は本質的にサイクル的なものであるので、サイクルの周波数をカテーテルの軌跡全体において検出することができる。心臓の動きに関連する特有の周波数は、呼吸性の運動に関連する特有の周波数とは異なる特性を示す。心臓の動きに関連する特有の周波数は、検出した周波数から識別される。同様に、呼吸性の運動に関連する特有の周波数は、検出した周波数から識別される。プロセッサはMPSデータについての解析を行い、関連する周期運動の周波数を識別する。
【0120】
手順506において、周期運動の周波数は、時間タグ付けされたMPSデータ組から、フィルタで取り出される。手順504において検出された周期運動の周波数はカテーテルの全体的な軌跡から取り出される。残りの運動成分はカテーテル操作の中心軸に対応し、これは血管の局所解剖、即ち「中心線軌跡」(手順514として参照する)を示す。MPSデータ組に関連する時間タグは、取り出した周期運動の周波数の各々について保持される。プロセッサはMPSデータ組から関連する周期運動の周波数を取り出す。
【0121】
手順508において、心臓の動きによる管腔108の機械的な動き、即ち「心臓軌跡」を、MPSデータ組から、及び取り出した周期運動の周波数から再構成する。特に、心臓軌跡を心臓運動に関連する予め識別した特有の周波数に応じて再構成する。再構成された心臓軌跡は例えば、一定期間中の心臓の動きによる管腔108の軌跡を示すグラフによって反映することができる。プロセッサは関連のある周期運動の周波数を分析して、心臓軌跡の再構成を行う。
【0122】
手順516において、呼吸運動による管腔108の機械的運動、即ち「呼吸軌跡は」をMPSデータ組から、及び取り出した周期運動の周波数から再構成する。特に、呼吸軌跡を、呼吸運動に関連する予め識別した特有の周波数に応じて再構成する。再構成された呼吸軌跡は例えば、一定期間中の呼吸運動による管腔108の軌跡を示すグラフによって反映することができる。プロセッサは関連のある周期運動の周波数を分析して、呼吸軌跡の再構成を行う。
【0123】
呼吸軌跡の再構成は体外参照センサ(患者の体及び手術台に取り付けられたMPSセンサ)から取得された座標測定値のみに基づくものであってよい。追加的な参照センサを患者の体(即ち、体外又は体内)に取り付けて対して、呼吸パターンを監視することができる。例えば、血管内センサをこの目的で用いることができる。
【0124】
このセンサは、呼吸運動に関するサポート(支援)データを提供し、より正確に呼吸運動に関連する周期運動の周波数を測定するための確認機構としての役割を果たす。追加的な心臓のデータを収集するために、同じ又は追加的なセンサを確認機構として、又は心臓の位相を検出するためのサポートデータを提供するために用いることができる。
【0125】
手順510において、再構成した心臓軌跡上で位相の検出を行う。心臓軌跡は心臓の様々な位相又は活動状態から成っており、心臓サイクル内の様々な点に対応する。位相はサイクル毎に周期的に繰り返される。位相を検出する際に、再構成した心臓軌跡上で心臓の複数の活動状態が識別される。プロセッサは心臓軌跡を分析し、様々な心臓サイクルの位相を識別する。
【0126】
更に図10Aを参照して説明し、図10Aは、心臓軌跡の電気信号表現及び機械的信号表現の概略図である。心臓軌跡の機械的信号表現は、その全体を550で参照し、複数の心臓サイクル552、554及び556の各々における活動状態T、T及びTのような心臓の活動状態(即ち、心臓サイクルの位相)を複数有する。心臓軌跡の機械的表現は、MPSデータ組から再構成された心臓軌跡、及び取り出された周期運動の周波数(手順506及び508)に対応する。心臓軌跡の電気信号表現は、その全体を558で参照し、心臓サイクル552、554及び556の各々における同じ活動状態T、T及びTを表わす。
【0127】
しかし、これらの活動状態が生じる正確な時刻はこれら2つの表現で異なる可能性があり、これは電気的表現では機械的表現に対してわずかな遅れがあるからである。例えば、心臓サイクル554の活動状態Tは心臓軌跡550では時刻tにおいて、心臓軌跡558では時刻tにおいて生じることが示されている。従って、位相を検出するために電気的表現からの情報を用いる際には、活動状態どうしの時間的位置合わせが必要である。心臓軌跡における電気的表現558は、ECGモニタ(図示せず)により取得された電気的タイミング信号に対応する。
【0128】
心臓の位相は、少なくともカテーテルに取り付けられたMPSセンサから、場合によっては患者の体及び手術台に取り付けられた参照センサからのデータ組だけに基づいて検出される、ということを指摘しておく。これらのデータ組は心臓軌跡の機械的表現を提供する。心臓の位相情報を取得するのには体外モニタ装置は必要ではない。
【0129】
呼吸運動に関する周期運動成分も、心臓の位相を検出するためのサポートデータとして用いることができる、ということを指摘しておく。更に、位相の検出は再構成した心臓軌跡ではなくもともとのMPSデータ組に基づいて行われ、検出して取り出した周期運動の周波数を用いて行う、ということを指摘しておく。心臓の様々な位相又は活動状態は、手順500において取得したMPSデータ組に直接に基づいて識別される。
【0130】
手順512において、心臓の位相情報はMPSデータ組に関連づけられる。カテーテルに取り付けられたMPSセンサより取得された各データ組は、カテーテルの位置に関連し、その対応する時間要素(即ち、時間タグ)に応じて、複数の活動状態T、T及びTの1つと一致する。管腔108の位置、結果としてカテーテルの位置は、管腔108の異なる活動状態によって異なる。プロセッサは座標読取り値と、これに一致する位相とを関連づけ、その情報をデータベースに記憶する。
【0131】
呼吸の位相情報は、心臓の位相情報を心臓運動から取得したのと同様の方法で呼吸運動から取得できる。呼吸活動状態は、再構成した呼吸軌跡上で、呼吸運動に関連した周期運動成分を用いて識別することができる。呼吸運動に関連した周期運動成分は対応しないデータ組との相関において用いることもできる。
【0132】
呼吸の位相情報は選択手順518において呼吸運動から取得することができる。手順518は手順516、520及び522より成る。手順516において、呼吸軌跡はMPSデータ組、及び取り出した周期運動の周波数から、手順504、506及び508に関連して本明細書に上に記載してある通りに再構成される。
【0133】
手順520において、再構成した呼吸軌跡上で位相を検出する。心臓軌跡と同様に、呼吸軌跡は肺の様々な位相又は活動状態より成っており、呼吸サイクル内の様々な点に対応している。肺の活動状態は呼吸軌跡の位相から識別することができる。位相はサイクル毎に周期的に繰り返される。呼吸の活動状態は相を検出する際に再構成した呼吸軌跡上に同定される。プロセッサは呼吸軌跡を分析し、様々な呼吸サイクルの位相を識別する。
【0134】
更に図10Bを参照して説明し、図10Bは機械的信号表現における呼吸軌跡の概略図であり、その全体を560で参照する。機械的信号表現560には、活動状態T、T及びTといった複数の呼吸活動状態(即ち、呼吸サイクルの位相)を有する。機械的表現560は、MPSデータ組から再構成した呼吸軌跡及び、手順508において取り出した周期運動の周波数に対応する。
【0135】
カテーテルに取り付けたMPSセンサにより、及び患者の体及び手術台に取り付けたMPSセンサから検出したデータ組のみに基づいて呼吸の位相を検出する、ということを指摘しておく。これらのデータ組は呼吸軌跡の機械的表現を提供する。呼吸の位情報を取得するには体外モニタリング装置は必要ではない。更に、位相の検出は、再構成した呼吸軌跡ではなく、元のMPSデータ組に対して行われ、検出して取り出した周期運動の周波数を用いて行う、ということを指摘しておく。肺の様々な位相又は活動状態は、手順500において取得したMPSデータ組上でに直接識別される。
【0136】
患者の心拍数又は呼吸数の実際の値は、体外モニタリング装置(ECGモニタのような−図示せず)を全く用いることなく取得できる、ということを指摘しておく。患者の心拍数又は呼吸数はカテーテル、患者の体及び手術台に、個別又は組み合わせて取り付けたMPSセンサのみから取得することができる。
【0137】
手順522では、呼吸の位相情報がMPSデータ組に関連づけられる。カテーテルに取り付けられたMPSセンサより取得された各データ組は、その対応する時間要素(即ち、時間タグ)に応じて複数の活動状態T、T及びTの1つに一致する。手順522は本明細書で上述した手順512に似ている。
【0138】
管腔108(図1A)内におけるカテーテルの自動操作について以下に記載する。本明細書で以下に用いる用語「位相表示」とは患者の体の管腔系の地図作製のことを称し(例えば、循環系、気管支樹、泌尿器系、腎臓系)、本発明によるシステムが利用し、カテーテルを起点から目的地点に向かって操作する。地図作製は2次元であっても3次元であってもよい。或いは又、用語「位相表示」には管腔系においてたどる経路のみを含むものであってもよい。
【0139】
更に図11及び12を参照して説明する。図11は患者の体内の管腔内においてカテーテルを自動的に操作するシステムの概略図であり、その全体を580で参照し、本発明の他の実施例により構成され、動作するものである。図12は図11のシステムの画像システムが3次元における管腔内の経路の座標を特定する方法の概略図である。
【0140】
図11に示すように、システム580にはジョイスティック582、コントローラ584、移動機構586、MPS588、複数の送信機590A、590B及び590C、撮像システム592、MPSセンサ594、カテーテル596並びにディスプレイ598が含まれる。撮像システム592には放射線発生器600及び放射線検出器602が含まれる。撮像システム592は、X線システム、透視、Cアーム撮像装置、CT、PET、超音波システムMRIなどとすることができる。
【0141】
移動機構586は、一対の角運動ローラ604A及び604B、一対の直線運動ローラ606A及び606B、並びに電気モータ、アクチュエータなどのような各移動要素(図示せず)を有する。しかし、移動機構はカテーテル596に本明細書に以下で記載される必要な動きを与える限りにおいて、他の随意的又は追加的要素を有することができる(例えば、摩擦によって直線運動を伝える圧電モータ)。随意的に、移動機構586は無菌的に保つために使い捨てとすることができる。コントローラ584にはプロセッサ(図示せず)及び管腔108(図1A)内においてカテーテル596が追従する経路608に対応する情報を記憶する記憶ユニットを有する。
【0142】
移動機構586はジョイスティック582及びコントローラ584に結合されている。コントローラ584は画像システム592に結合されている。MPS588は、コントローラ584並びに送信機590A、590B及び590Cに結合されている。MPSセンサ594は導線により(即ち、導電結合)MPS588に結合されている。ディスプレイ598は、MPS588および撮像システム592に結合されている。MPSセンサ594はカテーテル596の遠位部分に配置されている。
【0143】
医療操作中には、患者の体(図示せず)は放射線発生器600と放射線検出器602の間に位置する。撮像システム592は少なくとも一つの自由度を有し、これにより患者の体の複数の画像を様々な方向から取得することができる。撮像システム592は、ディスプレイ598に2次元画像104(図1A)に対応する信号を供給し、これによりディスプレイ598は2次元画像104を表示する。
【0144】
経路608は、管腔108に対するカテーテル596の遠位部分(図示せず)の起点612と終点614の間の3次元曲線である。起点612及び終点614はともに撮像システム592の視野内にある。経路608は医療操作前の撮像セッション中に決定され、記憶ユニットに記憶される。
【0145】
コントローラ584は経路608を例えば、Cアーム画像装置を用いて管腔108から取得した複数の2次元画像により計算し構成する。例えば、Cアームは管腔108の2つのECGゲート2次元画像を、平行ではない2つのECGゲート画像平面において取得することができる。操作者が起点612及び終点614を指示すると、Cアームは3次元で経路608を構成する。コントローラ584は経路608を、1つ以上の画像処理アルゴリズムに基づき、管腔108の背景に対するコントラスト変化に応じて計算する、ということを指摘しておく。
【0146】
更に図12を参照して説明し、撮像システム592は、3次元座標系620における画像平面618上の管腔108の画像616、及び3次元座標系620における画像平面624上の管腔108の他の画像622を取得する。撮像システム592は、画像平面618と画像平面622の間の配向(即ち、これらの間の角度)を認知している。撮像システム592は、画像616における管腔108の特徴626及び画像622におけるこれに対応する特徴628を識別する。撮像システム592は、特徴626(又は特徴628)の3次元座標系620内の3次元座標を、特徴626及び630からそれぞれ画像平面618及び624へのそれぞれの法線630及び632どうしの交点634を特定することにより測定する。撮像システム592は上記手順を管腔108の他の特徴について行い、これにより3次元における経路608を構成する。
【0147】
Cアームにより患者の体から取得した2次元画像は、管腔108に加えて、管腔108の平面とは異なる平面に位置する他の管腔(図示せず)を含み得る。(即ち、これらの追加的な管腔は取得した画像において管腔108と重なる。)このような場合には、操作者が起点612及び終点614を示す際に、Cアームにとっては、操作者が管腔108を貫通する経路に関心があるということは明らかなことではなく、Cアームは2次元画像上で管腔108と重なり合った他の管腔を貫通する経路(図示せず)を構成することがあり得る。従って、Cアームは他の画像平面において管腔108の他の2次元画像を取得し、これにより新たな2次元画像において管腔108が他の管腔と重なり合わないようにする。
【0148】
医療操作を行う前に、MPS588及び撮像システム592の座標系は共通の2次元座標系に対して設定され、医療操作中にディスプレイ598は、MPSセンサ594のリアルタイム表示110を2次元画像104上に重ね合わせる。この方法は本明細書で上記に図6Cに関連して説明してる。ディスプレイ598により表示された情報は、医療操作中に術者がカテーテル596の遠位部分の管腔108に対する位置を観察するのに役立つ。この2次元座標系は例えば以下の方法により決定することができる。
【0149】
MPS588の3次元座標系と画像システム592の3次元座標系の間の第1変換モデルが決定されている。画像システム592の3次元座標系と画像システム592の2次元座標系の間の第2変換モデルが決定されている。MPS588の3次元座標系は、第1変換モデルをMPS588の3次元座標系に適応することにより、画像システム592の3次元座標系に変換される。
【0150】
第1変換モデルは、MPS588の3次元座標系における点の組、及び画像システム592の3次元座標系における点の他の組により決定される。第2変換モデルは、画像システム592の外部変数(即ち、画像システム592の3次元座標系における点の組)及び画像システム592の内部変数(例えば、レンズ核度、焦点距離、拡大率)により決定される。
【0151】
以下はシステム580の操作についての説明であり、これは患者の頚部領域の血管における操作を行うためのものである。この場合に、経路608は腋窩動脈(管腔108により示される)内における3次元曲線であり、第1肋骨領域(即ち、起点612)から甲状頸動脈(即ち、終点614)までの経路を標識している。医療処置を行う台において、術者はカテーテル596を患者の体に右橈骨動脈(図示せず)を通して挿入し、手動でカテーテル596を起点612まで操作する。
【0152】
この時点では、システム580が引き続きカテーテル596を終点614まで自動的に操作する。送信機590A、590B及び590Cにより生成された電磁界に反応して、MPSセンサ594はMPSセンサ594の3次元的位置に関する信号を導線610を経由してMPS588に送る。或いは又、MPSセンサ594はMPS588と無線で、導線610なしで接続しており、この場合には、MPSセンサ594はこの位置信号をMPS588に無線で送る。
【0153】
MPS588はMPSセンサ594の座標をMPSセンサ594から取得した信号により測定する。MPS588は、MPS588の3次元座標系におけるMPSセンサ594の座標に関する信号をコントローラ584に送る。MPS588は、本明細書で上述したように、撮像システム592の2次元座標系におけるMPSセンサ594の座標に関する信号をディスプレイ598に送る。
【0154】
医療操作全体を通して、ディスプレイ598は管腔108によりの手術領域(即ち、起点612と終点614の間の部分)の2次元画像104を撮像システム592から受信した信号により表示する。ディスプレイ598はまたMPSセンサ594(即ち、カテーテル596の遠位部分)の現在位置の表示110を2次元画像104に重ね合わせて、MPS588から受信した信号により表示する。或いは又、MPSセンサの現在位置を管腔(例えば、冠動脈血管樹)の3次元画像に重ね合わせることができる。
【0155】
経路608の代わりに、コントローラは患者の管腔系の局所解剖表示を用いて、移動機構を制御してカテーテルを管腔系内の起点から終点まで操作することができる。この場合には、コントローラは最良の経路を決定し、カテーテルを終点まで到達される。コントローラはナビゲーション処理中の発見(例えば、閉塞した経路、予期したよりも狭い管腔)に基づいてリアルタイムに経路を変更することができる、ということを指摘しおく。コントローラは、MPSセンサによりリアルタイムで提供されたフィードバックに従い、並びにMPSセンサの実際の位置及び方向と予想された位置及び方向とを比較することにより、経路を修正することができる。更に、コントローラは計画プロセス用の3次元地図として用いた所定の3次元経路を修正することができる。
【0156】
本システムには更に、MPS及びディスプレイに接続したプロセッサ(図示せず)並びにECGのような、プロセッサに接続された臓器モニタを含むことができる。臓器モニタは、監視臓器の臓器タイミング信号を監視し、それぞれの信号をプロセッサに送る。プロセッサは管腔の画像に関する映像信号をディスプレイに送信し、この画像は臓器モニタにより検出された監視臓器の現在の活動状態に対応するものである。ディスプレイは、監視臓器のタイミング信号(例えば、患者の心拍)による管腔の動きを考慮しながら、MPSセンサの表示を管腔の再構成画像に重ね合わせて表示する。ディスプレイは管腔の3次元再構成画像を表示することができる。この3次元再構成画像は患者の体の座標系に対して表示される。
【0157】
或いは又、医療測位システムは臓器タイミング信号をフィルタで取り出し(即ち、フィルタ処理したMPS読取り値を生成し)、そして管腔の座標系におけるMPSセンサの現在位置を、患者の体の座標系におけるMPSセンサの複数の位置から取り出すことができる。この場合には、コントローラは局所解剖表示及びカテーテル先端の位置を、取り出したMPS測定値に応じて更新する。コントローラは、更新した局所解剖表示及び更新したカテーテル位置に応じて移動機構を制御する。更に、ディスプレイは更新した局所解剖表示及びカテーテルの遠位の位置の更新した表示を、ほぼ静止した管腔の3次元再構成画像上に重ね合わせて表示することができる。
【0158】
移動機構586はコントローラ584から受信した命令に従って動作し、カテーテル596を経路608に沿って起点612から終点614まで操作する。この目的のために、一対の角運動ローラ604A及び604Bはカテーテル596をカテーテル596の長手方向軸(図示せず)に対して時計回り及び反時計回りにねじり、一対の直線運動ローラ606A及び606Bはカテーテル596を前後に動かす。コントローラ584は絶えず、MPS588からMPSセンサ594の3次元座標に関する信号を任意時刻に受信し(即ち、フィードバック)、これにより移動機構586は経路608に沿った運動において生じ得る誤差を修正することができる。このような修正は以下のように行われる。
【0159】
コントローラ584は所定の時間増分において信号を移動機構586に送信し、カテーテル596を所定の変位増分だけ進める。コントローラ584はカテーテル596の遠位部分の進行を(MPS588から受信した位置信号により)測定し、この進行がカテーテル596が進行すると想定された所定の変位にほぼ等しいか否かをチェックする。実際に検出された進行が所定の変位増分に一致しない場合には、コントローラ584はカテーテル596が経路608に従って進むのを妨害する障害物(図示せず)に接触したと判断する(例えば、カテーテル596の遠位部分が分岐点636において行き詰まることがあり得る)。
【0160】
この場合には、コントローラ584は移動機構586に信号を送信し、カテーテル596を選択した変位増分だけ管腔内を後退させ、また選択した量だけカテーテル596の遠位部分をねじる。このようにねじった後、コントローラ584は移動機構586に信号を送信し、所定の変位増分だけカテーテル596を進める。このように、移動機構586はカテーテル596を操作して障害を克服し、所定の分岐(この場合には、分岐点636における甲状頸動脈)内に入れることができる。
【0161】
コントローラ584がMPS588からリアルタイムフィードバックとして受信した3次元位置情報により、コントローラ584は移動機構586の動作を制御して3次元でカテーテル596を操作することができる。従って、システム580は、術者が2次元ディスプレイにより2次元でしかカテーテル596を操作することができなかった従来技術のシステムに対する利点を提供する。システム580により、フィードバック指向のリアルタイム修正を行いながらカテーテル596を管腔108を通して3次元で自動操作し、管腔108内の終点614まで到達させることができる。
【0162】
撮像システム592(例えば、Cアーム)は様々な方向から管腔108を検出し、ディスプレイ598が2次元画像104を表示するために必要な情報を提供することができる。撮像システム592は、画像平面(図示せず)からの経路608の平均距離が最小となる1つの特定撮像方向を選択する。Xが経路608上の点iから画像平面に対して垂直な距離とするならば、i=1、2、3...Nとして、最小平均距離は次式のように表わされる。
【数2】

経路608が空間内の複数の曲線に追従して2次元経路から大幅にはずれる場合には、撮像システム592は経路608を異なる部分に分割し、式1を満たすような各部分に異なる画像平面を選択することにより2次元画像104のための情報を作成することができる。
【0163】
1つ以上のMPSセンサをカテーテルの遠位部分に設置することができる、ということを指摘しておく。カテーテルの遠位部分に「カーブバック(曲げ戻り)」機能を付与してある場合にはこのような構成は非常に重要となる。「カーブバック」運動は、例えば電場応答性高分子(EAP)を用いることにより付与することができる。移動機構には同様に適切な回転力をカテーテルの遠位部分に与えるために必要な要素が付与してある。更に、複数のMPSを用いることで、ディスプレイは遠位部分の現在の幾何学的形状を表示することができる。
【0164】
更に、コントローラは、カテーテルが障害物により阻止された際にカテーテルの遠位部分の幾何学的形状に関するより完全な情報を取得することができ、これにより操作を迅速に行うことができる。例えば、コントローラがカテーテルの遠位部分が予期せずに屈曲していることを検出すれば、コントローラはカテーテル先端が管腔内において障害物と接触していると判断する。コントローラは例えば管腔内の所与の点におけるMPSセンサの検出された方向と、管腔内の同じ点における経路の計算された傾斜とを比べることにより、このような判断を行う。検出された方向と計算された傾斜とが一致しない場合には、コントローラはカテーテルが障害物に面していると判断し、移動機構にカテーテルを障害物から後退させるように指示する。
【0165】
術者が移動機構586による自動操作に満足しない場合には、術者はコントローラ584を無効にし、ジョイスティック582を用いて移動機構586を手動で操作することができる。操作者はジョイスティック582を用いてシステム580の操作のいかなる段階であろうと介入することができる。これがシステム580の操作の半自動モードであり、ここではコントローラ584は移動機構586がカテーテル596を操作して経路608の通常の部分を通し、経路608のより複雑な部分では操作者がシステム580を制御する。手動で介入する場合には、ジョイスティック582はいかなる自動動作にも優先する。自動モード及び手動モードのいずれにおいても、ディスプレイ598上のカテーテル596の先端の表示110を見ることにより、操作者は管腔内におけるカテーテルの進行の視覚的フィードバックを得ている、ということを指摘しておく。
【0166】
本発明の他の実施例により、プロセッサは重ね合わせ画像を生成するが、この画像には管腔内の選択位置の表示を管腔のリアルタイム画像上に重ね合わせたものが含まれる。リアルタイム画像にはリアルタイムにおける管腔内のカテーテル及び医療装置の画像が含まれている。重ね合わせ画像を用いて、操作者は先端に医療装置を有するカテーテルを管腔内において選択位置に向けて視覚的に操作することができる。
【0167】
次に、図13、14A及び14Bを参照して説明する。図13はシステムの概略図であり、その全体を660で参照し、本発明の更なる実施例により構成され、動作するものである。図14Aは、マーク付け段階における図13の患者の体内の管腔の第1画像の概略図であり、この画像は図13のシステムの画像取得装置により取得され、第1観察方向からのものである。図14Bは、マーク付け段階における図13の管腔の第2画像の概略図であり、この画像は図13のシステムの画像取得装置により取得され、第2観察方向からのものである。
【0168】
図13に示すように、システム660には画像取得装置662、ユーザーインターフェイス664、プロセッサ666、ディスプレイ668、医療測位システム(MPS)670、送信機672、並びにMPSセンサ674及び676が含まれる。画像取得装置662には構造部材678、移動機構680、放射源682及び画像検出器684が含まれる。プロセッサ666はユーザーインターフェイス664、ディスプレイ668、及びMPS670に接続されている。MPS670は送信機672及びMPSセンサ674及び676に接続されている。移動機構680、放射源682、及び画像検出器684は構造部材678に接続されている。
【0169】
MPSセンサ674はベッド688上に横たわっている患者686の体に強固に固定されている。MPSセンサ676は画像取得装置662にしっかりと固定されている。MPSセンサ674及び676はそれぞれ送信機672の発する電磁放射に応答する。MPS670は、MPSセンサ674及び676それぞれの出力により、患者686の体の位置及び画像取得装置662の位置を測定する。従って、画像取得装置662の全ての動き及び患者686の体の全ての動きはMPS670に関する3次元座標系内で規定される。画像取得装置662がMPS670と位置合わせされている場合には、MPSセンサ676をシステム660からなくすことができる。MPS670の代わりに、光学的、音響的のような他の位置検出装置を用いて患者686の体の動き及び画像取得装置662の動きを規定することができる。
【0170】
放射源682は患者686の体の上に位置している。画像検出器684は患者686の体の下の配置されている。移動機構680により構造部材678がベッド688の長手方向の軸(図示せず)に対してほぼ平行な軸(図示せず)の周りに、矢印690及び692で示す方向に回転することができる。図13を参照して説明する例では、画像取得装置662はCアームX線装置である。しかし、画像取得装置はコンピュータ断層撮影(CT)装置、核磁気共鳴画像装置(MRI)、陽電子放射断層撮影装置(PET)、単光子放射型コンピュータ断層撮影装置(SPECT)、超音波画像検出器、赤外線画像検出装置、X線撮像装置、光コヒーレンストモグラフィー(OCT)検出器などとすることもできる、ということを指摘しておく。ユーザーインターフェイス664は接触型(例えば、キーボード、マウス、トラックボール、タッチスクリーン)、音声によるもの(例えば、マイク、スピーカ)、触覚に基づくもの(例えば、力フィードバック・ジョイスティック)などであってもよい。
【0171】
更に図14Aに示すように、画像取得装置662は第1観察方向から患者686の体の管腔722の画像720を取得する。図14Bに示しように、画像取得装置662は第2観察方向から患者686の体の管腔722の画像724を取得する。画像720はボリューム(即ち、患者686の体のうち関心のある領域)を第1平面(図示せず)上に投射したものである。画像724は同じボリュームを第2平面(図示せず)上に投射したものである。
【0172】
操作者(図示せず)はプロセッサ666に対して、ユーザーインターフェイス664を介して、画像720上のマーク726、728及び730を指示することにより選択位置に関する位置情報を入力する。マーク726、728及び730は管腔722内における選択位置を示しており、医療装置(図示せず)をこれらの選択位置に向けて操作する。医療装置はカテーテル732の先端に設置する(図13)。例えば、マーク726はステント(図示せず)の前端が配置されるべき位置を示しており、マーク730はステントの後端が配置されるべき位置を示しており、マーク728はステントの中央が配置されるべき位置を示している。操作者はプロセッサ666にユーザーインターフェイス664を介して、画像724上にマーク802(図14B)、804及び806を指示することにより同じ選択位置に関する位置情報を入力する。
【0173】
マーク726、728、730、802、804及び806の各々により規定される選択位置は3次元座標系における2つの座標にのみ関連している。プロセッサ666は3次元座標系における選択位置の3つめの座標を、マーク726、728、730、802、804及び806のいくつかの各3次元座標により、3次元座標系における選択位置の第3の座標を特定する。プロセッサ666は例えば、マーク808(図15A)の座標をマーク726及び802の座標により、マーク810の座標をマーク728及び804の座標により、マーク812の座標をマーク730及び806により測定する。
【0174】
本発明の他の実施例により、画像取得装置は3次元座標系において定義される座標を有する平面に沿った管腔の画像(図示せず)を取得する(例えば、超音波画像)。このような場合には、各マークの3つの座標は全て3次元座標系において定義されているので、操作者はマークを画像上で1回指示すれば十分である。
【0175】
本発明の他の実施例により、画像取得装置は管腔の3次元画像を取得する(例えば、CT、MRI、PET、SPECTの場合)。このような場合には、3次元画像の全てのスライスは3次元座標系において定義されているので、操作者は選択位置を画像上で1回だけマーク付けすれば十分である。或いは又、ディスプレイ668は管腔の立体画像を表示し、この場合には操作者は選択位置を立体画像上で1回だけマーク付けすれば十分である。
【0176】
次に図15A、15B、16A及び16Bを参照して説明する。図15Aは、図13のカテーテルを管腔内の選択位置に向けて視覚的に操作する際における図13の患者の管腔のリアルタイムでの2次元画像の概略図である。図15Bは、カテーテルを管腔内の選択位置に向けて自動的に操作する際における管腔のリアルタイムの2次元画像の概略図である。図16Aは、カテーテル先端に設置された医療装置が選択位置に到達した際における図15Aの管腔の概略図である。図16Bは、医療装置が選択位置に到達した際における図15Bの管腔の概略図である。
【0177】
図15Aに示すように、管腔722(図13)のリアルタイム重ね合わせ2次元画像760には、カテーテル732のリアルタイム画像、医療装置762のリアルタイム画像並びにマーク808、810及び812が含まれている。リアルタイム重ね合わせ2次元画像760における医療装置762のリアルタイム画像の前端及び後端はそれぞれ線764及び766により示されている。
【0178】
図16Aに示すように、操作者はカテーテル732を管腔722内において視覚的に操作する。線764及び766がそれぞれ標識808及び810に並ぶ際に、操作者は医療装置762が実際に選択位置に配置され、医療操作を行う準備が整ったことを確認する。
【0179】
図15Bについて、管腔722のリアルタイム重ね合わせ3次元画像790にはカテーテル732のリアルタイム画像、医療装置762のリアルタイム画像、並びにマーク792、794及び796を含む。リアルタイム重ね合わせ3次元画像790は3次元座標系において定義されているので、操作者がプロセッサ666に入力した任意の点の位置情報は3つの座標に関連している。従って、マーク792、794及び796はそれぞれ3次元座標系における3つの座標に関連している。リアルタイム重ね合わせ3次元画像790における医療装置762のリアルタイム画像の前端及び後端はそれぞれ楕円798及び8002より表示されている。
【0180】
図16Bに示すように、操作者はカテーテル732を管腔722内において視覚的に操作する。楕円798及び800がそれぞれマーク792及び796に並ぶ際に、操作者は医療装置762が実際に選択位置に配置され、医療操作を行う準備が整ったことを確認する。或いは又、ディスプレイ668はリアルタイム重ね合わせ3次元画像を立体画像として表示する。
【0181】
次に図17について説明するが、図17は図13のシステムを操作する方法の概略図であり、本発明の他の実施態様に従うものである。手順840において、患者の体の管腔内における選択位置に関する位置情報を受信するが、この位置情報は管腔の管腔画像に関連付けられ、この管腔画像は3次元座標系に関連付けられている。図13、14Aに示すように、操作者はユーザーインターフェイス664を介して画像720上にマーク付けすることにより、プロセッサ666にマーク726、728及び730に関する位置情報を入力する。図13、14Bに示すように、操作者はユーザーインターフェイス664を介して画像724上にマーク付けすることにより、プロセッサ666にマーク802、804及び806に関する位置情報を入力する。マーク726、728、730、802、804及び806はそれぞれ2次元座標の組に関連づけられている。
【0182】
手順842において、3次元座標系における選択位置の座標を特定する。図13、14A、14B及び15Aに示すように、プロセッサ666は、マーク726及び802の座標によりマーク808の座標を、マーク728及び804の座標によりマーク810の座標を、マーク730及び806の座標によりマーク812の座標を特定する。マーク808、810及び812は3つの座標に関連づけられている。
【0183】
プロセッサ666は管腔のリアルタイムナビゲーション画像を生成する(手順844)。リアルタイムナビゲーション画像は3次元座標系と関連づけられており、医療装置のリアルタイム医療装置画像を含んでおり、この医療装置は管腔内において操作されるカテーテルの先端に配置されている。
【0184】
手順846において、選択位置に関する表示はリアルタイムナビゲーション画像に重ね合わされており、これにより操作者は視覚的に医療装置を選択位置に向かって誘導することができる。図13及び15Aに示すように、プロセッサ666は、マーク808、810及び812の表示を管腔722、カテーテル732、及び医療装置762のリアルタイム2次元画像に重ね合わせることにより、リアルタイム重ね合わせ2次元画像を生成する。従って、操作者はリアルタイム2次元画像760に従い医療装置762を選択位置に向かって視覚的に誘導することができる。
【0185】
本発明の他の実施例により、MPSカテーテルを管腔内にて動かすことにより、患者の臓器の様々な活動状態に対応した管腔内におけるMPSカテーテルの様々な軌跡が特定される。各軌跡は3次元MPS座標系において規定され、対応する活動状態で時間タグ付けされる。各軌跡は、リアルタイム2次元画像に関連づけられた活動状態に応じて、管腔のリアルタイム2次元画像上に重ね合わせられる。この重ね合わせリアルタイム2次元画像は、臓器タイミング信号モニタにより検出された臓器タイミング信号に関連づけられており、ディスプレイ上に表示され、これにより操作者は選択位置を重ね合わせリアルタイム2次元画像上にマーク付けすることができる。操作者は、図5の方法を用いて本明細書で上述したように、自動又は手動で医療装置を選択位置に誘導する。或いは又、操作者は図17の方法を用いて本明細書で上述したように、視覚的に医療装置を選択位置に誘導する。
【0186】
次に、図18、19及び20について説明する。図18はマーク付け可能な画像を生成するシステムの概略図であり、通常870として参照され、本発明の更なる実施例により構成され、動作するものである。図19は図18のシステムを操作する方法の概略図である。図20は図18のシステムにより生成したマーク付け可能な画像の概略図である。
【0187】
図18に示すように、システム870には画像取得装置872、プロセッサ874、ディスプレイ876、臓器タイミング信号モニタ878、MPS880、複数の送信機882、884及び886、並びにMPSセンサ888及び890が含まれる。画像取得装置872には、構造部材892、移動機構894、放射源896及び画像検出器898が含まれる。プロセッサ874はディスプレイ876、臓器タイミング信号モニタ878、MPS880、及び画像検出器898に接続されている。MPS880は送信機882、884及び886、並びにMPSセンサ888及び890に接続されている。移動機構894、放射源896及び画像検出器898は構造部材892に接続されている。画像取得装置872は本明細書において上述した画像取得装置662(図13)と同じものである。画像取得装置872は2次元画像取得装置であり、2次元座標系に関連づけられている。
【0188】
送信機882、884及び886は放射源896に強固に取り付けられている。従って、画像取得装置872の2次元座標系はMPS880の3次元座標系と位置合わせされている。MPSセンサ888はベッド902上に横たわる患者900の体に強固に取り付けられている。MPSセンサ890はMPSカテーテル904の先端に配置されている。MPS888及び890はそれぞれ送信機882、884及び886が発する電磁放射に応答する。MPS880はMSPセンサ888及び890により、患者900の体の位置及びMPSカテーテル904の先端の位置をそれぞれ測定する。
【0189】
図19に示すように、手順930において、SMP座標系は2次元座標系と位置合わせされている。図18について、送信機882、884及び886は放射源896に強固に取り付けられているので、画像取得装置872の2次元座標系はMPS880の3次元座標系と位置合わせされている。
【0190】
手順932において、患者の体の管腔内における複数のMPS点を取得し、このMPS点はそれぞれMPSセンサ674座標系に関連づけられており、さらにこのMPS点はそれぞれ患者の臓器の各活動状態に関連づけられている。図18に示すように、MPSカテーテル904は患者900の体の管腔906内を動くので、MPS880は3次元MPS座標系におけるMPSカテーテル904の各点を複数のMPS点908(図20)において測定する。臓器タイミング信号878は患者900の臓器(例えば、心臓)(図示せず)の活動状態を測定する。プロセッサ874は各MPS点908の3次元座標をMPS880から受信した点情報により測定する。プロセッサ974は各活動状態に対応する臓器タイミング信号モニタ878から受信したデータを、図6Bに関連して本明細書で上述した手順と同様に、各3次元座標の組に関連づける。MPS点908は、管腔906内におけるMPSカテーテル904を進めている間(即ち前進中)、又は戻している間(即ちプルバック中)に取得することができる。
【0191】
手順934において、管腔の2次元画像を取得し、この2次元画像は2次元座標系と関連づけられており、さらにこの2次元画像は臓器の臓器タイミング信号と関連づけられている。図18に示すように、画像取得装置872は管腔906の2次元画像を取得する。この2次元画像は静止画像、連続画像(即ち、シネループ)、又はリアルタイム画像とすることができる。この2次元画像は画像取得装置872の2次元座標系において定義される。プロセッサ874はこの2次元画像を画像検出器898から受信し、このデータを患者900の臓器の臓器タイミング信号に関連づける。臓器タイミング信号には臓器の様々な活動状態に対応するデータが含まれている。プロセッサ874は各活動状態を対応する2次元画像に関連づける。
【0192】
手順936において、複数の3次元時間軌跡の表現をMP点により決定し、各軌跡はそれぞれの各活動状態に対応している。図18及び20に示すように、プロセッサ874は、軌跡表現910と同様に、各活動状態に対応する軌跡表現を、その活動状態に対応するMPS点を連続的に接続することにより決定する。プロセッサ874は他の活動状態に対応する同様の軌跡表現を同様の方法で決定する。各軌跡表現は3次元(3次元MPS座標系という意味において)であり、臓器の特定の活動状態に対応する。各軌跡表現を例えば、図6Bと組み合わせて本明細書に上述したように決定することができる。
【0193】
手順940において、軌跡表現を各活動状態に応じて2次元画像上に重ね合わせる。図6A、18及び20に示すように、プロセッサ874は手順938において決定した各軌跡表現を2次元画像上に重ね合わせる。例えば、2次元画像912(図20)は活動状態T(図6A)に対応しており、活動状態Tに対応する軌跡表現910を2次元画像912上に重ね合わせている。
【0194】
2次元画像912はマーク付け可能な画像であり、操作者はこの画像を利用して、医療装置を管腔906内において誘導すべき選択位置をこの画像上にマーク付けすることができる。操作者は選択位置を、手順160に従い、本明細書で上述したように、プロセッサに接続したユーザーインターフェイスを介して指示することができる。この目的のために、プロセッサ874は各MPS点908に関するMPS表現を2次元画像912上に重ね合わせ、これにより操作者は選択位置を2次元画像912上で指示することができる。この選択位置は1つ以上のMPS表現に関連づけられている。操作者は続けて医療装置を管腔内において、選択位置に向けて手動又は自動で、手順172又は174に従い誘導することができる。2次元画像がリアルタイム又はシネループである場合には、操作者は2次元画像912を誘導中に用いることができる。
【0195】
或いは又、操作者は医療装置を誘導する選択位置を手順840(図17)に従って指示することもできる。この場合には、操作者は続けて、手順846に従って医療装置を選択位置に向けて視覚的に誘導することができる。
【0196】
対象の3次元表現が2次元画像上に投影されている場合には、対象の真の外形は失われる。例えば、球は2次元画像平面上に投影された場合には円に見える。対象が冠動脈のような人体内の管腔である場合には、そのような管腔は屈曲して画像平面に「入ったり」、画像平面から「出たり」する。従って、管腔の真の長さは失われる可能性がある。この現象を遠近法的短縮と称する。管腔の3次元表現は管腔内のカテーテルの3次元軌跡から構成されているので、本システムは表示された管腔の真の長さに関する情報を操作者に提供する。更に、本システムは2次元画像における管腔の真の長さの表現を操作者に提供する。
【0197】
図7に示すように、管腔906の軌跡表現910を2次元画像912上に重ね合わせる。更に、MPS点908は、軌跡910表現上に等間隔で配置されており、これらもまた2次元画像912上に重ね合わせられている。従って、遠近法的短縮の現象が悪化した場合には、2次元画像912の平面上の隣接したMPS点間の距離は減少して観測される。従って、操作者は管腔906の長さの量的な評価と、2次元画像912上における遠近法的短縮の現象を評価するための視覚的補助手段の両方を有する。本発明の更なる実施例によれば、遠近法的短縮現象が悪化すればMPS点を異なった色に色付けする。
【0198】
本発明が本明細書で特に図示し説明したものに限定されるものでないことは、当業者にとって明らかである。本発明の範囲は請求項によってのみ限定される。
【図面の簡単な説明】
【0199】
【図1A】図1Aは、グラフィカルユーザーインターフェース(GUI)の概略図であり、ここには患者の体内の管腔系の2次元画像における医療装置の例が示され、これは本発明の実施例により構成され、動作するものである。
【図1B】図1Bは、GUIの概略図であり、ここには図1Aの管腔系の管腔の3次元画像における医療装置の他の例が示され、これは本発明の実施例により構成され、動作するものである。
【図2A】図2Aは、図1AのGUIの概略図であり、図1Aの2次元画像上に管腔系内の選択位置に対応する一連のマーク及び選択位置に向かって進められている医療装置の現在位置の例を示す。
【図2B】図2Bは、図1BのGUIの概略図であり、図1Bの3次元画像上に図2Aの一連のマークに対応する他の一連のマーク、及び医療装置の現在位置の他の例を示す。
【図3A】図3Aは、医療装置が選択位置に到達した際の図1AのGUIの概略図を示す。
【図3B】図3Bは、医療装置が選択位置に到達した際の図1のGUIの概略図を示す。
【図4A】図4Aは、検査臓器の活動状態Tにおける図1Aの管腔の2次元画像の概略図である。
【図4B】図4Bは、活動状態Tにおける図1Aの管腔の他の2次元画像の概略図である。
【図4C】図4Cは、活動状態Tにおける図1Aの管腔の更なる2次元画像の概略図である。
【図4D】図4Dは、GUIの概略図であり、ここには図1Aの管腔内に配置されたカテーテルのMPSセサのリアルタイムのほぼ安定した表示が含まれ、図4Bの管腔に重ね合わされている。本GUIは本発明の更なる実施例により構成され、動作するものである。
【図5】図5は、医療装置を患者の体内の管腔内の選択位置まで到達させる方法の概略図であり、本発明の他の実施例により動作する。
【図6A】図6Aは、患者のECGの概略図である。
【図6B】図6Bは、図1Aの管腔内に設置されたカテーテル先端の軌跡の概略図であり、図6AのECGの各々の活動状態に対応し、本発明の他の実施例により構成される。
【図6C】図6Cは、2次元画像取得装置、MPS及びECGモニタから取得した信号を加工することにより3次元的な臓器の動きに依存した連続画像を再構成するプロセスの概略図であり、追加の画像データを重ね合わせてある。
【図7】図7は、ECG並存型の管腔ディスプレイ(即ち、GUI)の概略図であり、本発明の更なる実施例により構成され、動作するものである。
【図8A】図8Aは、図1Aの管腔の実例であり、複数の閉塞領域を有する。
【図8B】図8Bは、図8Aの管腔の選択領域の横断面図である。
【図8C】図8Cは、GUIにおける図8Bの管腔の表示の概略図であり、本発明の他の実施例により動作するものである。
【図9】図9は、臓器の動きとともに動くMPSセンサの位置情報に従って患者の臓器の臓器タイミング信号を測定する方法の概略図であり、本発明の更なる実施例により動作するものである。
【図10A】図10Aは、心臓軌跡の電気信号表現及び機械的信号表現の概略図である。
【図10B】図10Bは、呼吸軌跡の機械的信号表現の概略図である。
【図11】図11は、患者の体内の管腔内においてカテーテルを自動的に操作するシステムの概略図であり、本発明の他の実施例により構成され、動作するものである。
【図12】図12は、図11のシステムの画像システムが3次元における管腔内の経路の座標を決定する方法の概略図である。
【図13】図13は、本発明の更なる実施例により構成され、動作するシステムの概略図である。
【図14A】図14Aは、マーク付け段階における図13の患者の体内の管腔の第1画像の概略図であり、この画像は図13のシステムの画像取得装置により取得され、第1観察方向からのものである。
【図14B】図14Bは、マーク付け段階における図13の管腔の第2画像の概略図であり、この画像は図13のシステムの画像取得装置により取得され、第2観察方向からのものである。
【図15A】図15Aは、図13のカテーテルを管腔内の選択位置に向けて視覚的に操作する際の、図13の患者の管腔のリアルタイムでの2次元画像の概略図である。
【図15B】図15Bは、カテーテルを管腔内の選択位置に向けて自動的に操作する際の、管腔のリアルタイムでの2次元画像の概略図である。
【図16A】図16Aは、カテーテル先端に配置された医療装置が選択位置に到達した際の、図15Aの管腔の概略図である。
【図16B】図16Bは、医療装置が選択位置に到達した際の、図15Bの管腔の概略図である。
【図17】図17は、図13のシステムを操作する方法の概略図であり、本発明の他の実施例によるものである。
【図18】図18は、マーク付け可能な画像を生成するシステムの概略図であり、本発明の更なる実施例により構成され、動作するものである。
【図19】図19は、図18のシステムを操作する方法の概略図である。
【図20】図20は、図18のシステムにより生成した標識可能な画像の概略図である。

【特許請求の範囲】
【請求項1】
カテーテルに結合された医療装置を患者の体の管腔内の選択位置まで搬送する方法において、
3次元座標系を2次元座標系と位置合わせする手順であって、前記3次元座標系は医療測位システム(MPS)に関連し、前記2次元座標系は前記管腔の2次元画像に関連し、前記2次元画像は更に前記患者の臓器の臓器タイミング信号に関連する手順と、
前記管腔内の複数の点に関するMPSデータを取得する手順であって、前記複数の点の各々は前記3次元座標系に関連し、前記複数の点の各々は更に、前記臓器のそれぞれの活動状態に関連する手順と、
前記それぞれの活動状態に関連する前記取得したMPSデータからの前記それぞれの活動状態毎に、3次元時間軌跡表現を決定する手順と、
前記それぞれの活動状態に応じて、前記3次元時間軌跡表現を前記2次元画像上に重ね合わせる手順と、
前記3次元時間軌跡表現に沿った前記複数の点の少なくとも1つを選択することによって、前記選択位置に関する位置データを受信する手順と、
前記選択した少なくとも1つの点から、前記選択位置の前記3次元座標系における座標を特定する手順と、
前記管腔のリアルタイムナビゲーション画像を生成する手順であって、前記リアルタイム画像は前記3次元座標系に関連し、前記リアルタイムナビゲーション画像は、前記管腔内で操作されるカテーテルの先端に配置された医療装置のリアルタイム医療装置画像を含む手順と、
前記選択位置に関する表現を前記リアルタイムナビゲーション画像上に重ね合わせ、これにより、操作者が前記医療装置を前記選択点まで視覚的に誘導することを可能にする手順と
を具えていることを特徴とする医療装置の搬送方法。
【請求項2】
更に、前記位置合わせする手順を実行した後に、前記2次元画像を取得する手順を具えていることを特徴とする請求項1に記載の方法。
【請求項3】
前記MPSデータを取得する手順を、前記MPSにおける、前記管腔内を移動するMPSカテーテルの先端に配置されたMPSセンサの出力により実行することを特徴とする請求項1に記載の方法。
【請求項4】
前記2次元画像がリアルタイム画像であることを特徴とする請求項1に記載の方法。
【請求項5】
前記2次元画像が、事前に取得されたシネループ画像であることを特徴とする請求項1に記載の方法。
【請求項6】
前記2次元画像が、事前に取得された静止画像フレームであることを特徴とする請求項1に記載の方法。
【請求項7】
更に、前記管腔の長さの定量評価値を前記操作者に提供する手順を具えていることを特徴とする請求項1に記載の方法。
【請求項8】
更に、前記臓器タイミング信号を事前に取得しておく手順を具えていることを特徴とする請求項1に記載の方法。
【請求項9】
前記臓器タイミング信号を取得する手順を、臓器タイミング信号モニタによって実行することを特徴とする請求項8に記載の方法。
【請求項10】
前記臓器タイミング信号を取得する手順が、
前記管腔内を移動するMPSカテーテルの先端に配置したMPSセンサによって、前記臓器の臓器サイクルに起因する前記管腔の動きを測定する手順と、
前記MPSによって、リアルタイムの前記臓器タイミング信号を測定する手順と
を具えていることを特徴とする請求項8に記載の方法。
【請求項11】
医療装置カテーテルに取り付けられた医療装置を、患者の体の管腔内の選択位置まで搬送するシステムにおいて、
前記管腔内を移動する前記医療装置カテーテルの先端に配置されたMPSセンサの出力により、前記管腔内の複数のMPS点に関するMPSデータを取得する医療測位システム(MPS)であって、前記MPS点の各々は3次元座標系に関連し、前記3次元座標系は前記MPSに関連し、前記MPS点の各々は更に、前記患者のそれぞれの活動状態に関連する医療測位システムと、
前記選択位置に関する一データを受信するためのユーザーインターフェイスであって、前記位置データは少なくとも1つのMPS表現に関連し、前記少なくとも1つのMPS表現は、前記MPS点のそれぞれに関連するユーザーインターフェイスと、
前記ユーザーインターフェイス及び前記MPSに結合されたプロセッサであって、前記プロセッサは、前記MPSデータにより複数の3次元時間軌跡表現を決定し、前記3次元時間軌跡表現の各々は、前記活動状態のそれぞれに対応し、前記プロセッサは、前記臓器のそれぞれの活動状態に応じて、前記3次元時間軌跡表現を、2次元座標系に関連する2次元画像上に重ね合わせることによって重ね合わせ画像を生成し、前記2次元画像は更に、前記臓器の臓器タイミング信号に関連し、前記2次元座標系は前記3次元座標系と位置合わせされ、これにより、前記2次元画像がリアルタイム画像である際には、操作者が前記医療装置を前記選択位置に向けて視覚的に誘導することを可能にするプロセッサと
を具えていることを特徴とする医療装置の搬送システム。
【請求項12】
前記2次元画像がリアルタイム画像であることを特徴とする請求項11に記載のシステム。
【請求項13】
前記2次元画像がシネループ画像であることを特徴とする請求項11に記載のシステム。
【請求項14】
前記2次元画像が静止画像であることを特徴とする請求項11に記載のシステム。
【請求項15】
更に、前記プロセッサに結合され、前記重ね合わせ画像を表示するディスプレイを具えていることを特徴とする請求項11に記載のシステム。
【請求項16】
更に、前記プロセッサに結合され、前記2次元画像を取得する画像取得装置を具えていることを特徴とする請求項11に記載のシステム。
【請求項17】
前記画像取得装置がX線機器であることを特徴とする請求項16に記載のシステム。
【請求項18】
前記画像取得装置がCアームであることを特徴とする請求項16に記載のシステム。
【請求項19】
前記画像取得装置が誘導型血管内超音波装置であることを特徴とする請求項16に記載のシステム。
【請求項20】
前記画像取得装置が体外超音波画像検出器である請求項16に従うシステム。
【請求項21】
更に、
前記プロセッサに結合され、前記2次元画像を取得する画像取得装置と、
前記医療装置カテーテルの前記医療装置付近に取り付けられた放射線不透過性マーカーと、
前記プロセッサに結合され、前記放射線不透過性マーカーのマーカー画像を前記2次元画像中に表示するディスプレイと
を具えていることを特徴とする請求項11に記載のシステム。
【請求項22】
更に、前記プロセッサ及び前記患者の体に結合された、前記臓器タイミング信号を監視する臓器タイミング信号モニタを具え、前記プロセッサは、前記臓器タイミング信号モニタの出力により、前記臓器タイミング信号を測定することを特徴とする請求項11に記載のシステム。
【請求項23】
カテーテルに結合された医療装置を患者の体の管腔内の選択位置まで搬送する方法において、
3次元座標系を2次元座標系と位置合わせする手順であって、前記3次元座標系は医療測位システム(MPS)に関連し、前記2次元座標系は前記管腔の2次元画像に関連し、前記2次元画像は更に、前記患者の臓器の臓器タイミング信号に関連する手順と、
前記管腔内の複数の点に関するMPSデータを取得する手順であって、前記複数の点の各々は前記3次元座標系に関連し、前記複数の点の各々は更に、前記臓器のそれぞれの活動状態に関連する手順と、
前記それぞれの活動状態に関連する前記取得したMPSデータからの前記それぞれの活動状態毎に、3次元時間軌跡表現を決定する手順と、
前記それぞれの活動状態に応じて、前記3次元時間軌跡表現を前記2次元画像上に重ね合わせる手順と、
前記3次元時間軌跡表現に沿った前記複数の点の少なくとも1つを選択することによって、前記選択位置に関する位置データを受信する手順と、
前記選択した少なくとも1つの点から、前記選択位置の前記3次元座標系における座標を特定する手順と、
前記医療装置の前記3次元座標系における現在位置を、前記カテーテルの前記医療装置付近に取り付けられたMPSセンサの出力により特定する手順と、
前記医療装置を、前記選択位置に対する前記現在位置に応じて、前記管腔内を通して前記選択位置に向けて操作する手順と、
前記現在位置が前記選択位置にほぼ一致した際に、通知出力を生成する手順と
を具えていることを特徴とする医療装置の搬送方法。
【請求項24】
更に、前記位置合わせする手順を実行した後に、前記2次元画像を取得する手順を具えていることを特徴とする請求項23に記載の方法。
【請求項25】
前記MPSデータを取得する手順を、前記MPSにおける、前記管腔内を移動するMPSカテーテルの先端に配置されたMPSセンサの出力により実行することを特徴とする請求項23に記載の方法。
【請求項26】
前記2次元画像がリアルタイム画像であることを特徴とする請求項23に記載の方法。
【請求項27】
前記2次元画像が、事前に取得されたシネループ画像であることを特徴とする請求項23に記載の方法。
【請求項28】
前記2次元画像が、事前に取得された静止画像フレームであることを特徴とする請求項23に記載の方法。
【請求項29】
更に、前記管腔の長さの定量評価値を前記操作者に提供する手順を具えていることを特徴とする請求項23に記載の方法。
【請求項30】
更に、前記臓器タイミング信号を事前に取得しておく手順を具えていることを特徴とする請求項23に記載の方法。
【請求項31】
前記臓器タイミング信号を取得する手順を、臓器タイミング信号モニタによって実行することを特徴とする請求項30に記載の方法。
【請求項32】
前記臓器タイミング信号を取得する手順が、
前記管腔内を移動するMPSカテーテルの先端に配置したMPSセンサによって、前記臓器の臓器サイクルに起因する前記管腔の動きを測定する手順と、
前記MPSによって、リアルタイムの前記臓器タイミング信号を測定する手順と
を具えていることを特徴とする請求項30に記載の方法。
【請求項33】
前記医療装置を操作する手順を手動で実行することを特徴とする請求項23に記載の方法。
【請求項34】
前記医療装置を操作する手順を自動的に実行することを特徴とする請求項23に記載の方法。
【請求項35】
更に、前記現在位置が前記選択位置に接近する際には前記通知出力の大きさを増加させ、前記現在位置が前記選択位置から遠ざかる際には前記通知出力の大きさを減少させる手順を具えていることを特徴とする請求項23に従う方法。
【請求項36】
医療装置カテーテルに取り付けられた医療装置を患者の体の管腔内の選択位置まで搬送するシステムにおいて、
前記管腔内を移動する前記医療装置カテーテルの先端に配置された第1MPSセンサの第1出力により、前記管腔内の複数の点に関するMPSデータを取得する医療測位システム(MPS)であって、前記複数の点の各々は3次元座標系に関連し、前記3次元座標系は前記MPSに関連し、前記複数の点の各々は更に、前記患者の臓器のそれぞれの活動状態に関連し、前記MPSは、前記医療装置カテーテルの前記医療装置付近に取り付けられた第2MPSセンサの第2出力により、前記管腔内の前記医療装置の前記3次元座標系における現在位置を特定する医療測位システムと、
前記選択位置に関する位置データを受信するためのユーザーインターフェイスであって、前記位置データは少なくとも1つのMPS表現に関連し、前記少なくとも1つのMPS表現の各々は、前記複数の点のそれぞれに関連するユーザーインターフェイスと、
前記ユーザーインターフェイス及び前記MPSに結合されたプロセッサであって、前記プロセッサは、前記MPSデータに関する複数のMPS表現を前記管腔の2次元画像上に重ね合わせることによって重ね合わせ画像を生成し、これにより、前記ユーザーインターフェイスが前記位置データを操作者から受信することを可能にし、前記2次元画像は2次元座標系に関連し、前記2次元画像は更に、前記臓器の臓器タイミング信号に関連し、前記2次元座標系は前記3次元座標系と位置合わせされ、前記プロセッサは、前記位置データにより、前記選択位置の前記3次元座標系における座標を特定し、前記プロセッサは、前記現在位置が前記選択位置にほぼ一致したことを判定した際に、通知出力を生成するプロセッサと
を具えていることを特徴とする医療装置搬送システム。
【請求項37】
前記プロセッサは、前記MPDデータにより複数の3次元時間軌跡表現を決定し、前記3次元時間軌跡表現の各々が、前記それぞれの活動状態に対応し、前記プロセッサは更に、前記臓器の前記各活動状態に応じて、前記3次元時間軌跡表現を前記2次元画像上に重ね合わせることを特徴とする請求項36に記載のシステム。
【請求項38】
前記2次元画像がリアルタイム画像であることを特徴とする請求項36に記載のシステム。
【請求項39】
前記2次元画像がシネループ画像であることを特徴とする請求項36に記載のシステム。
【請求項40】
前記2次元画像が静止画像であることを特徴とする請求項36に記載のシステム。
【請求項41】
更に、前記プロセッサに結合され、前記重ね合わせ画像を表示するディスプレイを具えていることを特徴とする請求項36に記載のシステム。
【請求項42】
更に、前記プロセッサに結合され、前記2次元画像を取得する画像取得装置を具えていることを特徴とする請求項36に記載のシステム。
【請求項43】
前記画像取得装置がX線機器であることを特徴とする請求項42に記載のシステム。
【請求項44】
前記画像取得装置がCアームであることを特徴とする請求項42に記載のシステム。
【請求項45】
前記画像取得装置が誘導型血管内超音波装置であることを特徴とする請求項42に記載のシステム。
【請求項46】
前記画像取得装置が体外超音波画像検出装置である請求項42に記載のシステム。
【請求項47】
更に、前記プロセッサ及び前記患者の体に結合され、前記臓器タイミング信号を監視する臓器タイミング信号モニタを具え、前記プロセッサは、前記臓器タイミング信号モニタの出力により前記臓器タイミング信号を測定することを特徴とする請求項36に記載のシステム。
【請求項48】
前記医療装置を操作する手順を手動で実行することを特徴とする請求項36に記載の方法。
【請求項49】
前記医療装置を操作する手順を自動的に実行することを特徴とする請求項36に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図16A】
image rotate

【図16B】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2007−83038(P2007−83038A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【外国語出願】
【出願番号】特願2006−250739(P2006−250739)
【出願日】平成18年9月15日(2006.9.15)
【出願人】(503293189)メディガイド リミテッド (4)
【Fターム(参考)】