説明

可変容量型圧縮機

【課題】可変オリフィスを備えたオイル戻し通路を有しながら、エアコンの運転がOFF時における斜板の最小傾斜角を相対的に小さな値に設定することができ、流量調整機構の開弁度もエアコンの運転をONした際にすぐに最大となることができると共に、流量調整機構の構造も簡易である可変容量型圧縮機を提供する。
【解決手段】可変容量型圧縮機1は、オイル戻し通路45の経路上に、オイル戻し通路45を開閉する開閉手段を有する第1の弁装置59と、絞り通路60を有すると共にこの絞り通路60のうちオイルの流動方向に沿った長さを変更することが可能な可変部61を有する第2の弁装置62と、これらの第1の弁装置59、第2の弁装置62を収納すると共にオイル分離のための分離部39側と連通するための流入口52及びクランク室8側と連通するための流出口54を開口させた収納室57とから成る流量調整機構50が設けられたものとする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、圧縮機の作動流体経路内を流動する作動流体中に混在するオイルを分離することが可能な構造を有する可変容量型の圧縮機に関する。
【背景技術】
【0002】
この種の圧縮機としては、吐出室の作動流体と潤滑油とを分離する潤滑油分離装置とこの潤滑油分離装置で分離された潤滑油をクランク室に戻すオイル戻し通路とを有すると共に、吐出室とクランク室との差圧に応じて開閉される可変オリフィス状の流量制御弁が前記オイル戻し通路に配設された構成の往復動型流体機械について、例えば特許文献1に示されるように既に公知になっている。
【0003】
そして、潤滑油分離装置で分離されたオイルは差圧の力によりクランク室に戻るので、流量制御弁の開弁度が固定された場合には全ての運転条件下で適正なオイルの戻りを実現することが困難であったところ、この特許文献1に示される往復動型流体機械では、可変オリフィス状の流量制御弁について、高圧側と低圧側との差圧の値が小さいときには大きく、高圧側と低圧側との差圧の値が大きいときには小さくなるように開弁度を設定して、例えばオイルが戻り難い条件下では弁の開度が相対的に大きくなることを可能することによりオイル戻り量の適正化を図っている。
【0004】
また、例えば特許文献2に示されるようなクラッチレス可変容量型圧縮機の場合、エアコンの運転がOFFのときには電磁制御弁への供給電流をなくすことで電磁制御弁の開弁度が全開となり、クランク室内の圧力が相対的に高くなることで、かかる圧縮機の斜板の傾斜角が最小の状態となる。これに対し、エアコンの運転を再びONにすると、電磁制御弁に電流が供給されて、電磁制御弁の開弁度が小さくなり、相対的にクランク室内の圧力が低下して、かかる圧縮機の斜板の傾斜角が大きくなり、復帰状態となる。
【0005】
そして、上記特許文献2に示されるようなクラッチレス可変容量型圧縮機では、圧縮機は常時回転しているので、エアコンの運転がOFFの状態での消費動力を低減するために、斜板の最小傾斜角が復帰可能な限界位置までの範囲で小さくなるように設定されている。
【0006】
更にまた、吐出通路中にオイル分離機構を備える圧縮機において、そのオイル分離機構は、分離筒と油分離室とから構成されると共に給油通路中に弁室とスプールとバネとによって構成された弁手段を有し、この弁室をスプールで第1感圧室と第2感圧室とに仕切り、これらの第1感圧室と第2感圧室とから受けるそれぞれの圧力差が増大した際に、スプールが弁室内を摺動して給油通路の開度が拡大し全開後に縮小することにより、吸入室への潤滑油の供給量が制御され、運転の停止時にはバネにより給油通路が遮断される構造のものが、例えば特許文献3に示されるように公知になっている。
【0007】
すなわち、この特許文献3に示される圧縮機は、弁手段を可変オリフィス状とするにあたり、スプールに開いた横穴とハウジングの壁面に開いた横穴とが連通する開口面積がスプールの移動量に応じて変化することを利用した構造となっている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2007−192154号公報
【特許文献2】特開2009−114901号公報
【特許文献3】特開2008−133810号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に示されるような往復動型流体機械では、エアコンの運転をONにして圧縮機の斜板の傾斜角が相対的に大きくなる復帰状態とする際には、流量制御弁の開弁度が全開であるため流量制御弁を通じて高圧側からクランク室に流動する高圧ガスの量が相対的に多くなり、圧縮機の斜板の傾斜角について復帰状態に戻すためには長時間を要することが知られているので、それを避けるために、固定オリフィス状の流量制御弁を用いる場合よりも斜板の最小傾斜角を相対的に大きく設定せざるを得ないという不具合を有していた。これに伴い、特許文献1に示される可変オリフィス状の流量制御弁では、エアコンの運転のOFF時における消費動力が相対的に大きくなり、エアコンの運転がOFF時以外の圧縮機の省動力効果を減殺するという不都合も生じていた。
【0010】
また、特許文献3に示される圧縮機の可変オリフィス状の弁手段の構造では、高圧側と低圧側との差圧が次第に大きくなると、スプールがバネを押す方向に移動し、スプールに開いた横穴とハウジングの壁面に開いた横穴との開口面積も次第に大きくなり、更に差圧が大きくなると、上記開口面積は、最大となった後に次第に小さくなり、バネが最も縮小した状態で最小となるので、開口面積がすぐに最大にならないという不具合を有していた。
【0011】
また、特許文献3に示される圧縮機の可変オリフィス状の弁手段の構造では、スプールに開いた横穴とハウジングの壁面に開いた横穴との相対的な位置関係で開口面積が決定されるので、スプール及びその開口部の配置を位置決め手段により高精度に定める必要があり、弁手段の構造が複雑になると共に、位置決め手段を通じて高圧側の冷媒とオイルとが低圧側に漏れるおそれもあった。
【0012】
更に、特許文献3に示される圧縮機の可変オリフィス状の弁手段の構造では、本願出願人の調査結果によると、特許文献3に示される圧縮機のスプールに開いた横穴とハウジングの壁面に開いた横穴との開口面積は、開口形状を円形状に置き換えた場合の直径寸法(以下、等価直径と称する。)が0.15mmから0.35mmの範囲で可変するのが好適であると考えられるところ、開口の形状を円形状に置き換えた場合にこのような小さな等価直径の寸法に設定するには、各横穴の大きさも相対的に小さくする必要があった。そして、横穴の大きさを相対的に小さくする場合にはスプールの移動量も小さくする必要があるところ、このスプールの移動量を決定するのはバネであるが、特許文献3の図2及び図3に示されるバネのサイズと横穴の大きさとの関係では、上記の適宜な開口面積の可変を引き出すバネ力を得るための設計が困難であり、特許文献3に示される圧縮機に係る発明の実施可能性に疑問があった。
【0013】
そこで、本発明は、エアコンの運転がOFF時以外における高圧側とクランク室とを結ぶオイル戻し通路上に配置された流量調整機構の機能を維持しつつ、エアコンの運転がOFF時には弁を閉じて圧縮機の斜板の傾斜角の復帰性を向上し、圧縮機の斜板の最小傾斜角を相対的に小さな値に設定することができ、且つ流量調整機構の開弁度もエアコンの運転をONした際にすぐに最大となることができ、しかも、流量調整機構の構造も簡易である可変容量型圧縮機、特にクラッチレス可変容量型圧縮機を提供することを目的とする。
【課題を解決するための手段】
【0014】
この発明に係る可変容量型圧縮機は、ハウジングと、このハウジング内部に形成されたクランク室と、前記ハウジングに回転自在に支持されて外部の駆動力にて回転動する駆動軸と、前記クランク室に配されて前記駆動軸の回転に同期して回転する斜板と、斜板の回転に伴いシリンダボア内を往復動するピストンと、このピストンの往復動により前記シリンダボアに選択的に連通する吸入室及び吐出室とを有し、前記斜板の傾斜角を変更することにより吐出容量を制御する可変容量型圧縮機において、前記吐出室を含む吐出領域を設け、作動流体に混在するオイルを分離するオイル分離機構を前記吐出領域に設けると共にこのオイル分離機構によって分離されたオイルを前記クランク室に戻すオイル戻し通路を有し、前記オイル戻し通路上には、このオイル戻し通路を開閉する開閉手段を有する第1の弁装置と、絞り通路を有すると共にこの絞り通路のうちオイルの流動方向に沿った長さを変更することが可能な可変絞り手段を有する第2の弁装置と、これらの第1及び第2の弁装置を収納すると共に前記オイル分離機構側と連通するための流入口及び前記クランク室側と連通するための流出口を開口させた収納室とから成る流量調整機構が設けられていることを特徴としている(請求項1)。
【0015】
これにより、第2の弁装置において、吐出領域等の高圧側とクランク室等の低圧側との差圧が小さいときに絞り通路のうちオイルの流動方向に沿った寸法が相対的に短くなり、吐出領域等の高圧側とクランク室等の低圧側との差圧が大きいときに絞り通路のうちオイルの流動方向に沿った寸法が相対的に長くなるよう設定することにより、エアコンの運転時におけるオイルのクランク室への戻り量の適正化を図ると共に、第1の弁装置において、エアコンの運転がOFF時には弁体が収納室の流入口を閉塞するように設定することにより、高圧ガスが流量調整機構を介してクランク室に流動することを回避して、斜板についてその傾斜角を増大させる復帰性を向上し、エアコンの運転がOFF時における斜板の最小傾斜角を相対的に小さくすることが可能である。
【0016】
前記第1の弁装置の開閉手段は、前記流入口側に向けて弾性機構により付勢された弁体と、前記流入口のうち前記収納室内側の開口の周縁に形成されて前記弁体が密接する弁座とから構成されている(請求項2)。
【0017】
これにより、エアコンの運転をOFFにした場合には、高圧側と低圧側との差圧がなくなるかとても小さくなるので、第1の弁装置の弁体に対し弾性機構による付勢力の方が差圧により生ずる押圧力よりも大きくなるため第1の弁装置の弁体が流入口の開口周縁に形成された弁座に密着して流入口を閉塞した状態となる。一方、エアコンの運転がOFF時以外の場合には、高圧側と低圧側との差圧が相対的に大きくなるので、第1の弁装置の弁体に対し弾性機構による付勢力の方よりも差圧により生ずる押圧力の方が大きくなるため第1の弁装置の弁体が流入口の開口周縁に形成された弁座から離れ流入口が開放された状態となる。
【0018】
前記第2の弁装置の絞り手段は、一方が前記流入口側に開口すると共に他方が流出口側に開口した貫通孔と、この貫通孔の内面との間に所定の隙間を有しつつ軸方向に沿って移動可能に前記貫通孔に挿入されると共に前記入口側に向けて弾性機構により付勢された可変部とにより構成されて、前記可変部のうち前記貫通孔の軸方向に沿った面と前記貫通孔の内面との間に絞り通路が形成されると共に、前記可変部の前記貫通孔への挿入量を変えることで前記絞り通路のうちオイルの流動方向に沿った長さを可変するものとなっている(請求項3)。
【0019】
これにより、吐出領域等の高圧側とクランク室等の低圧側との差圧が小さいときには、弾性機構による付勢力の方が差圧により生ずる押圧力よりも大きいため第2の弁装置の可変部は流入口側に移動するので、絞り通路のうちオイルの流動方向に沿った寸法が相対的に短くなり、吐出領域等の高圧側とクランク室等の低圧側との差圧が大きいときには、差圧により生ずる押圧力の方が弾性機構の付勢力よりも大きいため第2の弁装置の可変部は流出口側に移動するので、絞り通路のうちオイルの流動方向に沿った寸法が相対的に長くなることから、エアコンの運転時におけるオイルのクランク室への戻り量の適正化を図ることができる。
【0020】
そして、前記第1の弁装置の弁体と前記第2の弁装置の可変部とは、前記第2の弁装置の可変部よりも前記第1の弁装置の弁体の方がオイルの流動方向の上流側に位置すると共に一体的に動くように形成されている(請求項4)。
【0021】
これにより、第1の弁装置の弁体を付勢するための弾性機構と第2の弁装置の可変部を付勢するための弾性機構とについても共通化することができ、オイル戻り通路も第1の弁装置用のものと第2の弁装置用のものとを形成する必要がなくなる。
【発明の効果】
【0022】
以上のように、これらの発明によれば、第2の弁装置において、吐出領域等の高圧側とクランク室等の低圧側との差圧が小さいときに絞り通路のうちオイルの流動方向に沿った寸法が相対的に短くなり、吐出領域等の高圧側とクランク室等の低圧側との差圧が大きいときに絞り通路のうちオイルの流動方向に沿った寸法が相対的に長くなるよう設定することにより、エアコンの運転時におけるオイルのクランク室への戻り量の適正化を図るという効果を維持することができる。そして、第1の弁装置において、エアコンの運転がOFF時には弁体が収納室の流入口を閉塞するように設定することにより、斜板についてその傾斜角を増大させる復帰性を向上し、エアコンの運転がOFF時における斜板の最小傾斜角を相対的に小さくすることが可能であるので、エアコンのOFF時でも圧縮機の省動力の要請に応えることができる。
【0023】
特に請求項2に記載の発明によれば、エアコンの運転をOFFにした場合には、高圧側と低圧側との差圧がなくなるかとても小さくなることから、第1の弁装置の弁体に対し弾性機構による付勢力の方が差圧により生ずる押圧力よりも大きくなるため第1の弁装置の弁体が流入口の開口周縁に形成された弁座に密着して流入口を閉塞した状態となるので、吐出室を含む吐出領域からクランク室にエアコンの運転がOFF時にも関わらず高圧ガスが流量調整機構を介してクランク室に流入するのを回避することができる。その一方で、エアコンの運転がOFF以外の場合には、高圧側と低圧側との差圧が大きくなることから、第1の弁装置の弁体に対し弾性機構による付勢力の方よりも差圧により生ずる押圧力の方が大きくなるため第1の弁装置の弁体が流入口の開口周縁に形成された弁座から離れ流入口が開放された状態となるので、流量調整機構のオリフィス弁としての機能を確保することができる。
【0024】
特に請求項3に記載の発明によれば、吐出領域等の高圧側とクランク室等の低圧側との差圧が小さいときには、弾性機構による付勢力の方が差圧により生ずる押圧力よりも大きいため第2の弁装置の可変部は流入口側に移動するので、絞り通路のうちオイルの流動方向に沿った寸法を相対的に短くすることができ、吐出領域等の高圧側とクランク室等の低圧側との差圧が大きいときには、差圧により生ずる押圧力の方が弾性機構の付勢力よりも大きいため第2の弁装置の可変部は流出口側に移動するので、絞り通路のうちオイルの流動方向に沿った寸法を相対的に長くすることができることから、エアコンの運転がON等、OFF以外の時におけるオイルのクランク室への戻り量の適正化を図ることができる。
【0025】
特に請求項4に記載の発明によれば、第1の弁装置の弁体を付勢するための弾性機構と第2の弁装置の可変部を付勢するための弾性機構とについても共通化することができ、オイル戻り通路も第1の弁装置用のものと第2の弁装置用のものとを形成する必要がなくなるので、圧縮機の構造の簡略化、ひいては製造コストの相対的な削減を図ることができる。
【図面の簡単な説明】
【0026】
【図1】図1は、この発明に係る流量調整機構が用いられる可変容量型圧縮機の構成の一例を示した断面図である。
【図2】図2は、同上の流量調整機構の構成を示すと共にクランク室圧と収納室圧との差圧が相対的に大きいことにより流量調整機構の第1の弁装置が開いた状態を示す説明図である。
【図3】図3は、同上の流量調整機構の構成を示すと共にエアコンの運転がOFFでクランク室圧と収納室圧との差圧がなくなるかとても小さくなっているため流量調整機構の第1の弁装置が閉じた状態を示す説明図である。
【図4】図4は、同上の流量調整機構の構成を示すと共にクランク室圧と収納室圧との差圧の値が異常値を示したのでリリーフ弁が働いた状態を示す説明図である。
【図5】図5は、同上の流量調整機構の特にエアコンの運転がOFFの状態からONになって起動した状態にかけての流量調整機構全体としての開弁度の変化を示した特性線図である。
【図6】図6は、図2から図4に示される流量調整機構とは異なる実施形態に係る流量調整機構の構成を示すと共にクランク室圧と収納室圧との差圧が相対的に大きいことにより流量調整機構の第1の弁装置が開いた状態を示す説明図である。
【図7】図7は、同上の流量調整機構の構成を示すと共にエアコンの運転がOFFでクランク室圧と収納室圧との差圧がなくなるかとても小さくなっているため流量調整機構の第1の弁装置が閉じた状態を示す説明図である。
【発明を実施するための形態】
【0027】
以下、この発明の実施形態について添付図面を参照しながら説明する。
【0028】
図1において、この発明に係る可変容量型圧縮機1の一例が示されており、この可変容量型圧縮機1は、作動流体たる冷媒として二酸化炭素を用いる冷凍サイクルの一部を構成するクラッチレス式のもので、略筒状のシリンダハウジング2と、このシリンダハウジング2内に固着されたシリンダブロック3と、シリンダハウジング2のフロント側(図1中、左側)に位置するフロントヘッド4と、シリンダハウジング2のリア側(図1中、右側)にバルブプレート6を介して組み付けられたリアヘッド5とを有し、これらのシリンダハウジング2、フロントヘッド4、及びリアヘッド5は後述するシリンダボア17の軸方向に沿って締結ボルト58a、58bを適宜挿通させて相互に接合し固定することにより、ハウジング7を構成している。
【0029】
また、可変容量型圧縮機1は、フロントヘッド4と、シリンダハウジング2と、シリンダブロック3とによりハウジング7内にクランク室8が画成されている。このクランク室8には、長手方向の一方側端がフロントヘッド4から突出してプーリ等の図示しない動力伝達部材が固定されて、外部からの動力で回転する駆動軸9が収納されている。そして、駆動軸9の前述した一方側端は、フロントヘッド4の中央部を外側に突出するボス部4aを挿通するように設けられている。
【0030】
更に、駆動軸9の前記一方側端は、フロントヘッド4のボス部4aとの間に設けられたメカクニカルシール等の軸封装置10を介してフロントヘッド4との間が気密性良く封じられていると共に、外周面に外装されたスラストフランジ11、フロントヘッド4のうちボス部4aの基端よりも内側の内面に設けられたラジアル軸受12、及びフロントヘッド4の内面に設けられたスラスト軸受13を介してハウジング7に回動自在に支持されている。そして、駆動軸9のボス部4aとは反対側となる他方側端は、シリンダブロック3の支持凹部14に収納されたラジアル軸受15を介してハウジング7に回動自在に支持されている。
【0031】
更にまた、シリンダブロック3には、駆動軸9を支持する前記支持凹部14を中心とする円周上に等間隔に配されたシリンダボア17が形成されていると共にこのシリンダボア17内には片頭ピストン18がシリンダボア17の軸方向に沿って往復動可能に挿入されている。片頭ピストン18は、この実施例ではピストンリング22を具備したものとなっている。
【0032】
斜板19は、所定の厚みを有する略円柱状に形成されているもので、クランク室8に収納されて、駆動軸9にピン24とスリーブ44とを介して揺動自在に保持されると共に駆動軸9に固着されたロッド20を介して駆動軸9から回転力が伝達されるようになっている。更に、斜板19の周縁部分には、一対のシュー21、21を介してクランク室8に突出した片頭ピストン18の尾部18aが係留されていると共にロッド20は斜板19の径方向に沿って延びて外方に開口した縦孔31内に介在部材87を介して摺動可能に装着されている。
【0033】
そして、駆動軸9には環状のスリーブ44が外装されており、このスリーブ44は一方側がスラストフランジ11に当接し、他方が当該スリーブ44の突起に当接したバネ等の弾性機構47により斜板19の傾斜角を相対的に小さくするように駆動軸9の軸方向に沿って斜板19側に付勢されている。
【0034】
これにより、駆動軸9が回転すると、これに同期して斜板19が一体に回転し、この回転運動がシュー21、21を介して片頭ピストン18の往復運動に変換され、片頭ピストン18の往復動によりシリンダボア17内において片頭ピストン18とバルブプレート6との間に形成される圧縮室23の容積が変更されるようになっている。
【0035】
リアヘッド5は、シリンダブロック3とバルブプレート6を介して接合することにより、吸入室25とこの吸入室25の周囲に連続的に形成された吐出室26とが画成されている。吐出室26は、リアヘッド5の外面に開口した吐出口16と連通している。また、バルブプレート6には、吸入室25と圧縮室23とを吸入弁28を介して連通する吸入孔27と、吐出室26と圧縮室23とを吐出弁30を介して連通する吐出孔29とが形成されている。そして、リアヘッド5には、吐出室26とクランク室8とを連通する給気通路(図示せず。)に圧力制御弁(図示せず。)が装着されている。
【0036】
これにより、駆動軸9が回転すると、その回転力はロッド20を介して斜板19に伝達されて斜板19が回転し、上記したように片頭ピストン18がシリンダボア17内を往復動するので、片頭ピストン18の下降行程においては吸入室25内の作動流体が吸入孔27を介して圧縮室23に吸入され、片頭ピストン18の上昇行程においては圧縮室23内の作動流体が圧縮されて吐出孔29を介して吐出室26へ吐出されることとなる。
【0037】
そして、圧力制御弁によりクランク室8内の圧力(以下、クランク室圧。)を減少させると、クランク室圧と片頭ピストン18の圧縮室23の圧力(以下、圧縮室圧。)との差圧により生ずる片頭ピストン18のストロークを増大させる方向のモーメントが大きくなり、斜板19が弾性機構47のバネ力に抗してフロントヘッド4側に移動し、斜板19がピン24を中心に揺動して斜板19の駆動軸9の径方向に沿った面に対する傾斜角が大きくなり、片頭ピストン18のストローク量が大きくなって、吐出容量が増大する。これに対し、圧力制御弁によりクランク室8内の圧力(以下、クランク室圧。)を増大させると、クランク室圧と圧縮室圧との差圧により生ずる片頭ピストン18のストロークを減少させる方向のモーメントが大きくなり、斜板19が弾性機構47のバネ力により斜板19がリアヘッド5側に移動して、斜板19がピン24を中心に揺動して斜板19の駆動軸9の径方向に沿った面に対する傾斜角が小さくなり、片頭ピストン18のストローク量が小さくなって、吐出容量が減少する。
【0038】
上記した可変容量型圧縮機1において、この実施形態では、駆動軸9に、この駆動軸9をその径方向に沿って貫通する導入孔32が形成されていると共に、この導入孔32のうち駆動軸9の径方向に沿った側の略中心部位から駆動軸9の軸方向に沿って延びる第1の排出孔33が形成されている。この第1の排出孔33は、内径寸法が略同じまま駆動軸9の軸方向に沿って延出する均等径部34aと駆動軸9の軸方向のうちリアヘッド5側に向かうに従い暫時拡径する拡径部34bとから成ると共に、この拡径部34bはリアヘッド5側から駆動軸9の軸方向に沿って突出した突出部35がシリンダブロック3に形成されることによりその中央が窪んだ画室となっている。
【0039】
そして、一方が突出部35の突出方向に延びて、この突出部35の略中央において第1の排出孔33の拡径部34bに開口すると共に他方が吸入室25に開口することにより、第1の排出孔33と吸入室25とを連通する第2の排出孔36が形成されている。これにより、これらの導入孔32、第1の排出孔33、及び第2の排出孔36によって抽気通路が構成されると共に第1のオイル分離機構(抽気OS)が構成されるものとなっている。この第1のオイル分離機構(抽気OS)においては、駆動軸9の回転により生ずる遠心力によって導入孔32から流入した作動流体からのオイルの分離(第1の抽気OS)が実行され、更に、第1の排出孔33から第2の排出孔36に作動流体が流入する段階でも作動流体からのオイルの分離(第2の抽気OS)が実行される。しかも、導入孔32が駆動軸9の径方向に沿って貫通することにより形成されているので、作動流体の流速が低下し、上記第1の抽気OSの実行としてのオイル分離性を向上させている。
【0040】
また、リアヘッド5は、吐出室26から片頭ピストン18の往復動の方向と同方向に延びる第1の吐出通路37と、この第1の吐出通路37と直交するように延出するもので、吐出口16と連通すると共に第1の吐出通路37とは相対的に吐出口16近傍にて連通している第2の吐出通路38とが形成されている。そして、この第2の吐出通路38内には、第1の吐出通路37に接続する部位と対峙する位置に分離部39が装着、固定されている。この分離部39は、第2の吐出通路38の延出する方向に沿って延出する小径部40と、この小径部40のうちその延出方向のうち吐出孔側端から吐出口16側に向かうに従い第2の吐出通路38の内面に当接するように拡径した拡径部41とから構成されている。これにより、これらの第1の吐出通路37、第2の吐出通路38及び分離部39によって第2のオイル分離機構(吐出OS)が構成されたものとなっている。
【0041】
更に、この実施形態では、リアヘッド5は、第2の吐出通路38の分離部39よりも下方にフィルタ42が配されていると共に、このフィルタ42よりも下方に第1の集塵ポット43が形成されている。そして、この第2のオイル分離機構(吐出OS)で分離されたオイルは、第2の吐出通路38とそのフィルタ42よりも下方側にて連通すると共にクランク室8とも連通するオイル戻し通路45を経てクランク室8内に戻されるようになっており、このオイル戻し通路45の途中には第2の集塵ポット46が形成されている。
【0042】
このような第2のオイル分離機構(吐出OS)の構成とすることにより、第1の吐出通路37から第2の吐出通路38に吐出された作動流体は、分離部39の小径部40の外周を下方に向けて螺旋状に旋回した後、小径部40の下方開口から小径部40の内部を上昇して吐出口16から吐出される。作動流体にこのような小径部40の外周を高速で旋回しつつ下降した後、上昇するという流れを経るようにすることにより、作動流体内に含まれるオイルを確実に分離させることができる。更に、オイル戻し通路45を介して分離されたオイルをクランク室8に戻すことができる。尚、第2のオイル分離機構と吐出口16との間には、図示しない逆止弁が配置され、エアコンの運転がOFFの時に圧縮機から作動流体が排出されないようになっている。
【実施例1】
【0043】
ところで、可変容量型圧縮機1は、オイル戻し通路45の経路上に流量調整機構50が配置されている。流量調整機構50は、この実施形態では図1に示されるようにリアヘッド5のうちバルブプレート6との境界部分近傍に配置されているもので、図2から図4に示されるようにバルブプレート6側に開口した窪み51を形成して、この窪み51内にカートリッジ的に収納されている。
【0044】
そして、流量調整機構50は、図2から図4に示されるように、オイル戻し通路45の上流側と接続する流入口52を有する上流側構成部材53と、オイル戻し通路45の下流側と接続する流出口54を有する下流側構成部材55と、これらの上流側構成部材53側及び下流側構成部材55側に開口した筒状構成部材56とを有して構成され、これらの構成部材53、55、56を組み付けることにより内部に収納室57が画成されるものとなっている。下流側部材55には、一方側端が流出口54と連通し、他方側端が下記する逃がし通路と連通する通路90が形成されている。
【0045】
収納室57には、オイル戻し通路45を開閉する第1の弁装置59と、絞り通路60を有すると共にこの絞り通路60のうちオイルの流動方向に沿った長さを変更する可変部61を有する第2の弁装置62とが収納されている。
【0046】
第1の弁装置59は、弁体65と、弁座66と、バネ受け部材67と、バネ68とで構成されている。弁体65は、上流側構成部材53の流入口52の内径寸法よりも大きな外径寸法の外形状を有する閉塞部63及びこの閉塞部63よりも流入口52の径方向に沿った寸法の大きな外形状であるバネ受け部64から成っている。弁座66は、上流側構成部材53の流入口52のうち収納室57内側の開口周縁部位を弁体65の閉塞部63が密着可能なように平坦にすることで形成されている。バネ受け部材67は、弁体65よりも収納室のうち下流側に位置したもので、弁体65のバネ受け部64と比較した場合に流入口52の径方向に沿った寸法がバネ受け部64と同じかより大きな外形状をなし、収納室57において基本的に固定された状態にある。バネ68は、一方側がバネ受け部材67に当接し、他方側が弁体65のバネ受け部64に当接したもので、バネ力により弁体65を上流側構成部材53側に押圧している一方で、そのバネ力はクランク室圧と収納室圧との差圧がなくなったかそれに近い状態のときに、弁体65の閉塞部63が流入口52の周縁の弁座66に密着することができる大きさとなっている。そして、この実施例ではバネ受け部材67は流入口52側に延出した延出部69を有し、バネ68はこの延出部69に外装されたかたちとなっている。
【0047】
第2の弁装置62は、バネ受け部材67の延出部69の延出方向の頂部から流出口54側まで延びると共にその両側が開口した通路70と、弁体65のバネ受け部64の閉塞部側とは反対側から延出し、その延出方向の軸線が通路70の軸線と一致している可変部61とを有し、通路70内に可変部61が挿入される深度を可変することにより絞り通路60の長さが可変するようになっている。通路70の内径寸法と流入口52の開口径とは略同じである。そして、可変部61が通路70内に挿入される深度は、バネ68のバネ力を利用して調節されるもので、弁体65がバネ68のバネ力に抗してバネ受け部材67に近接している場合には、通路70内に可変部61が挿入される深度が深くなって、絞り通路60の長さも図2において寸法値L1として示されるように大きくなる。反対に、弁体65がバネ68のバネ力により最もバネ受け部材67から離れている場合には、通路70内に可変部61が挿入される深度が浅くなって、絞り通路60の長さも図3において寸法値L2として示されるように小さくなる。
【0048】
また、流量調整機構50は、この実施形態では、収納室57内に例えば皿バネ等と称されるバネ72を備えている。このバネ72は、バネ受け部材67と下流側構成部材55の流出口54を有する面との間に介在しているもので、通常時では図2及び図3に示されるように、バネ受け部材67と下流側構成部材55の流出口54を有する面との間に所定の空間を有したかたちでバネ受け部材67を支持している。そして、バネ受け部材67の外面と筒状構成部材56とによってリリーフ弁が構成されている。すなわち、バネ受け部材67の外面と筒状構成部材56とは、バネ72により通常時では図2及び図3に示されるように密着しているが、クランク室圧と収納室圧との差圧が異常に大きくなると、バネ受け部材67がバネ72のバネ力に抗して流出口54側に変位して、図4に示されるように、筒状構成部材56とバネ受け部材67の外面との間に、下流側構成部材55に形成された通路90及び流出口54と連通した、高圧ガスの逃がし通路が一時的に形成される。尚、バネ受け部材67が流出口54側に変位した場合には、通路70内に可変部61が挿入される深度が最も深くなって、絞り通路60の長さも図4において寸法値L3として示されるように大きくなる。
【0049】
そして、エアコンの運転がOFFの状態では、クランク室圧と収納室の流入口52の圧力との差圧が0MPa若しくはこれに近い値となるところ、第1の弁装置59の弁体65の閉塞部63は、流入口52の弁座66に密着して流入口52を閉塞し、吐出口16及びその周辺の吐出領域から作動流体の高圧ガスが戻し通路45を通ってクランク室8に流入することが回避される。
【0050】
更に、エアコンの運転の起動時には、第1の弁装置59の弁体65の閉塞部63は、わずかに発生する差圧により流入口52側から押圧されはじめ、流入口52の弁座66から離れつつあるが、第2の弁装置62の可変部61の通路70内に挿入される割合は相対的に小さく、これに伴い絞り通路60の長さも相対的に短いので、流量調整機構50の全体として見た場合には開弁度がエアコンの運転の起動時に最大となる。
【0051】
エアコンの起動後、エアコンの運転がONの状態には、クランク室圧と収納室圧との差圧が大きくなり第2の弁装置62の可変部61の通路70内に挿入される割合が暫時大きくなってゆき、絞り通路60の長さも長くなってくるので、流量調整機構50の全体としての開弁度の割合も小さくなってゆく。そして、クランク室圧と収納室圧との差圧が所定の圧力(例えば8.5MPa)に到達すると、第2の弁装置62は、可変部61がそれ以上深く挿入されるのを規制する手段として、弁体65の流出口54側が延出部69の流入口52側と当接する構成となっており、これにより、絞り通路60の長さを一定に保つことができる。ここで、流量調整機構50の全体としての開弁度とは、単に第1の弁装置59の弁体65の閉塞部63が流入口52の弁座66に遠近するにあたっての閉塞部63の開度のみならず、第2の弁装置62の可変部61が通路70に挿入される割合が変わり、これに伴い絞り通路60の長さが可変することで変わってくる、絞り通路60内での流路抵抗も加味したものとして示している。さらに、後述するように可変部61にテーパを付ける等によって、絞り通路60の所定隙間を可変部61の挿入深度に応じて変化さる場合にはこの隙間の変化も加味したものとして示される。
【0052】
一方、更に、クランク室圧と収納室圧との差圧が上昇し異常な数値を示す場合には、バネ受け部材67の外面と筒状構成部材56とで構成されたリリーフ弁が機能して、バネ受け部材67の外面と筒状構成部材56との間の逃がし通路及び通路90から高圧ガスがクランク室8側に抜けるので、クランク室圧と吐出室26に開口する収納室圧との差圧を小さくする上に、クランク室圧を上昇させ、斜板19の傾斜角を小さくする。
【0053】
この流量調整機構50全体としての開弁度及びリリーフ弁が働いた場合を特性線にして表したのが図5の特性線図である。この特選線図を説明すると、第1の弁装置59が開くまでの差圧を示すA点は、1MPa未満であることが望ましい。この第1の弁装置59が開くと、すみやかに第1の弁装置59は、B点として示される最大開弁度まで開く。その後、所定差圧のC点まで徐々に開弁度が低下し、最後は一定となる。更に、所定差圧のD点まで達するとリリーフ弁が作動する。
【0054】
以上によれば、エアコンの運転がOFF時では流量調整機構50の開弁度が0であるため吐出口16及びその周辺の吐出領域から作動流体の高圧ガスが戻し通路45を通ってクランク室8に流入することがないので、エアコンの運転がOFF時の斜板19の傾斜角を、固定オリフィスを用いる場合よりも小さくすることができ、エアコンの運転のOFF時における省動力を図ることができる。
【0055】
また、エアコンの運転の復帰時に流量調整機構50の全体としての開弁度が最大となることが好ましいところ、この流量調整機構50の構造を採ることにより図5の特性線図に示されるようにエアコンの運転の復帰時に流量調整機構50の全体としての開弁度を最大にすることを実現している。図5で示される特性線のうちB点からC点まで至る線部分は、図5で(1)として示されるように直線的であっても、同じく図5で(2)として示されるように曲線的であっても良いものであり、例えば可変部61に対しわずかにテーパを付けることにより、所望の特性を得るために絞り通路60の所定隙間を可変部61の挿入深度に応じて変化させても良い。
【0056】
尚、流量調整機構50は、リアヘッド5のうちバルブプレート6との境界部位に設けるとして説明したが、必ずしもこれに限定されず、オイル戻し通路45の経路上であれば良いもので、例えば、図示しないが、オイル戻し通路45のうち第2の集塵ポット46が分岐する部位よりも上方に設けても良いし、シリンダブロック3内あるいはシリンダブロック3とリアヘッド5とに跨がるように設けても良い。
【実施例2】
【0057】
図6及び図7において、流量調整機構50の別の構成が示されている。以下、この流量調整機構50について説明する。但し、先述した流量調整機構50と同様の構成については同一の符号を付してその説明を省略する。
【0058】
この流量調整機構50は、図1に示される流量調整機構50と対比するに、オイル戻し通路45の経路上に配置されている点では共通するが、図1に示される流量調整機構50とは異なって、リアヘッド5とシリンダブロック3とに跨がって配置されているものである。
【0059】
すなわち、流量調整機構50は、図6及び図7に示されるように、リアヘッド5に対しバルブプレート6側に開口した窪み51を形成し、バルブプレート6に貫通孔6aを形成し、更に、シリンダブロック3に対しバルブプレート6側に開口した窪み71を形成することで、リアヘッド5、バルブプレート6及びシリンダブロック3を窪み51、貫通孔6a、窪み71の位置合わせをしつつ適宜組み合わせることにより、可変容量型圧縮機内部に直接的に収納室57を画成して、この収納室57に流入口52を開閉する第1の弁装置59と、長さが可変する絞り通路60を有する第2の弁装置62とを収納した構成となっている。
【0060】
収納室57は、オイル戻し通路45の上流側と下流側とに相対的に小さな画室74、76を有すると共に画室74と画室76との間にこれらの画室74、76と連通する、相対的に大きな画室75を有している。画室74は集塵用のフィルタ77が収納されていると共に、画室75の上流側には画室75への流入口52を有するブロック体78が画室75の画室74側面と接するように配置されている。このブロック体78は、外周面にOリング79が配されて、ブロック体78と画室75の内面との間が気密性良くシールされている。
【0061】
第1の弁装置59は、ブロック体78に形成された流入口52の内径寸法よりも大きな閉塞部81及びバネ受け部82から成る弁体80と、ブロック体78の流入口52のうち収納室57側の開口周縁部位に形成されて閉塞部81が密着可能な弁座66と、画室75のうち画室76との境界側にてオイル戻し通路45の軸方向と交差する方向に延びる壁面による成るバネ受け部84と、バネ68とで構成されている。バネ68は、一方側が弁体80のバネ受け部82に当接し、他方側がバネ受け部84に当接したもので、バネ力により弁体80をブロック体78側に押圧している一方で、そのバネ力がクランク室圧と収納室の流入口52の圧力との差圧がなくなったかそれに近い状態のときに弁体80の閉塞部81が弁座83に密着することができる大きさに設定されている。この実施形態では、弁体80の外周面と画室75の内面との間に隙間が形成されていると共に弁体80の外周面には切り欠き85が形成されており、オイルの流れの円滑化を図っている。弁体80の外周面と画室75の内面との間の隙間は、絞り通路60の隙間よりも小さくなるように設定されている。
【0062】
第2の弁装置62は、画室76と、弁体80のうち閉塞部81側とは反対側から画室76に向けて延出した可変部86とで構成されて、画室76内に可変部86が挿入される深度を可変することにより絞り通路60の長さが可変するようになっている。そして、可変部86が画室76内に挿入される深度も、バネ68のバネ力を利用して調節されると共に、弁体80の閉塞部81の流入口52からの距離と連動するものとなっている。
【0063】
すなわち、弁体80がバネ68のバネ力に抗してバネ受け部84に近接している場合には、画室76内に可変部86が挿入される深度が相対的に深くなって、絞り通路60の長さも図6において寸法値L4として示されるように大きくなる。反対に、弁体80がバネ68のバネ力により最もバネ受け部84から離れている場合には、画室76内に可変部86が挿入される深度が相対的に浅くなって、絞り通路60の長さも図7において寸法値L5として示されるように小さくなる。
【0064】
そして、図6及び図7に示される画室76の内径寸法L6と流入口52の内径寸法L7とは同じになっている。
【0065】
以上のような流量調整機構50の構成とすることにより、エアコンの運転がOFFの状態では、クランク室圧と収納室や流入口52の圧力との差圧が0MPa若しくはこれに近い値となるところ、第1の弁装置59の弁体80の閉塞部81は、流入口52の弁座66に密着して流入口52を閉塞し、吐出口16及びその周辺の吐出領域から作動流体の高圧ガスが戻し通路45を通ってクランク室8に流入することが回避される。
【0066】
そして、エアコンの運転の起動時には、第1の弁装置59の弁体80の閉塞部81は、わずかに発生する差圧により流入口52側から押圧されはじめ、流入口52の弁座66から離れつつあるが、第2の弁装置62の可変部86の画室76内に挿入される割合は相対的に小さく、これに伴い絞り通路60の長さも相対的に短いので、流量調整機構50の全体としての開弁度がエアコンの運転の起動時に最大となる。
【0067】
エアコンの起動後、エアコンの運転がONの状態には、クランク室圧と収納室圧との差圧が大きくなり、第2の弁装置62の可変部86の画室76内に挿入される割合が暫時大きくなってゆき、絞り通路60の長さも長くなってくるので、流量調整機構50の全体としての開弁度の割合も小さくなってゆく。そして、クランク室圧と収納室圧との差圧が所定の圧力(例えば8.5MPa)に到達すると、第2の弁装置62は、可変部86がそれ以上深く挿入されるのを規制する構成となっており、これにより、絞り通路60の長さを一定に保つことができる。
【0068】
このため、この実施形態でも、流量調整機構50の全体としての開弁度は、図5の特性線図で示される実線の特性線として表れるので、先の実施形態と同様の作用効果を得ることができる。
【0069】
そして、この可変容量型圧縮機1は、図1に示されるように、吐出室26、第1の吐出通路37及び第2の吐出通路38、並びに吸入室25の周壁に断熱材85を配したものとなっている。これにより、可変容量型圧縮機1の高圧側を流動する高圧・高温の作動流体と可変容量型圧縮機1の低圧側を流動する低圧・低温の作動流体との熱伝導を遮断することが可能となり、図示しない吸入口を含む吸入領域での作動流体の過熱を防止することが可能となっている。
【符号の説明】
【0070】
1 可変容量型圧縮機
7 ハウジング
8 クランク室
9 駆動軸
17 シリンダボア
18 片頭ピストン
19 斜板
23 圧縮室
25 吸入室
26 吐出室
39 分離部
45 オイル戻し通路
50 流量調整機構
52 流入口
54 流出口
57 収納室
59 第1の弁装置
60 絞り通路
61 可変部
62 第2の弁装置
65 弁体
66 弁座
68 バネ
70 通路
76 画室
80 弁体
86 可変部


【特許請求の範囲】
【請求項1】
ハウジングと、このハウジング内部に形成されたクランク室と、前記ハウジングに回転自在に支持されて外部の駆動力にて回転動する駆動軸と、前記クランク室に配されて前記駆動軸の回転に同期して回転する斜板と、斜板の回転に伴いシリンダボア内を往復動するピストンと、このピストンの往復動により前記シリンダボアに選択的に連通する吸入室及び吐出室とを有し、前記斜板の傾斜角を変更することにより吐出容量を制御する容量可変型圧縮機において、
前記吐出室を含む吐出領域を設け、作動流体に混在するオイルを分離するオイル分離機構を前記吐出領域に設けると共にこのオイル分離機構によって分離されたオイルを前記クランク室に戻すオイル戻し通路を有し、
前記オイル戻し通路上には、このオイル戻し通路を開閉する開閉手段を有する第1の弁装置と、絞り通路を有すると共にこの絞り通路のうちオイルの流動方向に沿った長さを変更することが可能な可変絞り手段を有する第2の弁装置と、これらの第1及び第2の弁装置を収納すると共に前記オイル分離機構側と連通するための流入口及び前記クランク室側と連通するための流出口を開口させた収納室とから成る流量調整機構が設けられていることを特徴とする容量型圧縮機。
【請求項2】
前記第1の弁装置の開閉手段は、前記流入口側に向けて弾性機構により付勢された弁体と、前記流入口のうち前記収納室内側の開口の周縁に形成されて前記弁体が密接する弁座とから構成されていることを特徴とする請求項1に記載の可変容量型圧縮機。
【請求項3】
前記第2の弁装置の絞り手段は、一方が前記流入口側に開口すると共に他方が流出口側に開口した貫通孔と、この貫通孔の内面との間に所定の隙間を有しつつ軸方向に沿って移動可能に前記貫通孔に挿入されると共に前記入口側に向けて弾性機構により付勢された可変部とにより構成されて、前記可変部のうち前記貫通孔の軸方向に沿った面と前記貫通孔の内面との間に絞り通路が形成されると共に、前記可変部の前記貫通孔への挿入量を変えることで前記絞り通路のうちオイルの流動方向に沿った長さを可変することを特徴とする請求項1に記載の可変容量型圧縮機。
【請求項4】
前記第1の弁装置の弁体と前記第2の弁装置の可変部とは、前記第2の弁装置の可変部よりも前記第1の弁装置の弁体の方がオイルの流動方向の上流側に位置すると共に一体的に動くように形成されていることを特徴とする請求項1から請求項3のいずれかに記載の可変容量型圧縮機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−285898(P2010−285898A)
【公開日】平成22年12月24日(2010.12.24)
【国際特許分類】
【出願番号】特願2009−138936(P2009−138936)
【出願日】平成21年6月10日(2009.6.10)
【出願人】(500309126)株式会社ヴァレオサーマルシステムズ (282)
【Fターム(参考)】