説明

可変減衰力ダンパー

【課題】磁気粘性流体を用いた可変減衰力ダンパーにおいて、ピストンロッド外周面のシール部材が磁気粘性流体との接触により摩耗するのを回避する。
【解決手段】内部に第1、第2流体室29,30を区画したインナーシリンダ22とその外周に嵌合するアウターチューブ21との間に第3流体室31を区画し、ピストン25の内部にコイル37を設けるとともにピストン25の移動方向両端に永久磁石35,36を設ける。ピストン25がインナーシリンダ22内を往復移動するときにコイル37を励磁すると、第3流体室31内の磁気粘性流体の磁性体微粒子がコイル37の周囲に吸引されてピストン25と共に第3流体室31内を移動することで、ピストン25の移動に抵抗を与えてダンパー14の減衰力を任意に制御することができる。また永久磁石35,36の近傍に常時磁性体微粒子が吸引されて集まっているので、応答性を高めることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁界の作用で粘性が変化する磁気粘性流体を用いて減衰力を任意に制御することが可能な可変減衰力ダンパーに関する。
【背景技術】
【0002】
サスペンション装置用の可変減衰力ダンパーの粘性流体として、磁界の作用で粘性が変化する磁気粘性流体(MRF: Magneto-Rheological Fluids )を採用し、シリンダに摺動自在に嵌合するピストンに、その流体通路中の磁気粘性流体に磁界を作用させるためのコイルを設けたものが、下記特許文献1により公知である。この可変減衰力ダンパーによれば、コイルに通電して発生した磁界で流体通路中の磁気粘性流体の粘性を変化させることで、ダンパーの減衰力を任意に制御することができる。
【特許文献1】特開昭58−221034号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところで、上記従来の可変減衰力ダンパーは、シリンダの端壁を貫通するピストンロッドの外周面をシールするシール部材がシリンダに充填された磁気粘性流体に直接接触するため、磁気粘性流体に含まれる磁性体微粒子でシール部材が摩耗する虞があり、摩耗したシール部材から磁気粘性流体が漏洩するのを防止するために該シール部材の締め代を大きく設定する必要があった。そのため、ピストンロッドとシール部材との間の摩擦抵抗が増加してしまい、その摩擦力によってダンパーが発生する減衰力の大きさを精度良く制御することが難しくなるという問題があった。
【0004】
本発明は前述の事情に鑑みてなされたもので、磁気粘性流体を用いた可変減衰力ダンパーにおいて、ピストンロッドの外周面をシールするシール部材が磁気粘性流体との接触により摩耗するのを回避することを目的とする。
【課題を解決するための手段】
【0005】
上記目的を達成するために、請求項1に記載された発明によれば、粘性流体が充填されたシリンダと、シリンダに摺動自在に嵌合して該シリンダを第1、第2流体室に区画するピストンと、ピストンに連結されてシリンダの端壁に設けたシール部材を貫通するピストンロッドと、ピストンを貫通して第1、第2流体室を連通させるオリフィスと、ピストンの移動を阻止する抵抗力を変化させて減衰力の大きさを制御する減衰力制御機構とを備えた可変減衰力ダンパーにおいて、前記減衰力制御機構は、第1、第2流体室から隔絶された第3流体室と、第3流体室に充填されてピストンの移動に伴って流動する磁気粘性流体と、磁気粘性流体の流動特性を変化させる磁界発生手段とを備えたことを特徴とする可変減衰力ダンパーが提案される。
【0006】
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記第3流体室が、シリンダと該シリンダの外周に嵌合するアウターチューブとの間に区画され、前記磁界発生手段が、ピストンの内部に設けられたコイルと、ピストンの移動方向両端に設けられた永久磁石とを備えたことを特徴とする可変減衰力ダンパーが提案される。
【0007】
また請求項3に記載された発明によれば、請求項1の構成に加えて、シリンダに摺動自在に嵌合するフリーピストンにより、ピストンを挟んでピストンロッドの反対側に位置する第2流体室と第3流体室とを区画し、第3流体室の中間部に配置した前記減衰力制御機構が、磁気粘性流体が通過するオリフィスと、このオリフィスを通過する磁界を発生するコイルよりなる前記磁界発生手段とを備えたことを特徴とする可変減衰力ダンパーが提案される。
【0008】
また請求項4に記載された発明によれば、請求項3の構成に加えて、前記第3流体室が、フリーピストンよりも下方のシリンダ内に区画された内側第3流体室と、シリンダと該シリンダの外周に嵌合するアウターチューブとの間に区画された外側第3流体室とで構成され、外側第3流体室の上部に高圧ガスが充填されたガス室を形成したことを特徴とする可変減衰力ダンパーが提案される。
【0009】
また請求項5に記載された発明によれば、請求項3または請求項4の構成に加えて、前記オリフィスおよび前記コイルを備えたオリフィスブロックをシリンダの内壁に固定したことを特徴とする可変減衰力ダンパーが提案される。
【0010】
尚、実施例のインナーシリンダ22は本発明のシリンダに対応し、実施例の永久磁石35,36およびコイル37,44は本発明の磁界発生手段に対応する。
【発明の効果】
【0011】
請求項1の構成によれば、粘性流体が充填されたシリンダに摺動自在に嵌合するピストンが往復移動すると、そのピストンの両側に区画された第1、第2流体室の容積が拡大・縮小するため、第1、第2流体室に充填した粘性流体がピストンに設けたオリフィスを通過して減衰力が発生する。このとき、第1、第2流体室から隔絶された第3流体室に充填された磁気粘性流体がピストンの移動に伴って流動するが、その磁気粘性流体の流動特性を磁界発生手段により変化させることで、ピストンの移動に伴う減衰力を任意に制御することができる。このように、磁気粘性流体を第3流体室に充填し、ピストンロッドが摺動自在に貫通するシール部材が臨む第1、第2流体室には磁気粘性流体ではなく粘性流体を充填するので、磁気粘性流体に含まれる磁性体微粒子でシール部材が摩耗することがない。従って、ピストンロッドとシール部材との締め代を小さく設定することができ、シール部材からピストンロッドが受ける摩擦抵抗を低減してダンパーが発生する減衰力の大きさを精度良く制御することができる。
【0012】
請求項2の構成によれば、シリンダとその外周に嵌合するアウターチューブとの間に第3流体室を区画し、ピストンの内部にコイルを設けるとともにピストンの移動方向両端に永久磁石を設けたので、ピストンがシリンダ内を往復移動するときにコイルを励磁すると、第3流体室内の磁気粘性流体の磁性体微粒子がコイル周囲に吸引されてピストンと共に第3流体室内を移動することで、ピストンの移動に抵抗を与えてダンパーの減衰力を任意に制御することができる。またコイルを消磁したときでも永久磁石の近傍に磁性体微粒子が吸引されて集まっているので、コイルを励磁したときに磁性体微粒子を速やかにコイルに吸引して応答性を高めることができる。
【0013】
請求項3の構成によれば、シリンダに摺動自在に嵌合するフリーピストンで第2流体室と第3流体室とを区画し、第3流体室の中間部に配置した減衰力制御機構に磁気粘性流体が通過するオリフィスとコイルとを設けたので、ピストンがシリンダ内を往復移動すると、それに応じてフリーピストンがシリンダ内を往復移動して第3流体室に設けた減衰力制御機構のオリフィスを磁気粘性流体が通過する。従ってコイルを励磁して磁界を発生させることで、オリフィスを通過する磁気粘性流体の抵抗を変化させてダンパーの減衰力を任意に制御することができる。
【0014】
請求項4の構成によれば、フリーピストンよりも下方のシリンダ内に区画された内側第3流体室と、シリンダとその外周に嵌合するアウターチューブとの間に区画された外側第3流体室とで第3流体室を構成し、外側第3流体室の上部に高圧ガスが充填されたガス室を形成したので、外側第3流体室内で磁気粘性流体および高圧ガス間を仕切る別のフリーピストンが不要になって部品点数を削減することができる。
【0015】
請求項5の構成によれば、オリフィスおよびコイルを備えたオリフィスブロックをシリンダの内壁に固定したので、磁気粘性流体が充填された第3流体室に配置されたオリフィスブロックが摩耗する虞がない。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。
【0017】
図1〜図4は本発明の第1実施例を示すもので、図1は車両のサスペンション装置の正面図、図2は可変減衰力ダンパーの拡大断面図、図3は図2の3部拡大図、図4は図3に対応する作用説明図である。
【0018】
図1に示すように、四輪の自動車の車輪Wを懸架するサスペンション装置Sは、車体11にナックル12を上下動自在に支持するサスペンションアーム13と、サスペンションアーム13および車体11を接続する可変減衰力のダンパー14と、サスペンションアーム13および車体11を接続するコイルバネ15とを備える。ダンパー14の減衰力を制御する電子制御ユニットUには、バネ上加速度を検出するバネ上加速度センサSaからの信号と、ダンパー14の変位(ストローク)を検出するダンパー変位センサSbからの信号と、車両の操舵角を検出する操舵角センサScからの信号と、車両の横加速度を検出する横加速度センサSdからの信号とが入力される。
【0019】
図2に示すように、ダンパー14は、下端がサスペンションアーム13に接続されたアウターチューブ21と、アウターチューブ21の内部に同軸に配置されたインナーシリンダ22と、アウターチューブ21およびインナーシリンダ22の上端および下端をそれぞれ閉塞する上部端板23および下部端板24と、インナーシリンダ22に摺動自在に嵌合するピストン25と、ピストン25から上方に延びて上部端板23に設けたシール部材26を液密に貫通し、上端を車体11に接続されたピストンロッド27と、インナーシリンダ22の下部に摺動自在に嵌合するフリーピストン28とを備える。
【0020】
インナーシリンダ22の内部にピストン25により仕切られた上側の第1流体室29および下側の第2流体室30が区画されており、これらの第1、第2流体室29,30にはオイルのような粘性流体が充填される。またアウターチューブ21およびインナーシリンダ22に囲まれた円筒状の第3流体室31には、オイルのような粘性流体に鉄粉のような磁性体微粒子を分散させた磁気粘性流体が充填される。磁気粘性流体は、磁界を加えると磁力線に沿って磁性体微粒子が整列することで粘性流体が流れ難くなり、見かけの粘性が増加する性質を有している。またフリーピストン28の下部には高圧ガスが封入されたガス室32が区画される。
【0021】
図3に示すように、ピストン25は、ピストンロッド27にナット33で固定されたピストン本体34と、ピストン本体34の上面および下面にそれぞれ固定されてインナーシリンダ22の内周面に沿う円筒状の永久磁石35,36と,ピストン本体34の内部に収納された環状のコイル37と,コイル37の径方向内側に配置されて第1、第2流体室29,30を連通させる複数のオリフィス38…とを備える。電子制御ユニットUはコイル37への通電を制御することで、以下のようにしてダンパー14の減衰力を制御する。
【0022】
コイル37を励磁していないとき、ダンパー14が収縮してインナーシリンダ22に対してピストン25が下動すると(矢印A参照)、第1流体室29の容積が増加して第2流体室30の容積が減少するため、第2流体室30の粘性流体がピストン25のオリフィス38…を通過して第1流体室29に流入し(矢印a参照)、逆にダンパー14が伸長してインナーシリンダ22に対してピストン25が上動すると(矢印B参照)、第2流体室30の容積が増加して第1流体室29の容積が減少するため、第1流体室29の粘性流体がピストン25のオリフィス38…を通過して第2流体室30に流入し(矢印b参照)、その際にオリフィス38…を通過する粘性流体の抵抗によりダンパー14が減衰力を発生する。
【0023】
このとき、永久磁石35,36の磁力がインナーシリンダ22を通して第3流体室31内の磁気粘性流体に作用するため、磁気粘性流体に含まれる磁性体微粒子の一部が永久磁石35,36の近傍に吸引され、永久磁石35,36の近傍において磁性体微粒子の密度が高くなる。ピストン25がインナーシリンダ22の内部を移動すると、ピストン25と一体の永久磁石35,36に引きずられて第3流体室31の磁気粘性流体の磁性体微粒子の密度が高い部分も移動するが、永久磁石35,36の磁力は比較的に弱いために磁性体微粒子の密度もそれほど高くならず、ピストン25の移動に大きな抵抗を与えることはない。
【0024】
尚、ダンパー14に衝撃的な圧縮荷重が加わって第2流体室30の容積が減少するとき、ガス室32を縮小させながらフリーピストン28が下降することで衝撃を吸収する。またダンパー14に衝撃的な引張荷重が加わって第2流体室30の容積が増加するとき、ガス室32を拡張させながらフリーピストン28が上昇することで衝撃を吸収する。更に、ピストン25が下降してインナーシリンダ22内に収納されるピストンロッド27の容積が増加したとき、その容積の増加分を吸収するようにフリーピストン28が下降する。
【0025】
しかして、電子制御ユニットUは、バネ上加速度センサSaで検出したバネ上加速度、ダンパー変位センサSbで検出したダンパー変位、操舵角センサScで検出した操舵角および横加速度センサSdで検出した横加速度に基づいて、各車輪W…の合計4個のダンパー14…の減衰力を個別に制御することで、路面の凹凸を乗り越える際の車両の動揺を抑えて乗り心地を高めるスカイフック制御のような乗り心地制御と、車両の旋回時のローリングや車両の急加速時や急減速時のピッチングを抑える操縦安定制御とを、車両の運転状態に応じて選択的に実行する。
【0026】
このように、ダンパー14の減衰力を制御すべく電子制御ユニットUからの指令でピストン25のコイル37が励磁されると、図4に示すように、永久磁石35,36に吸引されていた磁性体微粒子が、永久磁石35,36よりも強い磁力を発生するコイル37に吸引されるため、コイル37に対向する第3流体室31に磁性体微粒子の密度が非常に高い部分が形成される。このように、コイル37に近い位置にある永久磁石35,36に予め磁性体微粒子を吸引しておくことにより、コイル37を励磁したときに永久磁石35,36の近傍に集まっていた磁性体微粒子を速やかにコイル37に吸引して応答性を高めることができる。
【0027】
しかして、ピストン25の移動に追従して、第3流体室31の磁気粘性流体の内部を磁性体微粒子の密度が非常に高い部分が移動すると、大きな抵抗が発生してダンパー14の減衰力が高められる。このとき、ダンパー14が発生する減衰力の大きさは、コイル37に供給する電流を変化させることで任意に制御することができる。
【0028】
本実施例のダンパー14によれば、ピストンロッド27が貫通するシール部材26が臨む第1流体室29に磁気粘性流体ではなく、ただの粘性流体が充填されているため、磁気粘性流体に含まれる磁性体微粒子でシール部材26が摩耗することがない。従って、ピストンロッド27とシール部材26との締め代を小さく設定することができ、シール部材26からピストンロッド27が受ける摩擦抵抗を低減してダンパー14が発生する減衰力の大きさを精度良く制御することができる。
【0029】
図5〜図7は本発明の第2実施例を示すもので、図5は前記図2に対応する図、図6は図5の6部拡大図、図7は図6に対応する作用説明図である。
【0030】
図5および図6に示すように、第2実施例のダンパー14は、インナーシリンダ22に摺動自在に嵌合するフリーピストン28の下方に内側第3流体室31Aを備えるとともに、インナーシリンダ22およびアウターチューブ21の間(第1実施例の第3流体室31に相当する部分)に外側第3流体室31Bを備えており、インナーシリンダ22の下端に形成した連通孔22a…で相互に連通する内側第3流体室31Aおよび外側第3流体室31Bが第2実施例の第3流体室31を構成する。外側第3流体室31Bの上端部は、フリーピストン28の移動を許容する高圧ガスが充填されたガス室41とされる。
【0031】
第2実施例のピストン25は単純な構造であり、第1、第2流体室29,30を連通させるオリフィス38…のみを備えている。その代わりに、内側第3流体室31Aの下部に固定されたオリフィスブロック42には、内側第3流体室31Aおよび外側第3流体室31Bを連通させるオリフィス43…と、オリフィス43…の径方向内側に配置されたコイル44とを備える。このコイル44への通電は、第1実施例と同様に電子制御ユニットUにより制御される。
【0032】
従って、ダンパー14が収縮してインナーシリンダ22に対してピストン25が下動すると、第1流体室29の容積が増加して第2流体室30の容積が減少するため、第2流体室30の粘性流体がピストン25のオリフィス38…を通過して第1流体室29に流入し、逆にダンパー14が伸長してインナーシリンダ22に対してピストン25が上動すると、第2流体室30の容積が増加して第1流体室29の容積が減少するため、第1流体室29の粘性流体がピストン25のオリフィス38…を通過して第2流体室30に流入し、その際にオリフィス38…を通過する粘性流体の抵抗によりダンパー14が減衰力を発生する。
【0033】
このようにしてピストン25が上下動すると第1流体室29内に位置するピストンロッド27の容積が増減するため、その容積の増減を吸収すべくガス室41の容積を拡大・縮小させながらフリーピストン28が上下動し、それに応じて内側第3流体室31Aおよび外側第3流体室31Bの磁気粘性流体がオリフィスブロック42のオリフィス43…を双方向に通過する。その際にコイル44に通電すると、図7に示すように、磁束の通路に存在するオリフィス43…内の磁気粘性流体の磁性体微粒子の密度が高まるため、そのオリフィス43…を通過する磁気粘性流体の抵抗が増加してダンパー14の減衰力が高められる。このとき、ダンパー14が発生する減衰力の大きさは、コイル44に供給する電流を変化させることで任意に制御することができる。
【0034】
この第2実施例のダンパー14によっても、ピストンロッド27が貫通するシール部材26が臨む第1流体室29に磁気粘性流体が充填されていないため、磁気粘性流体に含まれる磁性体微粒子でシール部材26が摩耗することがない。従って、ピストンロッド27とシール部材26との締め代を小さく設定し、シール部材26からピストンロッド27が受ける摩擦抵抗を低減してダンパー14が発生する減衰力の大きさを精度良く制御することができる。
【0035】
しかも、ガス室41を外側第3流体室31Bの上部に形成したので、軽い高圧ガスが上側に位置して重い磁気粘性流体が下側に位置することになり、両者の間を仕切る別のフリーピストンを配置する必要がなくなって部品点数が削減される。またオリフィス43…およびコイル44を備えたオリフィスブロック42をインナーシリンダ22の内壁に固定したので、磁気粘性流体が充填された第3流体室31に可動部材を配置する必要がなくなり、磁気粘性流体に含まれる磁性体微粒子により可動部材が摩耗する虞がない。
【0036】
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0037】
例えば、実施例ではサスペンション装置用のダンパー14を例示したが、本発明の可変減衰力ダンパーは他の任意の用途に適用することができる。
【図面の簡単な説明】
【0038】
【図1】車両のサスペンション装置の正面図
【図2】可変減衰力ダンパーの拡大断面図
【図3】図2の3部拡大図
【図4】図3に対応する作用説明図
【図5】本発明の第2実施例に係る、前記図2に対応する図
【図6】図5の6部拡大図
【図7】図6に対応する作用説明図
【符号の説明】
【0039】
21 アウターチューブ
22 インナーシリンダ(シリンダ)
25 ピストン
26 シール部材
27 ピストンロッド
28 フリーピストン
29 第1流体室
30 第2流体室
31 第3流体室
31A 内側第3流体室
31B 外側第3流体室
35 永久磁石(磁界発生手段)
36 永久磁石(磁界発生手段)
37 コイル(磁界発生手段)
38 オリフィス
41 ガス室
42 オリフィスブロック
43 オリフィス
44 コイル(磁界発生手段)

【特許請求の範囲】
【請求項1】
粘性流体が充填されたシリンダ(22)と、
シリンダ(22)に摺動自在に嵌合して該シリンダ(22)を第1、第2流体室(29,30)に区画するピストン(25)と、
ピストン(25)に連結されてシリンダ(22)の端壁に設けたシール部材(26)を貫通するピストンロッド(27)と、
ピストン(25)を貫通して第1、第2流体室(29,30)を連通させるオリフィス(38)と、
ピストン(25)の移動を阻止する抵抗力を変化させて減衰力の大きさを制御する減衰力制御機構と、
を備えた可変減衰力ダンパーにおいて、
前記減衰力制御機構は、
第1、第2流体室(29,30)から隔絶された第3流体室(31)と、
第3流体室(31)に充填されてピストン(25)の移動に伴って流動する磁気粘性流体と、
磁気粘性流体の流動特性を変化させる磁界発生手段(35,36,37,44)と、
を備えたことを特徴とする可変減衰力ダンパー。
【請求項2】
前記第3流体室(31)が、シリンダ(22)と該シリンダ(22)の外周に嵌合するアウターチューブ(21)との間に区画され、
前記磁界発生手段が、ピストン(25)の内部に設けられたコイル(37)と、ピストン(25)の移動方向両端に設けられた永久磁石(35,36)とを備えたことを特徴とする、請求項1に記載の可変減衰力ダンパー。
【請求項3】
シリンダ(22)に摺動自在に嵌合するフリーピストン(28)により、ピストン(25)を挟んでピストンロッド(27)の反対側に位置する第2流体室(30)と第3流体室(31)とを区画し、第3流体室(31)の中間部に配置した前記減衰力制御機構が、磁気粘性流体が通過するオリフィス(43)と、このオリフィス(43)を通過する磁界を発生するコイル(44)よりなる前記磁界発生手段とを備えたことを特徴とする、請求項1に記載の可変減衰力ダンパー。
【請求項4】
前記第3流体室(31)が、フリーピストン(28)よりも下方のシリンダ(22)内に区画された内側第3流体室(31A)と、シリンダ(22)と該シリンダ(22)の外周に嵌合するアウターチューブ(21)との間に区画された外側第3流体室(31B)とで構成され、外側第3流体室(31B)の上部に高圧ガスが充填されたガス室(41)を形成したことを特徴とする、請求項3に記載の可変減衰力ダンパー。
【請求項5】
前記オリフィス(43)および前記コイル(44)を備えたオリフィスブロック(42)をシリンダ(22)の内壁に固定したことを特徴とする、請求項3または請求項4に記載の可変減衰力ダンパー。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−307982(P2006−307982A)
【公開日】平成18年11月9日(2006.11.9)
【国際特許分類】
【出願番号】特願2005−131700(P2005−131700)
【出願日】平成17年4月28日(2005.4.28)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】