説明

収差補正暗視野電子顕微鏡

透過型電子顕微鏡は、電子ビームを生成する電子ビーム源(20)を有する。前記電子ビームを収束させるようにビーム光学系が供されている。収差補正装置(90)は、少なくとも球面収差について前記電子ビームを補正する。前記電子ビームのビーム路中に試料(40)を保持する試料ホルダが供される。検出器(80)は、前記試料を透過する前記電子ビームを検出するのに用いられる。当該透過型電子顕微鏡は、前記電子ビームのゼロ次ビームが検出されない暗視野モードで動作する。当該透過型電子顕微鏡はまた、インコヒーレントな照射モードで動作することもできる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は収差補正暗視野電子顕微鏡に関する。
【背景技術】
【0002】
試料中の単一の点状物体を解像するのに電子顕微鏡を用いることが望ましい用途が存在する。単一の点状物体はたとえば、アモルファス基板上の単原子又は複数の原子からなるクラスタであってよい。電子顕微鏡は理論的に、核酸の塩基配列−たとえばデオキシリボ核酸(DNA)のストランドの塩基配列−を決定するのに利用することができる。
【0003】
試料全体にわたって電子ビームをラスタスキャンさせる走査透過型電子顕微鏡(STEM)は、像中の単一の点状物体を解像するのに用いられてよい。しかしSTEMには一般的に、走査時間が遅いという問題がある。このため得られるスループットは不十分である。たとえばSTEMは、像の画素あたり1μs〜10μsのオーダーの時間での走査を有する。この走査時間は、多数の単一の点状物体を連続的に解像することが望ましい場合には不適切と考えられる。STEMのスループットはたとえば、現実的な期間で全ヒトゲノムの配列を特定するには不適切と考えられる。
【0004】
透過型電子顕微鏡(TEM)は、STEMとは異なり、試料を並列に可視化する。しかしTEMイメージングは、単一の点状物体を解像しようとするときに問題を生じさせる恐れがある。その理由は、一般的に位相コントラスト情報が、この目的を実現するように解釈できないからである。たとえばTEM像中の明るい領域は、原子又は原子の不存在を表しうる。従ってTEMが良好なスループットを有するとしても、一般的にTEMが、試料についての所望の情報を与える訳ではない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2009/046445号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
よって、信頼性を有した状態で点状物体を解像しうる電子顕微鏡を有することが望ましい。さらに係る電子顕微鏡は、かなり高いスループットを有することが望ましい。しかも係る電子顕微鏡は、手頃なコストで供されることが望ましい。
【課題を解決するための手段】
【0007】
一の実施例では、透過型電子顕微鏡は、電子ビームを生成する電子ビーム源を有する。前記電子ビームを収束させるビーム光学系が供される。当該透過型電子顕微鏡は、少なくとも球面収差について前記電子ビームを補正する収差補正装置をさらに有する。前記電子ビームのビーム路中に試料を保持する試料ホルダが供される。それに加えて当該透過型電子顕微鏡は、前記試料を透過する前記電子ビームを検出する検出装置を有する。本実施例の透過型電子顕微鏡は、前記電子ビームのゼロビームが検出されない暗視野モードで動作する。
【0008】
他の実施例では、透過型電子顕微鏡は、電子ビームを生成する電子ビーム源を有する。前記電子ビームを収束させるビーム光学系が供される。前記ビーム光学系は、該ビーム光学系が実質的に円筒形の対称性を有するように当該透過型電子顕微鏡の光軸を画定する。当該透過型電子顕微鏡は、略光軸に設けられた素子を含む収差補正装置をさらに有する。前記収差補正装置は、少なくとも球面収差について前記電子ビームを補正する。前記電子ビームのビーム路中に試料を保持する試料ホルダが供される。それに加えて当該透過型電子顕微鏡は、前記試料を透過する前記電子ビームを検出する検出装置を有する。本実施例の透過型電子顕微鏡は、前記電子ビームのゼロビームが検出されない暗視野モードで動作する。
【0009】
他の実施例では、透過型電子顕微鏡は、インコヒーレント電子ビームを生成するインコヒーレント電子ビーム源を有する。前記電子ビームを収束させるビーム光学系が供される。当該透過型電子顕微鏡は、略光軸に設けられた素子を含む収差補正装置をさらに有する。前記収差補正装置は、少なくとも球面収差について前記電子ビームを補正する。前記電子ビームのビーム路中に試料を保持する試料ホルダが供される。それに加えて当該透過型電子顕微鏡は、前記試料を透過する前記電子ビームを検出する検出装置を有する。本実施例の透過型電子顕微鏡は、前記電子ビームのゼロビームが検出されない暗視野モードで動作する。
【0010】
他の実施例では、透過型電子顕微鏡用の電子ビーム部品の組立体は、電子ビームを生成する電子ビーム源を有する。少なくとも球面収差について前記電子ビームを補正する収差補正装置が供される。検出器は、前記電子ビームが試料を透過した後の前記電子ビームをも検出する。透過型電子顕微鏡では、前記電子ビーム部品の組立体は、前記電子ビームのゼロビームが検出されない暗視野モードで動作する。
【0011】
他の実施例では、透過型電子顕微鏡用の暗視野収差補正装置は、少なくとも球面収差について前記電子ビームを補正する収差補正装置を有する。暗視野アパーチャは暗視野絞りを有する。前記暗視野絞りは、(i)前記電子ビームの中心部を絞るように前記電子ビームの半径方向中心で略環状の断面を有する環状絞り、及び、(ii)前記環状絞りと同心円をなし、かつ、前記環状絞りと間隔を開けて設けられる外側絞りを有する。前記環状絞りと前記外側絞りとの間には環状ギャップが存在する。
【図面の簡単な説明】
【0012】
【図1】AとBは、収差補正ADF-TEM鏡筒の典型的実施例の概略図である。
【図2A】収差補正ADF-TEM鏡筒の様々な典型的実施例における電子線の概略図である。
【図2B】収差補正ADF-TEM鏡筒の様々な典型的実施例における電子線の概略図である。
【図2C】収差補正ADF-TEM鏡筒の様々な典型的実施例における電子線の概略図である。
【図2D】収差補正ADF-TEM鏡筒の様々な典型的実施例における電子線の概略図である。
【図2E】収差補正ADF-TEM鏡筒の様々な典型的実施例における電子線の概略図である。
【図2F】収差補正ADF-TEM鏡筒の様々な典型的実施例における電子線の概略図である。
【図2G】収差補正装置のホイル補正装置の典型的実施例の概略図である。
【図2H】収差補正装置のホイル補正装置の典型的実施例の概略図である。
【図3A】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図3Ai】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図3B】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図3Bi】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図3Bii】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図3C】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図3Ci】収差補正されたADF-TEMについての軸上に電荷を有する素子の様々な典型的実施例の斜視図である。
【図4A】ADF-TEM鏡筒において寄生収差を補正する部品の典型的実施例の概略図である。
【図4B】ADF-TEM鏡筒において寄生収差を補正する部品の典型的実施例の概略図である。
【図5】どのようにして3次補正の投影のずれが5次の補償を供するかを表す概略図である。
【図6】収差診断のための機構を供することのできる収差補正ADF-TEMシステムの典型的実施例の概略図である。
【図7】ADF-TEM鏡筒のSTEMモードの典型的実施例の概略図である。
【図8A】ADF-TEMで用いられる軸上に電荷を有する収差補正対物レンズ集合体の典型的実施例の効率を示すために実行されたコンピュータシミュレーションの結果を示している。
【図8B】ADF-TEMで用いられる軸上に電荷を有する収差補正対物レンズ集合体の典型的実施例の効率を示すために実行されたコンピュータシミュレーションの結果を示している。
【図8C】ADF-TEMで用いられる軸上に電荷を有する収差補正対物レンズ集合体の典型的実施例の効率を示すために実行されたコンピュータシミュレーションの結果を示している。
【図9】インコヒーレント電子源を用いたインコヒーレント照射モードを実施する典型的実施例の概略図である。
【図10】ADF-TEMの参照バージョンの典型的実施例の概略図である。
【図11】傾斜電子ビームと走査電子ビームからの像の成分が合計される典型的実施例の概略図である。
【図12】試料中で特定される対象物の像を改善するため、振幅コントラストが合計される一方で位相コントラストが減少する1組のプロットである。
【図13】インコヒーレントな重ね合わせの典型的実施例の概略図である。
【図14】インコヒーレントな重ね合わせの典型的実施例の概略図である。
【図15】インコヒーレントな重ね合わせの典型的実施例の概略図である。
【図16】インコヒーレントな重ね合わせの典型的実施例の概略図である。
【発明を実施するための形態】
【0013】
透過型電子顕微鏡(TEM)は、試料を並列に結像することができるので、理論上迅速かつ高率なスループットを供する。しかし前述したように、TEMイメージングは、単一の点状物体を解像しようとするときに問題を生じさせる恐れがある。その理由は、一般的に位相コントラスト情報が、この目的を実現するように直接的に解釈できないからである。このような問題は、たとえば試料上の非周期的配列中の単一の原子又は複数の原子からなるクラスタを可視化しようとするときに発生する恐れがある。
【0014】
TEMイメージングは、顕微鏡の電子ビーム中の電子の中心ビーム(「ゼロビーム」と呼ばれる)が阻止される「暗視野モード」で動作してよい。特に暗視野モードは、TEMの基本又は専用可視化モードとして実装されてよい。暗視野モードは、単調コントラストを有する像を生成してよい。それにより、相対原子量を決定するように像を直接的に解釈することが可能となる。たとえば暗視野イメージングは、単一原子、複数の原子からなるクラスタ、又はナノ構造の化学的に感受性を有する投影を得るのに用いられてよい。しかし暗視野モードは、電子照射量が減少することで、可視化のデータスループットを減少させる恐れがある。そのため暗視野モード自体は望ましくない。よってコヒーレント照射に基づき、かつ、球面収差又は他の収差に悩まされている暗視野イメージング法は、望ましくないほどに遅くなる恐れがある。
【0015】
速度を改善するため、TEMイメージングでは収差が補正されてよい。収差が検出され、かつ、コンピュータは、収差を解析して、収差を生成するレンズ素子に対して補償信号を与えるのに用いられてよい。収差を補正することで、可視化のスループットを向上させることができる。そのように向上したスループットは、DNA配列の特定にTEMを用いる上で特に有利となりうる。高スループットであることで、電子顕微鏡を、非常に迅速に全ヒトゲノムの塩基配列の特定を行うのに用いることが可能となる。たとえば電子顕微鏡は、約200時間〜約0.01分−たとえば約20時間−で全ヒトゲノムの塩基配列の特定を行うことができる。特別に高いスループットを有するバージョンでは、たとえば電子顕微鏡は、約10時間〜約1分で全ヒトゲノムの塩基配列の特定を行うのに用いることができる。
【0016】
よって収差補正は、暗視野モードでも動作するTEMで実装されてよい。さらに後述するように、この組み合わせは、収差補正が、「軸上に電荷を有する」素子を用いることによって全部又は一部が実装されるときには特に有利となりうる。「軸上に電荷を有する」とは、略電子顕微鏡のゼロビームの位置に設けられた1つ以上の素子を指称する。対照的に明視野モードでは、ゼロビームはそのような素子によっては阻止されない。
【0017】
それに加え、またさらに後述するように、1つ以上の収差補正と暗視野モードはさらに、インコヒーレント照射と組み合わせられてよい。前述したように、インコヒーレント照射はたとえば、実質的にインコヒーレントな電子源、又は、電子ビームのエネルギーのシフト、走査、若しくは変更により実現されてよい。収差補正、インコヒーレント照射、及び暗視野操作を組み合わせることで、電子顕微鏡のスループットは特に増大しうる。そのような電子顕微鏡のスループットの増大は、コヒーレント照射からの電子照射と比較してインコヒーレント照射からの電子照射は増大することが一因である。
【0018】
ここで添付図面に図示されたTEMの典型的実施例について詳細に参照する。図中、同一参照番号は、同一又は同様の部品を指すものとする。
【0019】
TEMの典型的実施例では、収束レンズ及び前方対物レンズと一緒になった電子銃は、試料上の一部を電子線により照射する。試料の原子は入射電子を散乱する。このとき重い原子ほど、大きな角度で電子を散乱する。試料後方の対物レンズは、その対物レンズの後焦点面において回折パターンを生成する。
【0020】
略円筒形状の対称性を有する系では、暗視野モードは「環状暗視野」(ADF)モードであってよい。この場合では、中心ビーム絞りを含むアパーチャが、後焦点面(又は後焦点面と共役な面)(付近)に設けられてよい。中心ビーム絞りは環状の形状を有してよい。ビーム絞りは、散乱電子をφdで表される角度範囲に制限する。φdは、内側角φ1と外側角φ2との間の環を画定する。これらの角度はたとえば、複数の原子からなるクラスタの可視化の場合では、φ1については約0.1mrad〜約10mradで、φ2については約1mrad〜約20mradであってよい。単一原子の可視化の場合では、これらの角度はたとえば、φ1については約5mrad〜約20mradで、φ2については少なくとも約20mradであってよい。φ2についての適切な範囲の例は約20mrad〜約50mradである。よって単一原子を可視化するためのφ2についての適切な範囲の例は、約15mrad〜約50mradであってよい。この環状アパーチャを通過する電子は最終的には検出器上に収集される。それにより試料の像が生成される。換言すれば、環状アパーチャを通過する電子線は究極的には、試料から収集される情報源である。
【0021】
ADF-TEMの基本的なコントラスト機構は、質量−厚さコントラストであってよい。これにより可視化される種の原子番号に対する感度が改善される。収集された強度(I)は近似的に、以下の関係式に従う。
【0022】
I/I0=1-exp(-Nσρt)
ここで、N=N0Aはアボガドロ数を原子量で除した値で、σは、原子番号Z、入射エネルギー、及び角度範囲に依存する適切な単一原子の部分散乱断面積で、ρは材料の密度で、tは厚さである。
【0023】
強度は厚さに対して単調増加する。そのため、厚さが一定である場合には、種の相対原子量をすぐに特定することができる。暗視野TEMが化学的感受性を有するとしても、その解像度は通常、従来の電子光学レンズで用いられるときには、妥協したものとなる恐れがある。暗視野TEMでは、電子線は主として大きな角度からのものが収集され、そのような電子線は収差の影響をより強く受けるので、コントラストは拡がり、かつ、解像度は減少する恐れがある。よって収差補正は、暗視野モードの電子顕微鏡で実施されるときには、特に望ましいと考えられる。さらに球面収差を補正するのに軸上の電荷を用いる収差補正の実装は、暗視野TEMと本質的に相性がよい。その理由は、アパーチャのビーム絞りが、光軸付近の電子線のビーム路を対物レンズの後焦点面内で妨害するように設けられるためである。
【0024】
収差補正ADF-TEMの構造上の構成に係る典型的実施例について次に述べる。この収差補正ADF-TEMの例は、電子源、収束レンズ、試料ホルダ、対物レンズ、及び検出器を含む電子光学鏡筒を有する。収差補正ADF-TEMのある実施例では、電子源は熱イオン源−たとえばタングステン(W)源又は6ホウ素化ランタン(LaB6)源−であってよい。これらの熱イオン源はかなり大きな電流を供してよい。これは、各像の露光を短くする、つまりスループットを向上させることを可能にする。これらの電子源の例は、他の電子源のようにコヒーレントでなくてよい。しかし高コヒーレントレベルは、収差補正ADF-TEMにおいて必ずしも必要ではない。特に重要な利点は、以降で詳述するように、意図的にインコヒーレントにした照射の結果得られうる。
【0025】
試料上に入射するビームを生成するように、電子源に続いて収束レンズが設けられてよい。収束レンズはたとえば、2、3、又は4つのレンズで構成されてよい。収束レンズは磁気レンズ又は静電レンズであってよい。続いて試料から散乱される電子は、光学系を介して結像される。光学系は、少なくとも2つの機能を実現してよい。第1には、光学系は、ADFモードを実装するように中心の散乱ビームを阻止しうる。第2には、光学系は収差を補正しうる。これら2つの機能の組み合わせは特に有利となりうる。
【0026】
電磁レンズは、軸付近にさらなる補正素子を有してよい。さらに標準的な拡大レンズが収差補正暗視野TEMに含まれるようにする機会もある。これらの拡大レンズは、電子検出器に続いて設けられる。電子検出器は、当業者に既知の多くの形態のうちの1つを有してよい。
【0027】
対物レンズと収差補正システムとを組み合わせることは有利となりうる。対物レンズは、従来の静電レンズ又は磁気レンズに似ていてよい。収差補正システムの一部として、電荷誘起部品の少なくとも一部が、ビーム路に関して、対物レンズの前又は後に、ADF-TEM鏡筒(又はより従来型の多重極に基づく収差補正装置)の光軸上に設けられてよい。
【0028】
ADF-TEMの収差補正のため、軸上の電荷を導入する代替手法が存在する。たとえば電荷を誘起する部品は、等電位を定める役割を果たす金属で構成されてよい。あるいはその代わりに電荷を誘起する部品は、実質的に抵抗性を示す材料−たとえば部分的に伝導性を示す材料−で構成されてよい。他の実施例では、電荷を誘起する部品は、電子ビーム自体又はそれ以外のものによって特別に帯電する絶縁体である。軸上に電荷を有する構成は、電場形状の制御によって、対象物中の一点から放出されてこの環状領域を通過する電子線が、像平面中の非常に安定したスポットに集束されることを可能にする。
【0029】
ADF-TEMはまた、球面収差とは対照的に、寄生収差が円筒対象であるか否かによらず、寄生収差を補正するシステムをも有してよい。寄生収差はたとえば、非常にわずかに軸を外すか、又は非常にわずかに非環状となるように加工された光学素子によって生じうる。
【0030】
ここで寄生収差を補正する例について説明する。低次の収差−具体的には最大でも2次−については、適切な回転可能な多重極又は二重極位置合わせコイルによる直接的な補正が行われてよい(たとえば非点収差については四重極で、3回転非点収差について六重極)。3次の収差を緩和する新規な手法では、電子ビームは、(複数の)収差補正素子へ入射する前に多重極(四重極又は八重極)素子によって予め歪められ、その後(複数の)収差補正素子へ入射下後では同一の多重極(四重極又は八重極)素子によっては歪められない。この手法は、非環状の寄生収差(四重極の場合であれば2回転対称(C32)で、八重極の場合であれば4回転対称(C34)である)を補正する非環状の3次収差を誘起しうる。
【0031】
5次の寄生収差は、対物レンズの後焦点面とは異なる光学面に(複数の)補正素子を誤って投影することによって補正されうる。これにより、収差の導入とその補正との間での波面の伝播が可能となる。この伝播により、高次の結合収差が生じる。前記高次の結合収差の符号は、誤った投影の符号に依存する。
【0032】
このさらなる寄生収差補正システムは、収差が補正されたADF-TEMの多くの実施例−特に多く商業上の用途−において有利となりうる。その理由は、寄生収差は、約40年間有効な収差補正システムの発展の重大な制約だったからである。従ってこれらの寄生収差を補正する能力は、収差が補正されたADF-TEMの特に有利な特徴となりうる。
【0033】
軸上に電荷を有することで、複数の利点の中でもとりわけ、暗視野TEMの小型化が可能となる。しかし一部の用途では、小型化の利点は必要ではなく、他の観点が重要視されることもありうる。よって収差補正装置の軸上に電荷を有する実装の代わりに、他の収差補正装置の構成が実装されてもよい。
【0034】
ADF-TEMのそのような代替例では、標準的な補正装置は、Nion社の四重極−八重極補正装置又はCEOS社の六重極若しくは四重極−八重極補正装置を有してよい。環状アパーチャが、(たとえばADF-TEMのSTEMモードでは)試料の光が入射する位置又は(たとえばADF-TEMモードでは)散乱ビームが出射する位置に供されてよい。
【0035】
収差補正暗視野TEMは、収差を診断する機構をさらに有してよい。収差を診断する従来の手法は、明視野像が利用可能であることを仮定している。暗視野TEM向けの新規の手法は、照射の傾斜及び焦点のぼけの関数として像を取得して、その傾斜及び焦点のぼけのちらつき効果を抽出することである。ちらつきは、様々な角度で焦点のぼけ及び非点収差の値を与える。この手法は、結像系の収差関数を数値的に計算するための十分なデータを供することができる。これらの目的のために用いられた試料は、単一原子若しくは複数の原子からなるクラスタを含んでよく、又は、収差を診断する目的で作られた他の種類の試料であってよい。たとえば試料は、究極的には研究上の監視対象である試料であってよい。あるいはその代わりに試料は単に、収差補正TEMの校正に用いられる試料であってもよい。
【0036】
図1Aは、収差補正ADF-TEM鏡筒10の典型的実施例の概略図である。鏡筒10は、電子源20、1つ以上の収束レンズ30、試料40、対物レンズ50、環状アパーチャ60、1つ以上の投影レンズ70、及び検出器80を有する。軸上に電荷を有する収差補正装置90は、対物レンズ50内に組み込まれる。像平面100が図に示されている。電子源20及び収束レンズ30は、様々な照射条件を供するように構成される。たとえば電子源20及び/又は収束レンズ30は、鏡筒10の収差補正及びADF特徴による独自の共同作用を実現する高電流のインコヒーレント照射モードを供するように構成されてよい。
【0037】
収差補正ADF鏡筒10は、鏡筒10の部品−たとえば電子源20、レンズ30、50、70、収差補正装置90、検出器80、及び、試料40を保持して移動させるステージ−に電力を供する電源と接続する。鏡筒10は、約800W未満の全電力消費を有してよい。低電力の実施例−たとえば鏡筒10が小型化されるような場合−では、鏡筒10は、約300W未満の電力消費−たとえば約10W〜約100W−さえも有してよい。電子源20は、約100mA未満の電流を有する電子ビームを生成するように構成されてよい。特に低電流の場合では、電子源20は、約10μA未満−たとえば約10pA未満−の電流を有する電子ビームを生成するように構成されてもよい。
【0038】
図1Aの収差補正ADF-TEM鏡筒10では、収差補正対物レンズ50は、軸上に電荷を有する補正装置90によって内的に補正される。換言すると、収差補正は、対物レンズモジュール内部で実行される。対物レンズ50内部に軸上に電荷を有する補正装置90を設けることは、EM鏡筒のサイズを減少させる上で有利となりうる。さもなければ、補正素子のさらなる積層体によって不必要に大きくなってしまう恐れがある。環状アパーチャ60は、対物レンズ50の後焦点面(付近)に挿入されてよい。環状アパーチャ60は、対物レンズ50の後焦点面に共役な任意の面内に設けられてもよい。
【0039】
図1Bは、対物レンズ50の外部に軸上に電荷を有する補正装置90を有する、図1Aの実施例の典型的変形の概略図である。この構成は、とりわけ市販されている部品を用いて構築されてよい。
【0040】
図2Aは、軸上に電荷を有する補正装置90Aを備える収差補正ADF-TEMの対物レンズの典型的実施例の概略図である。図2Aは、電子線のビーム路110,120も示している。収差補正の効果を表すため、平行入射電子線が示されている。とはいえレンズは一般的に、平行な入射電子線では動作しない。実際には、対物レンズ50は、照射された試料の拡大像を生成するのに用いられる。また、光軸130、中心電子線110、周辺電子線120、補正された中心電子線140、補正されたガウス焦点面150、及び補正されていないガウス焦点面160も図示されている。対物レンズ50のレンズ素子170は、概略的な物体として表され、かつ、たとえば磁気レンズのポールピースとコイル、又は、静電レンズの電極のいずれかを表す。
【0041】
軸上に電荷を有する収差補正装置90Aは、光軸130に沿って設けられる。一の実施例では、対物レンズ50は、軸上に電荷を有する収差補正装置90Aの周辺に設けられる。そのように設けられることで、軸上に電荷を有する収差補正装置90Aは、レンズ素子170の間に設置される。収差補正装置90Aは修正された電位分布を供する。前記修正された電位分布は、ビームの中心に近い電子線−具体的には中心電子線110−を、周辺電子線120−ビームの中心から離れた電子線−と同一の地点に集束させる。
【0042】
軸上に電荷を有する収差補正装置90Aは、とりわけ電源と接続する金属シリンダであってよい。軸上に電荷を有する収差補正装置90Aと関連して、所望の静電場を発生させるさらなる電極が存在してよい。そのようなさらなる電極と軸上に電荷を有する収差補正装置90Aとを組み合わせたものは、ホイルレンズと呼ばれる。収差補正装置90Aが存在しないとき、対物レンズ50の球面収差は、ビームの中心に近い電子線−具体的には中心電子線110−を、第1ガウス焦点面150に対してより近い点で集束する、ビームの中心から離れた電子線−具体的には周辺電子線120−より強く、第2ガウス焦点面160へ集束させない。
【0043】
収差補正装置90Aに電位を印加することで、電子ビーム線を通過させて偏向させる横方向の力が供される。この力が、ビームの中心の近くを通過する電子線により強く影響を及ぼすことで、その電子線は、光軸130から離れた電子線よりも、焦点の近くに集束する。周辺電子線120及び中心電子線110は、対物レンズ50と軸上に電荷を有する収差補正装置90Aとの組み合わせによって共通の地点−第1ガウス焦点面150−に集束されるとき、球面収差の効果は緩和又は打ち消される。
【0044】
図2Bは、図2Aに図示された基本的な収差補正ADF-TEM構成の典型的な変形の概略図である。この場合、収差補正装置90Aは、対物レンズ50の外側に設けられる。このようにして、収差補正装置90Aは、レンズ素子170の電場とは相互作用しない。このように収差補正装置90Aを位置設定することで、図の上で示されているように、中心電子線110は予めそらされる。このようにして、中心電子線110は最終的に、周辺電子線120と同一地点に集束される。
【0045】
図2Bに図示されている収差補正装置90Aの特別な構成は、周辺電子線120を、略本来の焦点に集束させることを可能にする。ただしこれは必須ではない。図2A及び図2Bに図示された構成は、中心電子線110だけではなく周辺電子線120にも影響を及ぼすが、適切な状態では、中心電子線110と周辺電子線120は、ガウス焦点面150の同一地点に集束する。補正されたガウス焦点面150は、レンズの後で任意の位置を占めてよい。
【0046】
図2Cは、図2Aに図示された基本的な収差補正ADF-TEM構成の典型的な変形の概略図である。ここでは、軸上に電荷を有する収差補正装置90Aが、光軸130に垂直な延在することで、素子はホイルの形態−たとえば伝導性グリッド−をとる。このような対物レンズ50と軸上に電荷を有する収差補正装置90Aの構成は、先の図2Aと図2Bに図示された軸上に電荷を有する収差補正装置90Aと略同一の効果を有してよい。しかし図2Cに図示された軸上に電荷を有する収差補正装置90Aの別な構成は、図2Aと図2Bに図示された別離した軸上に電荷を有する収差補正装置90Aよりも、構造的に容易に、すなわちよりしっかりと支持されうる。ホイルの形態は、一般的なイメージング−たとえば高い周期性を有する対象物のイメージング−とは対照的に、点状対象物のイメージングにとって好適であり得る。収差補正装置90Aのホイルの形態は、荷電粒子に対して透明であるのに十分な薄さであってよい。それに加えて、各穴の等電位の歪みが解像度に有害な影響を及ぼさないように、グリッドは十分に精細である必要がある。
【0047】
収差補正装置90Aのホイル形態を構成するのに用いられる金属は、この用途に対して十分な薄さにしてよい。任意の金属ホイルは原則として、この収差補正ADF-TEM鏡筒内で機能しうる。ただし強く散乱せず、かつ、自立型の薄いホイルが作製されうる金属に対する利点も存在しうる。ホイルの厚さの典型的な範囲は約0.1nm〜約10nm−たとえば約2nm〜約6nm−である。このため、収差補正装置90Aのホイル形態の広範なバリエーションが考えられ得る。形態はとりわけ、収差補正暗視野TEMの特別な用途の予想された必要性に最もよく適するように選ばれてよい。
【0048】
たとえば金、銀、白金、チタン、銅、及び鉄、並びに合金のように事実上任意のホイルが選ばれてよい。製造の容易さと取り扱い上の耐久性のため、高い引っ張り強度を有するホイルが用いられてよい。場合によっては、意図した用途と製造費の制約に依存して、安価なホイル部材が用いられてよい。製造コストを制限するため、取り扱いの容易さと材料疲労に対する耐性も考慮されてよい。ホイルはあまりに薄いので、台として機能しうる金属グリッドの支持体を有することが望ましいと考えられる。ADF-TEMイメージングモードは、ADF-TEM像に悪影響を及ぼすことなく、耐久性を有する機械的支持体を供するのに、光軸に近い領域を用いることを可能にする。
【0049】
図2Dは、図2Cに図示された収差補正装置90Aのホイル形態の典型的な変形の概略図である。しかしこの場合では、ホイル形態は、所望の波面修正に適合するように形状を変化させて、所望の収差補正を行う。繰り返しになるが、暗視野イメージングモードは、ホイルの中心を支持することを可能にする。よって幾何学上の構造の制御は、全角度範囲が可能な限り透明である必要がある場合によりも予測可能性が高くなりうる。
【0050】
結果は、ホイル用の金属を選ぶことによってさらに改善されうる。たとえば形状を保持する金属すなわち形状記憶遷移金属が用いられてよい。このようにして、収差補正ADF-TEMは複数回用いられてよい。温度変化は、ホイル収差補正装置90Aを、特定の用途に必要な形状に再構成するのに用いられてよい。図2C及び図2Dに図示された収差補正ADF-TEMの構成は、一の収差補正装置90Aを他の収差補正装置90Aへ手動で置き換えることなく切り換えられてよい。
【0051】
図2Dに図示された場合では、球面収差が補正される。収差補正装置90Aが対物レンズ50の外側に存在する点で図2Bと相似する図2Cと図2Dの各々には変化型が存在してよい。図2Eは、図2Cに図示された収差補正ADF-TEMに係る実施例の典型的変形の概略図である。この実施例では、収差補正装置90Aの平坦ホイル形態は、対物レンズ50の外部に設けられている。図2Fは、図2Dに図示された収差補正ADF-TEMに係る実施例の典型的な変形の概略図である。この実施例では、収差補正装置90Aの曲率を有するホイル形態が、対物レンズ50の外部に設けられている。
【0052】
一のバージョンでは、収差補正装置90Aのホイル形態は、ビーム路にわたるホイル及び異なる面内に存在するアパーチャを有する。前記ホイル及びアパーチャは、独立した電位を受けるように構成されてよい。図2G及び図2Hは、ホイル補正装置に係る典型的実施例の構成の上面図と側面図をそれぞれ表している。このホイルは、金属層171と173、絶縁層172、及び、薄い伝導性の電子透過ホイル174を有する。アパーチャ175も図中に示されている。金属層171と173は金属−たとえば銅−で作られる。絶縁層172は厚い石英シートであってよい。一例では、絶縁層172は約50μmの厚さを有する。製造中、絶縁層172は、石英シートのいずれかの面上に2つの位置合わせ用アパーチャを残すように標準的なリソグラフィ法によって準備されてよい。続いて金属層171と173は、絶縁層172上に堆積されてよい。続いて炭素薄膜が、金属層173と露出した絶縁層172上に堆積されてよい。その後気相酸(たとえばフッ化水素酸)エッチングが、被覆されていないアパーチャを介して絶縁層172の一部を穏やかに除去するのに用いられてよい。このエッチングは、独立した炭素膜を残す。この独立した炭素膜は、極端に薄いため電子を透過する基準を満足し、かつ、ホイル174にとって望ましい低原子番号の元素で構成される。
【0053】
金属層171,173とホイル174のいずれも、直径が約1μm〜約100μmの開口部を有してよい。他方絶縁層172は、直径が約1μm〜約600μmの開口部を有してよい。ホイル174がアパーチャ175を覆う場合、ホイル174は約5nm〜約1000nmの厚さを有してよい。あるいはその代わりにホイル174は、適切な材料−たとえばグラフェン−の1分子層程度の薄さであってよい。この後者の場合、絶縁層172は約1μm〜約1000μmの厚さを有してよい一方で、金属層171と172は約1μm〜約1000μmの厚さを有してよい。
【0054】
図2B-図2Hに図示された各構成は理想的には、試料上の1点から放出される電子ビーム線を、対物レンズ50により構成される像平面160内の略1点に集束させる。
【0055】
図3Aは、収差補正ADF-TEMの軸上に電荷を有する補正装置90Aの素子180に係る典型的実施例の斜視概略図である。この実施例では、電荷領域は連続で、かつ、1つのモノリシック部材内に配置されている。素子180を製造するのに用いられる材料は、ある制約を用いて選ばれてよい。その制約とは、材料は、機械的にも電子照射に対する耐性の観点からも十分な耐久性を有し、伝導性表面(又は表面付近の伝導性面)を有し、かつ、所望の幾何学構造に作製されるように改変可能であることである。これは金属−たとえばプラチナ、チタン、モリブデン、及び金−だけではなく、半導体−ドーピングされたシリコン及びガリウム砒素−を含んでよい。その材料はまた、絶縁体の複合構造−たとえば薄い金属層で被覆されたシリコン窒化物−をも有してよい。
【0056】
素子180のサイズは、直径で約1nm〜約10cmの範囲であってよい。全体の深さは約10μm〜数cmの範囲であってよい。素子180の表面の伝導性は、素子が地電位に接続されるときに、素子180の抵抗が時間依存する変化を像中で生じさせている証拠がその像中に見いだされない程度に十分な大きさであってよい。
【0057】
図3A、図3Ai、図3B、図3Bi、及び、図3Biiは、複数の電極を1つにするように配置して軸上に電荷を有する補正装置90Aの素子を形成する様々な方法の典型的実施例の斜視簡略図である。軸上に電荷を有する素子180のこれらの構成は、電子が進行する真空中で様々な電場分布を実現する。これらの図中の素子180の実施例は、図3Cに図示されているように機械的に支持されている必要がある。図示された幾何学構造のすべては任意で、光軸に対して垂直な面内で薄い抵抗性ホイル(たとえば厚さ数nmのアモルファスカーボン)によって拡大され、かつ、軸上に電荷を有する素子180によって機械的に支持されることで、等電位面の形状をさらに制約して、ひいては所望の粒子軌道をより厳密に実現しうる。一のバージョンでは、軸上に電荷を有する補正装置90Aは、合計で約1〜20の別個の部品で構成される。より特化されたバージョンでは、軸上に電荷を有する補正装置90Aは、合計で約2〜3の別個の部品で構成される。
【0058】
図3Aiは、図3Aの収差補正ADF-TEMの変化型を表している。図中の素子は、全体としての形状は依然として円筒形であるものの、同心円である複数の電荷領域で作られる。この例では、3つの帯電領域190は、2つの絶縁体200によって分離される。各異なる電荷値が、各異なる電荷領域190の各々の上に設けられてよい。
【0059】
図3Bは、図3Aに図示された収差補正ADF-TEM実施例の変化型である。図のモノリシックに構成された軸上に電荷を有する素子180は、円筒対称だが、特定の形状−この場合では直線−のプロファイルを有する。
【0060】
図3Biは、図3Bに図示された軸上に電荷を有する素子180の変化型を表している。図3Biに図示された素子180は、図3Aiの複数の電荷領域を備える。これは、電圧の大きさが各異なり、サイズが徐々に減少する3つの入れ子構造の錐体の形態をとる。
【0061】
図3Biiは、図3Biに図示された軸上に電荷を有する素子180の変化型を表している。この場合、軸上に電荷を有する素子180は、まっすぐではなく曲がった側面を有する。繰り返しになるが、軸上に電荷を有する素子180は、同軸形態を有する。複数の帯電導体190と該複数の帯電導体190間に絶縁体200が設けられる。
【0062】
図3Cは、軸上に電荷を有する素子180の別な変化型を表している。ここで軸上に電荷を有する素子180は、スポーク支持体220のウエブによって空間中でつるされた個々の環210上で同心円状に分布した電荷を有する。光軸から放射状に広がる個々の環210は、光軸の周りで電荷分布を生成するように、前記個々の環210上で各異なる電位の値を有する。1つ以上のスポーク支持体220はさらに、独立した環210の各々に電荷を供給するのに用いられてよい。
【0063】
スポーク支持体220は、導体−たとえば金属−又は絶縁体で構築されてよい。たとえばスポーク支持体220上での電位は、前記スポークの長さ全体に沿って1つの値であってよい。他方スポーク支持体220が絶縁材料で構築される場合、そのスポーク支持体220は帯電する。好適実施例では、スポーク支持体220は、他の材料層で被覆された絶縁体(導体を取り囲んでもよい)を有する。電流が、前記他の材料層を介して電位勾配を流れることで、所望の等電位面の形状を生成する。
【0064】
これらの構成は、軸上に電荷を供する他の可能性を与える。軸上の電荷を導入する他の方法は静電ミラーである。しかし電子は、電場によって減速された後にこのシステムを用いることによって止まってしまう。その結果、電子は浮遊電場に対して非常に敏感になる。
【0065】
傾斜した静電ミラーは、軸上に電荷を有する収差補正を供する別な方法であり得る。
【0066】
図3Cは、光軸を中心とする複数の同心円電極を表している。この場合、全体的な収差補正ではなく部分的な収差補正が実行されてよい。それにより大きな角度を有する電子線の補正のみが実現される。この場合、多数の電極の間にはギャップが設けられる。複数のギャップの各々では、局所電場が、ギャップを通過する電子線の収差を補正する。その結果、これらのギャップを通過する電子の少なくともかなりの部分は、像の強度に肯定的な意味での寄与をする。
【0067】
図3Ciは、単一の電源を用いることによって形状の変化した電位分布を与える収差補正ADF-TEMの実施例を表している。解決法の一例は、伝導性であってコーティング230をも有するスポーク支持体220によって支持される中心に位置する軸上に電荷を有する素子225を供することである。コーティング230は抵抗器で作られてよい。前記抵抗器には特別に傾斜が設けられている。すなわち前記抵抗器の厚さが変化することで、電位は、正しく機能するように、図の等電位線255によって示されているような所望の電位分布を実現するため、中心に位置する軸上に電荷を有する素子225からの半径方向の距離の関数として減少する。あるいはその代わりにコーティング230は、同様の効果を実現するために導体で作られてもよい。
【0068】
収差補正ADF-TEMの多くの実施例においてスポーク支持体220はかなり複雑である。たとえばスポーク支持体220は、図3Ciの分解断面図に示されているように、中心部に導体240を、導体240の外側に絶縁体250を、そして最も外側にコーティング230を有してよい。このような導体240、絶縁体250、及びコーティング230の組み合わせは、有利となるように正しい電場分布を供するのに用いられてよい。
【0069】
このような収差補正ADF-TEMでの収差補正方法は、寄生収差を補正するのにも用いられてよい。たとえば、C32収差と指称される円筒対称性を欠く球面収差を有する収差が存在する。参考のため、純粋な球面収差−たとえばC30収差−は円筒対称である。しかしC32収差は、如何にして他の球面収差(この場合ではC30)が2回転の対称性を有するのかを記述している。C32収差と指称される寄生収差を補正するため、四重極と呼ばれる多重極レンズは、収差補正装置90Aの前に設置されて良い。さらなる四重極レンズが、収差補正装置90Aの後に設置されても良い。
【0070】
このC32補正の構成の効果は、電子ビームを予め歪めることである。この場合、そのビームは補正レンズを通り抜けて、主な歪みは補正レンズの後に除去され、略楕円状態のまま球面収差となる。このようなシステムの調節は、C32補正と円形のビームを与える。
【0071】
C34収差すなわち4回転の非点収差を補正するため、八重極レンズが同じように用いられてよい。具体的には1つが収差補正装置90Aの前に設けられ、かつ、もう1つは収差補正装置90Aの前に設けられてよい。たとえば図2Aは、レンズ170間の球面収差補正装置90Aを示している。八重極レンズについては多くの構成が可能である。たとえば八重極レンズは、レンズ素子170の前又は後に設けることが可能な図2Aと図2Bの軸上に電荷を有する収差補正装置90Aと同様に、レンズ素子170の前、レンズ素子170の間、又はレンズ素子170の後に設けられてもよい。
【0072】
図4Aは、ADF-TEM鏡筒内で寄生収差を補正する部品に係る典型的実施例の概略図である。上述の基本的な収差補正装置90Aに加えて、さらなる多重寄生収差補正素子260が、レンズ170の前及び後に設けられてよい。この構成は、寄生収差を補正するために供されてよい。
【0073】
さらなる収差補正素子260は、収差補正ADF-TEMシステムの多くの実施例−特に商業用途−において非常に重要となりうる。これらの寄生収差は、約40年間収差補正の進歩を抑制してきた。よって寄生収差を補正する能力は、本願の収差補正ADF-TEMの重要な利点となりうる。上述の方法は、3次の寄生収差への補正の例を供する。残りの軸を外れた収差−特にコマ収差−は、レンズに対してビームの双極子をまっすぐに移動させることによって除去されうる。
【0074】
図4Bは、ADF-TEM鏡筒内で5次の寄生収差を補正する部品に係る典型的実施例の概略図である。この5次の収差補正の構成では、さらなる投影レンズ270は、軸上に電荷を有する補正装置90Aとレンズ170の間に設けられる。
【0075】
投影レンズはまた別の方法に利用されてもよい。負の3次関数と正の5次関数の場合では、これらの関数は実質的に互いに打ち消しあってよい。しかし負の3次成分が存在し、かつ、ある距離だけ伝播して打ち消されることが可能である場合、結果は、基本3次成分は打ち消されて、5次成分が発生する。その距離の符号を決定することによって、5次の収差が制御されてよい。
【0076】
図5は、どのようにして3次補正の投影のずれ5次の補償を行うのかを表す概略図である。符号が反対の3次形状を有する波面280と290が、同一面内で重ね合わせられるとき、波面280と290は、互いに打ち消しあって、平坦な波面300を生成する。しかし正の3次曲率を有する波面310は、ドリフト距離dにわたって伝播することが可能で、かつ負の3次曲率320を用いて整形されるとき、重ね合わせは、負の残留5次形状を有する波面330である。同様に、負の3次曲率を有する波面340が、ドリフト距離dによって正の3次曲率350から分離されるとき、正の残りの5次形状を有する波面360が生成される。
【0077】
図6は、収差を診断する機構を供することのできる収差補正ADF-TEM鏡筒に係る典型的実施例の概略図である。試料40の前に照射の傾斜370が供される。たとえばビームは、2対の適切に設置されて励起された双極子偏向装置(磁気的又は静電的)(図示されていない)によって傾斜されてよい。続いて様々な傾斜の各々についての像が、ADF-TEMモードにおいて、焦点合わせされた状態、焦点不足の状態、及び過焦点状態で取得されてよい。この方法は、既知のちらつきを有する2つの像だけではなく、比較的ちらついていない像をも供する。その後ちらつき関数はデコンボリューションされる。これらの測定結果は、各傾斜角での局所的な焦点ずれと非点収差を供する。このデータから、収差関数を得ることができる。
【0078】
上述の様々な方法は、3次である主な球面収差の補正だけではなく、寄生収差の補正及び5次の収差の制御をも行う。全体として、本願発明のこれらの収差補正方法は、収差測定手段と収差補正適用装置の両方を供することによって微細に集束されたADF-TEM像を供する。
【0079】
上述の電子顕微鏡はまた、同様の可視化結果を実現するため、走査透過型電子顕微鏡(STEM)においても構成されうる。図7は、市販された部品の組立体によって実装可能な収差補正ADF-TEMのSTEMモードに係る典型的実施例の概略図である。このSTEMモードは形式上、相反定理によって、図1Aに図示された収差補正ADF-TEM10とは画素毎に光学的に等価である。ADF-TEMモードでは、電子源400が図1AのTEM検出器80に対応し、同様に、検出器430が図1AのTEM電子源20に対応する。電子ビームは、電子源400から上方へ収束レンズを通り抜けて進行し、環状アパーチャ60、補正装置(図示されていない)、及び対物レンズ50を通過する。対物レンズ50は、試料410上にコリメートされた中空の錐体プローブを形成する。続いて電子は試料410から散乱される。それによって、投影系70によって収集されうる回折パターンが生成される。投影系70は、検出器430上での回折パターンの倍率を調節するのに用いられてよい。検出器430は、1組の同心円の環と、様々な角度に散乱される電子線を収集して、強度信号を供する中心検出器を有する。走査コイル420はランプ形状の波形によって励起される。それにより、コリメートされたプローブは試料全体にわたって走査され、その結果、試料上でのプローブの位置に固有な検出器での強度信号が供される。デスキャンコイル380は、回折パターンを光路に復元し、歪みを防止するため、ビームを対称に走査コイルへデスキャンするのに用いられてよい。この場合、インコヒーレンスは、大きな軸上に電荷を有する検出器によって供される(この検出器は、検出する明視野電子が存在する場合には明視野検出器である)。像を収集するのは遅いかもしれないが、このSTEMモードは他の利点を有する。前記他の利点とはたとえば、中空状の錐体照射により、STEMモードのADF-TEM、ある種の環状明視野、及び、非常に大きな角度の暗視野を同時に行うことが可能となることである。
【0080】
収差補正暗視野TEMについての本願明細書で説明した特徴は、荷電粒子ビーム又は他の粒子ビームを利用する多くの異なる種類の顕微鏡において実装されてよい。しかも収差補正暗視野TEMは、任意の適切な設備において任意の所望の構成−たとえばネットワーク通信、直接的なやりとり、又は間接的なやりとりを行う構成−で用いられてよい。
【0081】
しかも収差補正暗視野TEMシステムは、通信媒体を介したネットワーク−WAN、LAN、又はインターネット、直接的若しくは間接的に結合し、互いに局在又は離れている−全体にわたって任意の適切な方法−たとえば有線又は無線−で互いにやりとり又は結合し、かつ、任意の適切な通信プロトコル若しくは基準を利用する任意の数の構成部品を有してよい。
【0082】
本願明細書で述べた収差補正暗視野TEMの実施例は、静電的構成部品又は磁気的構成部品のいずれによって実装されてもよい。たとえば商用設定については、相対的に小さなバージョンの収差補正暗視野TEMが構築されてよい。収差補正暗視野TEMシステムは、収差補正暗視野TEM内部又は外部に、任意の適切な方法で配置された任意の数の静電的構成部品又は磁気的構成部品−たとえば電子銃又は他の粒子銃、レンズ、分散装置、スティグメータコイル、反射及び放電電子検出器、並びに台−を有してよい。収差補正暗視野TEMシステムによって用いられる像記憶、ファイル、及びフォルダは、任意の数であってよく、かつ、任意の記憶装置−たとえばメモリ、データベース、又はデータ構造−によって実装されてよい。
【0083】
収差補正暗視野TEMは制御装置を有してよい。前記制御装置は、1つ以上の任意のマイクロプロセッサ、複数の別な制御装置、処理システム、及び/又は回路−たとえばハードウエアモジュール及び/又はソフトウエアモジュールの任意の組み合わせ−を有してよい。たとえば前記制御装置は、任意の数のパーソナルコンピュータ−たとえばIBM互換機、アップル(登録商標)、マッキントッシュ(登録商標)、アンドロイド(登録商標)、又は他のコンピュータプラットフォーム−によって実装されてよい。前記制御装置はまた、市販の基本ソフト−たとえばウインドウズ、OS/2(登録商標)、ユニックス(登録商標)、リナックス(登録商標)、又は他の市販されている及び/若しくは慣習的に用いられているソフトウエア(たとえば通信ソフトウエア又は顕微鏡監視ソフトウエア)−を有してもよい。さらに前記制御装置は、任意の種類の入力装置−タッチパッド、キーボード、マウス、マイクロホン、又は音声認識−を有してよい。
【0084】
制御ソフトウエア−たとえば監視モジュール−は、スタンドアローンシステム又はネットワーク若しくは他の通信媒体によって接続するシステムで用いられるコンピュータ可読媒体−たとえば磁気媒体、光学媒体、磁気光学媒体、フラッシュ媒体、フロッピーディスク、CD-ROM、DVD、又は他のメモリ装置−上に記憶されてよいし、あるいは、ネットワーク又は他の通信媒体を介して伝播波又はパケットの形態でシステムへダウンロードされてもよい。
【0085】
前記制御装置は、収差補正暗視野TEM鏡筒の動作を制御してよい。あるいはその代わりに又はそれに加えて、前記制御装置は、コンピュータ上で処理される像をTEMの検出器から受け取ってよい。たとえば前記制御装置は、収集された粒子データ及び/又は任意の所望のデータを処理してよい。前記制御装置は、この目的のため像生成ユニットを有してよい。像生成ユニットは、収差補正暗視野TEM鏡筒の内部又は外部に設けられ、かつ、任意の方法−たとえば直接的又は間接的に結合して、又はネットワークを介した通信−で顕微鏡鏡筒とやり取りしてよい。
【0086】
しかも収差補正暗視野TEMの様々な機能は、任意の数の構成部品−たとえば1つ以上のハードウエア及び/若しくはソフトウエアモジュール又はユニット、コンピュータ、処理システム、又は回路−間において任意の方法で分配されてよい。コンピュータ又は処理システムは、互いに局所的又は離れた状態で設けられ、かつ、任意の適切な通信媒体−たとえばLAN、WAN、イントラネット、インターネット、有線、モデム接続、又は無線−を介してやり取りしてよい。上述のソフトウエア及び/又はアルゴリズムは、本願明細書に記載された機能を実現する任意の方法で調節されてよい。
【0087】
収差補正暗視野TEMは、任意の数の試料像を用いて、最適ビームパラメータ設定及び/又は像品質値を決定してよい。像は、特定のパラメータについて任意の所望の変化範囲を網羅してよい。像は、任意の数であってよく、任意の形状又はサイズであってよく、かつ、任意の所望の特徴を有してよい。たとえば試料は、所望の用途又はパラメータ設定のための特別な構成を有してよい。試料は、像を取得するため、台上又は台の外の任意の位置に設けられてよい。一例では、試料は、製品の試料の形態−たとえば半導体デバイス−であってもよい。
【0088】
収差補正暗視野TEMは、像品質の比較用に任意の数の像を用いてよい。現在の像の像品質値及び過去の像の像品質値は、任意の適切な方法−平均をとる、重み付けする、又は合計する−で合わせられてよい。ユーザ閾値は、所望の像品質に依存して任意の適切な値に設定されてよい。像品質値の比較を行う際には、要求される像品質を満足するための手法を決定するのに数学的又は統計的操作−たとえば比較、統計上のばらつき、又は偏差−が利用されてよい。
【0089】
収差補正暗視野TEMは、任意の適切な特性−たとえば強度、画素カウント、又は出力−を解析し、かつ任意の所望の領域内での設定間で異なる特性を利用してよい。分離領域は、任意の形状又はサイズであってよく、かつ、任意の所望の範囲内に設けられてよい。収差補正暗視野TEMはまた、最善のフィッティング直線及び/又は曲線を決定するのに、任意の適切なモデル化又は近似法−たとえば線形若しくは非線形回帰、曲線フィッティング、最小二乗、又は積分−を利用してよい。モデルは、任意の適切な許容度の範囲内でデータを近似してよい。収差補正暗視野TEMは任意の数の分離領域を特定し、かつ、結果として得られた傾斜値を結合及び/又は選択する任意の適切な手法−たとえば最低傾斜、重み付け、又は合計−を利用してよい。
【0090】
パラメータ決定は、任意の方法で開始されてよい。たとえば機械の管理者は、決定を初期化するため電子顕微鏡を監視してよい。コンピュータシステム又は制御装置は、試料像の周期的取得に基づいて像を周期的に取得し、かつ、試料像の存在を決定するため、又は手動で決定を開始するため、像を記憶装置に登録してよい。品質検査及び/又はパラメータの決定は、任意の適切な条件(たとえば任意の時間間隔−たとえば任意の時又は分−、後続の電子顕微鏡により生成される任意の数の像−たとえば電子顕微鏡によって実行されるN回毎の走査−、後続の任意の数の品質検査)に応じて初期化されてよい。
【0091】
収差補正暗視野TEM法は自動で実行されてよい。ここではパラメータが決定され、そのパラメータが電子顕微鏡に適用される。あるいはその代わりに、手法の任意の部分−像の走査、パラメータの決定、又はパラメータの適用−は手動で実行されてよい。たとえばコンピュータシステムは、電子顕微鏡に設定を手動で適用する技術者に、最適な設定を与える。電子顕微鏡の制御装置は、任意の所望の処理−たとえば監視及びパラメータ調節、又は像生成及び処理−を実行してよい。
【0092】
収差補正暗視野TEMの態様の実装−たとえば像処理又は収差補正−は、コンピュータシステム、電子顕微鏡の制御装置、又は他の処理装置間で任意の所望の方法で分配されてよい。これらの装置は、互いに局所的に設けられてもよいし、又は離れて設けられてもよい。コンピュータシステム及びマイクロ制御装置は、電子顕微鏡とやり取りして、その電子顕微鏡を制御することで、任意の所望の機能−たとえば試料の走査、像の生成、又はメモリへの像の転送−を実行してよい。
【0093】
収差補正ADF-TEMの典型的実施例の効率を示すため、コンピュータシミュレーションが実行された。図8A、図8B、及び図8Cは、軸上に電荷を有する補正装置の原型の基本性能の結果を表している。図8Aは、像平面431から単極レンズ(unipotential lens)432を介して投影される、互いに1nm離れた2つの点を表している。これは球面収差を示している。単極レンズ432は、2つの地点から放出される電子線を、ビーム路からさらに下流のビーム交差領域に集束させる。収差補正装置433は2つの荷電素子434を有する。収差補正装置433上では薄いホイル435が支持されている。薄いホイル435を通過する電子線は、その角度に依存して発散する。その結果単極レンズ432に固有な球面収差が補正される。図8Bは、クロスオーバー領域436を倍率150倍に拡大したものを表している。図8Cは、同一のクロスオーバー領域436を倍率22500倍に拡大したものを表している。図8Cは、距離d=14nm離れた2つの別個の大きく局在したクロスオーバー地点を示している。これらの2つの別個の大きく局在したクロスオーバー地点は、補正レンズによる14倍の倍率に相当する。このシミュレーションは、対物レンズ内部の軸上に電荷を有する収差補正装置による収束が大きいことを示した。
【0094】
このコンピュータシミュレーションはまた、さらに非対称な新規の二重面ホイル補正装置の実施例をも示している。二重側面ホイル補正装置によって、収差補正装置は、単一面補正装置にとって必要とされうる小さな電位による必要な補正を実現することが可能となる。それに加えて補正装置の非対称性は、図5に図示された機構と同様の機構によって5次収差の一部−さらには全部−を打ち消すことを可能にする。
【0095】
収差補正暗視野TEMは、比較的小さなサイズでの高スループットの原子分解能を有する電子顕微鏡を可能にする。特に、一バージョンとして、収差補正暗視野TEM鏡筒を小さくし、かつ静電構成部品を用いることには多数の利点が存在しうる。たとえばそのような鏡筒は安価に構築できる。なぜなら構成部品が相対的に単純となりうるからである。構成部品は伝導性電極を有してよい。伝導性電極はたとえば、プラチナ、又は、複数の金属−たとえばプラチナコーティング若しくは金コーティングされたモリブデン又はステンレス鋼−で作られてよい。プラチナが機能的に有利であるとはいえ、これらの代替材料は、商用の装置を実質的に安価に製造することを可能にする。
【0096】
収差補正暗視野TEMは、サイズ、速度、及び感度の点で、従来の電子顕微鏡(EM)システムを上回る利点を供しうる。これらの利点によって、新たな製品及び用途は、研究部門及び商業利用の両方に対して利用可能となった。たとえば収差補正暗視野TEMは、以降で詳述するように、実用的な高スループットのDNA配列特定を可能にする。しかも以降で詳述するように、非常に小さなEM構造が供されてもよい。それに加えて、上述の収差補正法は、有望な用途についての基礎を与えうる。
【0097】
収差補正ADF-TEMの有利な商業上の実施例は、小さくて相対的に安価な鏡筒である。たとえば電子顕微鏡の鏡筒は、約2.0m×約1.5m×約1.5m〜約10cm×約5cm×約5cmの寸法又はこれらと同等の体積を有してよい。さらに小さなバージョンでは、鏡筒は、約75cm×約50cm×約50cm〜約10cm×約5cm×約5cmの寸法又はこれらと同等の体積を有してよい。小さな形状因子と低コストとが同時に実現されることで、完全に新たな消費者の注目を浴びる用途の機会が開かれる。
【0098】
このようなEMシステムを発展させる消費者向け製品の方法のコスト及びサイズに関する利点を超えて、光学系のスケーリングに関する利点も存在する。光学系における光学特性は、物理的なサイズに比例するので、収差補正ADF-TEMのサイズが小さくなればなるほど、収差は小さくなる。よって収差補正ADF-TEM鏡筒のサイズが減少するとき、解像度は、動作エネルギーでの電子の回折限界を最大として上記サイズの減少分だけ改善される。たとえば電子顕微鏡は、約10nm〜約0.01nmの空間分解能を有してよい。好適バージョンは、約1nm〜約0.1nmの空間分解能を有してよい。
【0099】
収差補正ADF-TEMの特に有利な用途は、DNA試料を解析して、その塩基対の配列を決定することである。一のバージョンでは、単一ストランドのDNAが、特許文献1に記載された手法を用いて伸張される。特別な塩基の組は、少なくとも1つの重い散乱体−たとえば単一の重原子又は複数の原子からなるクラスタ−を含むラベルによってラベル付けされた。そのようなラベルの例には、オスミウム、トリオスミウム、及びプラチナが含まれる。
【0100】
このようにラベル付けされたDNA試料では、ラベル−たとえば単一の重い原子又は複数の原子からなるクラスタ−は、軽い散乱体である元素−たとえば炭素、水素、及び酸素に、たとえば少量の燐、窒息、及び他の軽元素といった他の元素が加わったもの−を含む環境中において、より強く電子を散乱する。従って重い散乱元素が収差補正暗視野TEMによって測定されるバックグラウンドは、良好なコントラストをラベルに与えうる。
【0101】
このようにして、暗視野モードと収差補正によって、ラベルが付された塩基間の距離をより迅速に測定することを可能にする高コントラストイメージングが可能となる。収差補正暗視野TEMは、所与の分解能及び信号対雑音比で、単一原子又は複数の原子からなるクラスタを見ることを可能にするのに十分な分解能を与える。暗視野モードは、小さな角度で散乱させる軽元素から、大きな角度で散乱させる重元素を識別する。
【0102】
一のバージョンでは、収差補正暗視野TEMは、インコヒーレント照射モードで動作する。このモードでは、収差補正暗視野TEMの照射のコヒーレンスは、実質的に緩和されるか、又は完全に除去される。インコヒーレンスは、試料に衝突する異なる電子の組が互いにインコヒーレントであることを意味する。一の実施例では、暗視野TEMは、実質的にインコヒーレントな電子源によって実装される。たとえば電子ビーム源は、約1eV未満のエネルギー拡がりを有する電子ビームを生成してよい。あるいはその代わりに又はそれに加えて、暗視野TEMは、互いにインコヒーレントな電子ビームを各異なる回数生成してよい。たとえば暗視野TEMは、長期間にわたって電子ビームを各異なるようにシフト又は走査させてよい。さらに他の例では、暗視野TEMは、長期間各異なる所定範囲のエネルギーにわたってビーム中の電子のエネルギーを拡げる。
【0103】
インコヒーレント照射を用いることによって、より多くの電流が試料へ導かれうると同時に、試料の基板の単一の重い原子又は複数の原子からなるクラスタと、相対的に軽い原子との間でのコントラストが改善される。インコヒーレント電子源は通常、コヒーレンス代わりに大きな電流を実現しうる。コントラストの改善は、重い原子に起因するコントラストが、コヒーレントな電子波の干渉に依存しない一方で、試料からのスペックルの詳細は依存するという事実から発生する。従って像に寄与する各電子波は、重い原子位置で強度を追加するが、平均してスペックルコントラストでの強度となる。この改善は特に、高データスループット及び安価な電子源を必要とするシステムにとって特に適している。換言すると、インコヒーレントな照射モードは、高スループットで安価な電子源及び良好な懇トラスを可能にする。
【0104】
インコヒーレンスによって、結果として得られる像を直接的に解釈することを可能にするコントラスト機構が供される。インコヒーレント照射条件下では、位相コントラストが減少する一方で、振幅コントラストは、重ね合わせ機構により増大する。つまり位相コントラストにおける像の特徴の無作為さが破壊的な干渉を起こす一方で、点状の物体からの散乱はインコヒーレントに合算される。全体で、点状の物体からの散乱は保持される一方で、アモルファス基板からの位相コントラスト情報は意図的に除去される。
【0105】
インコヒーレントな暗視野TEMが、特別に設計された構成部品から構築されうる一方で。従来のEMシステムを修正して本発明のシステムの有利な特性を供するという実用的な利点も存在しうる。たとえばそのような修正によって、既存のEM設備が、最新の装置となることで、全体が新しいEMシステムを構築することなく有利なコストでインコヒーレントな暗視野TEMの利点を得ることが可能となる。その修正には、新たな構成部品の改良及び既存構成部品−たとえばEMの上部鏡筒−の再位置合わせ又は再位置設定が含まれる。
【0106】
図9は、インコヒーレントな電子源20Aを用いるインコヒーレント照射モードを実装した典型的実施例を表している。インコヒーレントな関係の照射鉛筆と指称される、互いにインコヒーレントな多くの異なるビーム440の充填された錐体は、電子源20Aによって放出される。インコヒーレントな関係のビーム440の各々は、他の成分に対してインコヒーレントな成分である。自動キャンセル位相コントラストノイズ及び自己強化振幅信号の合算は、像平面100で同時に起こる。よって利用可能な像は一度に生成されうる。インコヒーレントな電子源20Aはたとえば、タングステン又は六ホウ素化ランタンフィラメントを有する電子源であってよい。インコヒーレントな電子源20Aは、2つ以上の収束レンズ450と組み合わせられてよい。2つ以上の収束レンズ450は、コヒーレント照射モードで位置合わせを行い、かつインコヒーレント照射モードではイメージング動作を行うことを可能にするように、異なる構成で励起されうる。
【0107】
あるいはその代わりに又はそれに加えて、インコヒーレント照射モードは、インコヒーレントな電子源のない暗視野TEMで実装されてよい。たとえばインコヒーレント照射モードは、互いにインコヒーレントな電子ビームを各異なる回数生成することによって実装されてよい。これは、コヒーレントモードでの動作用に設計された従来のEMシステムが、本願明細書で述べたようなインコヒーレントモードでの実施例のうちの1つに修正される場合には好ましい。
【0108】
像の露光中、電子源の角度、位置、又はエネルギーは変更されてよい。これらの変化は、露光の時間スケールで起こってよい。図示された例では、像が1秒の露光である場合、エネルギー、位置、及び角度の任意の組み合わせは、たとえば露光時間の約10倍のオーダーで振動してよい。試料上でのより大きな電流は一般的に、コヒーレント照射よりも、インコヒーレント照射モードで実現可能である。よってイメージングは、より迅速に行われうる。より典型的には、露光時間は、1秒ではなく、ミリ秒又はミクロン秒のオーダーである。特にDNA配列の特定の用途(又は低密度バックグラウンド上での単一の重い原子又は複数の原子からなるクラスタの特定を含む用途)に適したインコヒーレント照射モードの利点は、試料に衝突する電流を増大させることで像取得速度が増大することであり得る。
【0109】
電子ビーム振動又は走査させることは、十分に高速である限り機能しうる。さらに対物レンズのアパーチャによって収集される角度範囲内でビームを振動又は走査させることで十分であり得る。この角度範囲は、制限因子と考えることができる。その理由は、この角度範囲を超えると、電流は、アパーチャに衝突して、検出されないからである。しかし対物レンズのアパーチャによって収集される角度範囲をわずかに超えたビームを走査又は振動させることは望ましい。その理由は、それでもアパーチャへ入り込むような散乱は起こりうるからである。それでも対物レンズの許容角度の2倍よりも大きな角度範囲にわたるビームの振動又は走査は望ましくないと考えられる。その理由は、電流を浪費してしまうからである。
【0110】
コヒーレント照射モードで動作するように設計された従来のEMシステムは、本願明細書で説明した実施例のうちの1つに修正されてよい。このEMシステムは、最適化された収束レンズ系−たとえば2〜5個の収束レンズ−を有してよい。従来のEMシステムの電子源は、インコヒーレントな電子源−たとえば本願明細書で説明したインコヒーレントな電子源のうちの1つ−に置き換えられてよい。それに加えて、横方向にシフトさせる又は角度を変化させて振動させる偏向器又は他の機構が追加されてよく、かつ/あるいは、ビームに印加される加速電圧を変化させる機構が追加されてよい。収差補正照射系は、たとえばJOEL、FEIカンパニー、及びCarl Zeissから市販されているものであってよい。照射系の1つ以上のレンズを通過する電子線の軌道は変更されてよい。
【0111】
対物レンズの許容角度は、電子顕微鏡の所望の分解能に基づいて決定されてよい。たとえば100kVで0.1nmの分解能が望ましい場合、約20mradの許容半値角が必要となるので、40mradを超えない照射半値角が好ましい。角度範囲が大きくなると、電流は意図せずして浪費されうる。一例では、DNA配列を特定する用途にとっては、単一原子の分解能−具体的には少なくとも約0.3nm程度に良好な分解能で、場合によっては少なくとも約0.3nm程度に良好な分解能−が望ましいと考えられる。一旦対物レンズの適切な許容角度が選ばれると、分解能に関する要求が、対物レンズの許容角度を決定しうる。
【0112】
相対的にインコヒーレントな照射を実現するように調節された照射軌道を有する従来のEMシステムは、検出器又は台の速度を増大させることによって、インコヒーレントな照射により可能な高電流の利点を得るようにさらに改善されうる。たとえば圧電性の台が用いられてよい。圧電性の台は、非常に迅速に移動し、かつ、非常に迅速で安定に位置設定することが可能である。そのためミリ秒又はミクロン秒オーダーの短い露光が実際に実現可能となる。圧電性の台はまた、非常に高い位置精度で台を移動させることができる。さらに検出器−この場合高速カメラであってよい−からのデータのスループットは非常に大きい。そのためカメラ下流のこのデータスループットを処理する能力を有する電子機器が望ましい。
【0113】
インコヒーレントな照射モードを実現する方法の中には、それぞれがコヒーレントな多数の像の成分を取得する手順及びインコヒーレントな像の成分を結合する手順を含むものがある。以降で詳述するように、これらの像の成分を生成してインコヒーレントに結合するには様々な方法が存在する。
【0114】
図10は、例示目的で後述する他の典型的実施例と比較されるADF-TEMの参考バージョンの典型的実施例を表している。放射線460は、光軸130に対して平行な状態で試料40上に供される。試料40から散乱されるビームは、対物レンズ面470の形態をとる対物レンズによって収集される。対物レンズは、ビームを像平面100に集束させる。対物レンズの後焦点面480では、試料40からの散乱角を表す、試料のフーリエ変換である回折パターンが生成される。3つの散乱ビーム490が図示されている。図は、試料40上の各異なる点によって同一角度で散乱される電子線が、その散乱角を表す後焦点面480内の特定の地点に収束することを示している。投影では、3つの地点は散乱ベクトルg,0(前方散乱),-gに対応する。後焦点面480は、環状アパーチャ60を有する。環状アパーチャ60は、ビーム絞り600、環状暗視野モードを実装するための外径Dの開口部610が設けられた中央ディスクを有する。左に散乱されたビームと右に散乱されたビームが環状アパーチャ60を通過する一方で、前方散乱ビーム(0)は、後焦点面480内のビーム絞り500によって阻止される。環状アパーチャ60を通過する電子線のみが像平面100まで伝播して、暗視野像を生成する。
【0115】
アパーチャの直径Dと分解能との間には関係が存在する。アパーチャ60は、TEM又はSTEMにおいて像又はプローブを生成するのに用いられる角度範囲をそれぞれ選択する。TEMの場合では、試料40は照射され、かつ、電子は試料40上の各異なる点から散乱される。試料40の各異なる点から特定の角度で散乱される電子は、後焦点面480内の共通の点に向かい、その後像を生成するまでさらに伝播する。よってアパーチャ60は、後焦点面480を通過する電子線を制限することによって像を生成する角度を選択する。電子源が対物レンズへ入射する平面波を生成するSTEMの場合、後焦点面480内に設けられた対物アパーチャは、対物レンズへ入射する放射線のサイズを制限する。よって対物レンズが試料上の点に集束させる電子線は、アパーチャによってその角度が制限される。
【0116】
図11は、電子ビーム620が、EM鏡筒の光軸130に対して傾斜する実装の典型的実施例の概略図を表している。電子ビーム620は半径方向に散乱される。それにより電子ビームは光軸130に対して実質的に同一の角度を維持する。よって光軸130について実質的に円筒対称な電子線の錐体が生成される。あるいはその代わりに、傾斜した電子ビーム620の角度は、光軸に対して対称な2つの角度(すなわち「ミラー」角度)間で切り換えられてよい。図は2つのミラー角度のうちの1つの例を表している。たとえば電子ビーム620は、これら2つのミラー角度間で電子ビームを交互に切り換えるのに用いられる傾斜プリズムを通過してよい。試料40は入射電子を散乱させる。その結果、側部に位置する2つのビームと中央に位置する1つのビームとして図示されているように、散乱ビーム630が生成される。散乱ビーム630は、対物レンズによって像平面に集束される。散乱ビーム630は、後焦点面480内に回折パターンを生成し、かつ、環状のディスク開口部637が設けられたアパーチャ633によってフィルタリングされる。電子ビーム620の各異なる走査位置からの像の成分は合計される。これらの像の成分は互いにインコヒーレントである。放射線の錐体を介して試料40を照射することにより、あるいはその代わりに、ミラー角度で試料40を交互に照射することにより、かつ、長期間にわたって像平面100上でのこれらの像の寄与を収集することによって、インコヒーレントにごうけいされた像が生成されうる。傾斜角度は、光軸130に対して約100mrad未満で、かつ、アパーチャ半径D/2を超えてよい。
【0117】
図11に図示されているように、これらの実施例は、中央ビーム絞り600を有する環状アパーチャ60の存在しない暗視野モードで実装されてよい。図示されているように、アパーチャ633が備えられ、かつ、傾斜角は、ゼロビームがアパーチャ633に衝突して後焦点面480内の開口部637を通過しないように、十分大きな値に選ばれてよい。右側の散乱されたビームがアパーチャ633を通過する一方で、前方散乱ビーム(0)及び左側の散乱ビームは、後焦点面480内のアパーチャ633によって阻止される。開口部637を通過する電子線のみが、像平面100まで伝播することで、暗視野像を生成する。あるいはその代わりに、図10に図示されているように環状アパーチャは、環状のディスク開口部637が設けられたアパーチャ633の代わりに用いられてよい。
【0118】
図12は、振幅コントラストがインコヒーレントな環状暗視野イメージングにおいて改善される一方で、位相コントラストは、試料中の点状物体のコントラストを改善するように減少する方法の一般化されたバージョンを表している。この図は、アモルファスのバックグラウンド上に点状物体を含む試料からの理想的な振幅信号640を示している。例示目的のため、物体から生成された、各異なるインコヒーレントな関係の像の成分−650,660,670,680等のラベルが付されている−が、垂直に配列して表されている。これらの像の成分の各々については、横軸は位置を表し、縦軸は信号の振幅を表す。像の成分の各々は、振幅コントラスト成分及び位相コントラスト成分を有する。後者の成分は、像の成分650,660,670,680等から分かるように、TEM像において支配的である。本実施例で記載された方法は、位相コントラストノイズから振幅信号640を抽出する。
【0119】
たとえば多数の像の成分650,660,670,680等は、特定のイメージングモードにおいて、順次又は同時に取得される。像の成分650,660,670,680等の各々では、振幅信号は、位相コントラストからのスペックルノイズと比較して小さい。しかしスペックルノイズは、各異なる像の成分650,660,670,680等の間で実質的に変化する。一方、各異なる像の成分650,660,670,680等の間の弱いがはっきりとした振幅信号640が、このノイズ内に隠されている。よって像の成分650,660,670,680等が重ね合わせられるとき、位相コントラストノイズは消去される一方で、振幅信号640は増強される。それにより、よりインコヒーレントな関係の成分信号が含まれることで、識別性の増大した信号690が生成される。
【0120】
図13は、インコヒーレントな重ね合わせの実装に係る他の実施例を表している。この図では、各異なるエネルギーが用いられることで、散乱角度はわずかに変化する。対物レンズが、低エネルギー電子ほど強く高エネルギー電子を集束させないため、試料からの散乱角は、図中、低エネルギービームと高エネルギービームをそれぞれ表す散乱ビーム490及び700によって表されているように変化する。この図では、図10とは対照的に、像平面100内の点として結像されたビームの一の部分は拡散領域710上で結像され、かつ、ある点で結像されたビーム460の他の部分は狭い拡散領域720上で結像される。領域710と720が試料40の同一地点の拡散像を表す一方で、それらの中心は依然として、像平面100上に投影されるときには同一位置である。点状の振幅の物体は、このように結像されるときには、はっきりと同一地点に結像される。同時にバックグラウンドからのスペックルコントラストは平均化される。
【0121】
電子エネルギーの調節は、様々な代替方法によって実現されてよい。前記様々な代替方法はたとえば、電子源ないでの大きなエネルギー拡がりを有する電子源を選ぶ手順、商社系における色収差を増大させる手順、及び、露光周波数よりも大きな周波数で、電子源に印加される電圧を時間的に変調させる手順を有する。
【0122】
図14は、インコヒーレントな重ね合わせを実装した他の実施例を表している。この実施例では、各異なる回数露光された像が合計される。繰り返しになるが、合計することで、より大きな振幅コントラストが生成される一方で、位相コントラストは減少する。
【0123】
図15は、インコヒーレントな重ね合わせを実装した他の典型的実施例を表している。図15では、電子ビームは、各異なる回数、各異なる横方向位置−たとえば位置725及び730−へシフトすることで、各異なる散乱ビーム490と495の組、及び結果として得られる相対的にインコヒーレントな成分が得られる。一例では、このシフトは、双極偏向器を用いて、試料に到達する前にビームをシフトさせることによって実現されてよい。
【0124】
図16は、プリズム740が、ビームの全部又は一部を、たとえば位置725から位置730へシフトさせるためにビーム路内に用いられる別な実施例を表している。
【0125】
図11、図13、図14、図15、及び図11、図16に図示された例は、成分像が連続又は並列に露光されることで、位相コントラストに対する振幅コントラストが改善され、その結果像の解釈可能性が改善される様々な実施例を表している。
【0126】
暗視野TEMにおいて用いられる電子のエネルギーは、少なくとも部分的には試料の透過特性に基づいて決定されてよい。試料は、2nmのオーダーの厚さ−たとえば約1nmの厚さ−を有してよい。一例では、試料は炭素で作られるが、単一原子厚さのグラフェンが用いられてもよい。その結果、1keVの電子は、電圧だけを考慮するときには、適切に最低エネルギーになろうとする。
【0127】
残念なことに、電子の波長はエネルギーに対して反比例するので、回折限界は、補正されるべき角度を大きくすることを必要とする恐れがある。そのような収差補正暗視野TEMは、製造するのは困難となりうる。暗視野TEMは、かなりの高電圧−たとえば約1kV〜約300kV−で動作することが望ましいと考えられる。たとえば暗視野TEMは、約30kVで動作してよい。この電圧範囲は従来の電子顕微鏡の範囲である。この範囲での静電補正素子の実装は、高い局所電場、高電圧放電、及び高エネルギー電子の透過からの損傷の危険性があるため、不可能である。
【0128】
収差補正暗視野TEM鏡筒の小型化された実施例については、電圧は、少なくとも部分的には小型化された実施例の寸法に基づいてよい。鏡筒の小型化は、上述よりもさらに進行させることができる。そのような小型化された収差補正暗視野TEM鏡筒は、本願明細書で述べたのと実質的に同一の特徴を備える軸上に電荷を有する素子によって、収差補正を有する鏡筒を維持する。特化した検出器もまた、装置の動作が、TEMモードではなく、STEMモード又はSEMモードとなるようにするのに有用となりうる。その場合、作製された固体後方散乱検出器が供されてよい。
【0129】
暗視野TEMは、約10pA〜約1mAのビーム電流を用いることが好ましい。約100μAよりも大きなビーム電流では、コヒーレンスは減少する。インコヒーレントな照射モードが意図されるとき、高空間電荷密度がインコヒーレンスを増大させることが望ましい。よってインコヒーレントな照射モードについては、100μAを超えるビーム電流が有利となるように用いられてよい。
【0130】
さらにビームは十分に単色であること、換言すると、収束問題を回避するため、十分に狭いエネルギー範囲を有することが望ましいと考えられる。ビーム中の電子のエネルギーの拡がりは典型的には、その拡がりに対応する像の焦点の変化を引き起こす。よって像は、変化する焦点を有する多くの像の合計と考えることができる。その範囲が大きすぎる場合、像中の単一原子の強度は、広い領域にわたってちらつき、その結果バックグラウンドからの識別が不可能となってしまう。よってそのようなちらつきを回避するため、約10eV未満のエネルギー拡がりを有することが好ましい。しかし明確な焦点が望ましい場合には、約1eV未満のエネルギー拡がりを有することが好ましい。たとえば電子ビームは、約200meV未満のエネルギー拡がりを有してもよい。これは、光学系において色収差が存在しない場合には望ましいと考えられる。しかし他の場合、たとえば色収差補正が光学系内に実装されている場合には、かなり大きなエネルギー拡がりが用いられてもよい。たとえば本願明細書に記載された色収差補正装置は、数百電子ボルトのエネルギー拡がりを処理することが可能である。
【図1A】

【図1B】


【特許請求の範囲】
【請求項1】
電子ビームを生成する電子ビーム源、
前記電子ビームを収束させるビーム光学系、
少なくとも球面収差について前記電子ビームを補正する収差補正装置、
前記電子ビームのビーム路中に試料を保持する試料ホルダ、及び
前記試料を透過する前記電子ビームを検出する検出装置、
を有し、
前記電子ビームのゼロビームが検出されない暗視野モードで動作する、
透過型電子顕微鏡。
【請求項2】
前記電子ビーム源が、コヒーレントな電子ビームを生成するように構成される、請求項1に記載の透過型電子顕微鏡。
【請求項3】
前記ビーム光学系が光軸を画定し、
前記光軸について前記ビーム光学系は円筒対称で、かつ
前記収差補正装置は、前記光軸に設けられた素子を有する、
請求項2に記載の透過型電子顕微鏡。
【請求項4】
前記素子が静電荷電素子である、請求項3に記載の透過型電子顕微鏡。
【請求項5】
前記電子ビーム源が、1eV未満のエネルギー拡がりを有するインコヒーレントな電子ビームを生成するように備えられている、請求項1に記載の透過型電子顕微鏡。
【請求項6】
前記電子ビーム源が、タングステンフィラメント又は6ホウ素化ランタンフィラメントを有する、請求項5に記載の透過型電子顕微鏡。
【請求項7】
前記電子ビーム源が、少なくとも100nAの電流を有する電子ビームを生成するように構成されている、請求項5に記載の透過型電子顕微鏡。
【請求項8】
検出中に前記電子ビームを横方向にシフトさせるように構成されている、請求項5に記載の透過型電子顕微鏡。
【請求項9】
さらにビーム偏向器を有する請求項1に記載の透過型電子顕微鏡であって、前記ビーム偏向器は、当該透過型電子顕微鏡の光軸の周りで錐体となる照射パターンで前記電子ビームを走査させる、透過型電子顕微鏡。
【請求項10】
前記収差補正装置は、円筒対称を壊す静電的素子又は磁気的素子の組を有する、請求項1に記載の透過型電子顕微鏡。
【請求項11】
前記暗視野モードを生成するように構成されている環状アパーチャをさらに有する請求項1に記載の透過型電子顕微鏡であって、
前記環状アパーチャは、(i)前記電子ビームの中心部を絞るように前記電子ビームの半径方向中心で環状の断面を有する環状絞り、及び、(ii)前記環状絞りと同心円をなし、かつ、前記環状絞りと間隔を開けて設けられる外側絞りを有し、
前記環状絞りと前記外側絞りとの間には環状ギャップが存在する、
透過型電子顕微鏡。
【請求項12】
前記ビーム光学系が対物レンズを有し、かつ、
前記環状ギャップが、前記対物レンズに対して15mrad乃至50mradの開口部を有する、
請求項11に記載の透過型電子顕微鏡。
【請求項13】
請求項1に記載の透過型電子顕微鏡であって、
前記収差補正装置が軸上に電荷を有する補正装置を有し、
前記軸上に電荷を有する補正装置は、当該透過型電子顕微鏡の光軸に設けられた少なくとも1つの静電荷電素子、及び、前記暗視野モードを生成する環状アパーチャを有し、
前記環状アパーチャは、前記静電荷電素子と同心円をなし、かつ、前記静電荷電素子と間隔を開けて設けられる外側絞りを有し、
前記静電荷電素子と前記外側絞りとの間には環状ギャップが存在する、
透過型電子顕微鏡。
【請求項14】
電子ビームを生成する電子ビーム源、
前記電子ビームを収束させるビーム光学系であって、該ビーム光学系が実質的に円筒形の対称性を有するように当該透過型電子顕微鏡の光軸を画定するビーム光学系、
前記光軸に設けられた素子を含む収差補正装置であって、少なくとも球面収差について前記電子ビームを補正する収差補正装置、
前記電子ビームのビーム路中に試料を保持する試料ホルダ、
前記試料を透過する前記電子ビームを検出する検出装置、及び、
を有し、
前記電子ビームのゼロビームが検出されない暗視野モードで動作するように構成されている、
透過型電子顕微鏡。
【請求項15】
前記電子ビーム源が、コヒーレントな電子ビームを生成するように構成される、請求項14に記載の透過型電子顕微鏡。
【請求項16】
前記電子ビーム源が、1eV未満のエネルギー拡がりを有するインコヒーレントな電子ビームを生成するように構成されている、請求項14に記載の透過型電子顕微鏡。
【請求項17】
インコヒーレント電子ビームを生成するインコヒーレント電子ビーム源、
前記電子ビームを収束させるビーム光学系、
少なくとも球面収差について前記電子ビームを補正する前記収差補正装置、
前記電子ビームのビーム路中に試料を保持する試料ホルダ、及び、
前記試料を透過する前記電子ビームを検出する検出装置、
を有し、
前記電子ビームのゼロビームが検出されない暗視野モードで動作するように構成される、
透過型電子顕微鏡。
【請求項18】
電子ビームを生成する電子ビーム源、
少なくとも球面収差について前記電子ビームを補正する収差補正装置、
前記電子ビームが試料を透過した後の前記電子ビームを検出する検出器、
前記電子ビームのゼロビームが検出されない暗視野モードで動作するように構成されている、透過型電子顕微鏡用の電子ビーム部品の組立体。
【請求項19】
前記暗視野モードを生成するように構成されている環状アパーチャをさらに有する請求項18に記載の透過型電子顕微鏡用の電子ビーム部品の組立体であって、
前記環状アパーチャは、(i)前記電子ビームの中心部を絞るように前記電子ビームの半径方向中心で環状の断面を有する環状絞り、及び、(ii)前記環状絞りと同心円をなし、かつ、前記環状絞りと間隔を開けて設けられる外側絞りを有し、
前記環状絞りと前記外側絞りとの間には環状ギャップが存在する、
透過型電子顕微鏡用の電子ビーム部品の組立体。
【請求項20】
少なくとも球面収差について前記電子ビームを補正する収差補正装置、
暗視野アパーチャは暗視野絞りを有し、
前記暗視野絞りは、(i)前記電子ビームの中心部を絞るように前記電子ビームの半径方向中心で略環状の断面を有する環状絞り、及び、(ii)前記環状絞りと同心円をなし、かつ、前記環状絞りと間隔を開けて設けられる外側絞りを有する。前記環状絞りと前記外側絞りとの間には環状ギャップが存在する、
透過型電子顕微鏡用の暗視野収差補正装置。

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図2F】
image rotate

【図2G】
image rotate

【図2H】
image rotate

【図3A】
image rotate

【図3Ai】
image rotate

【図3B】
image rotate

【図3Bi】
image rotate

【図3Bii】
image rotate

【図3C】
image rotate

【図3Ci】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公表番号】特表2013−519980(P2013−519980A)
【公表日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2012−552998(P2012−552998)
【出願日】平成23年2月10日(2011.2.10)
【国際出願番号】PCT/US2011/024355
【国際公開番号】WO2011/100434
【国際公開日】平成23年8月18日(2011.8.18)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.フロッピー
【出願人】(312017732)モチイ,インコーポレイテッド(ディービーエー ヴォクサ) (1)
【Fターム(参考)】