説明

吐出息から粒子を抽出するための装置

【課題】携帯用途に適合し、吐出息から粒子の抽出が可能であり、かつ、エネルギ消費が抑制されている装置、また、その後の分析のため、吐出息によって搬送される病原体を静電捕集するための装置を提供する。
【解決手段】吐出息から粒子を抽出するための装置である。当該装置は、吐出息に含まれる水蒸気の凝縮によって液滴を生成するための冷却システム(16)、グリッド形状を有しかつ出口開口部(9)に向かって収斂している側壁(2)が設けられ、前記側壁(2)に向かって引きつけられる液滴が、後者に沿って前記出口開口部(9)に向かって流れることを許容する液滴回収ユニット(7)、および、前記液滴回収ユニット(7)の内部に取り付けられる放電極(1)を有する。また、前記液滴回収ユニット(7)の側壁(2)は、前記放電極(1)に対する対電極を定義し、吐出息によって搬送される粒子を捕集する液滴を、前記側壁(2)に向かって引きつける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吐出息から粒子を抽出するための装置、より詳しくは、吐出息によって搬送される粒子の静電捕集のための静電集塵装置に関する。
【背景技術】
【0002】
静電集塵装置(ESP)は、空気等の気体から粒子を抽出するように設計された装置であり、これらの粒子が通過する電界によって生成される静電力を利用する。高く(数十kV/cm)かつ一様でない電界は、2つの電極によって誘導される。上記の静電集塵装置において、一般的には点状部材(point)あるいは線状部材(wire)の形態である電極のうちの1つを取り囲んでいるイオン化気体の1ミリメートルより小さいポケット内で、放電が生成され、高い負電位あるいは正電位となり、コロナ作用と呼ばれている現象に到達する。ガスのポケットは、点状部材の場合は球面状であり、線状部材の場合は、円筒状である。このポケットに由来するイオンの流れは、イオン風と呼ばれ、電極間スペースの大部分を吹き抜ける(sweep)。それは、その後において帯電する粒子を覆う。クーロン力に対して高感度であり、それらは、接地されている円筒状あるいは平面状の対電極上に、搬送(carried)される。
【0003】
静電集塵装置の有効性は、約1ミクロン未満の最小サイズを有する粒子の全てのサイズで、顕著である。この原理によって作動する装置は、市販されている(例えば、ユナイテッド エアー スペシャリスツ,インク.(United Air Specialists,Inc.)から)。それらの利点は、コンパクト性と、1ミクロンより大きい粒子に対する収率が約1であることである。これらのシステムの主要な欠点は、サブミクロン粒子の捕集に関する低い収率である。
【発明の概要】
【発明が解決しようとする課題】
【0004】
サブミクロン粒子の捕集における静電集塵装置の収率を向上するために、ある種の静電集塵装置は、捕集ユニットの上流に位置するユニットにおいて、捕集される粒子を含んでいる空気と、液滴の形態あるいは乾燥蒸気の形態で導入される水蒸気とを、前もって混合する。第1のケースは、液滴が粒子を捕集する水噴霧クリーナである。このタイプの静電集塵装置は、例えば、ホイールアブラター エア ポリューション コントロール インク.(Wheelabrator Air Pollution Control Inc.)から市販されている。粒子の捕獲は、それらがガスの速度で移動する一方、液滴がガスの速度に比例した(relative to)速度を有することの結果として生じ、例えば、重力、慣性および乱流等の異なる機構によって制御することが可能である。第2のケースにおいて、核生成にリンクされる捕集機構が、前記の捕集機構に付加される。イオン風ゾーンにおける噴射された水蒸気の温度が、蒸気の飽和温度以下に十分に下げられる場合、核生成サイトのように作用する粒子の周囲で、水蒸気は凝縮される。小さな粒子を輸送することが可能である液滴のサイズは、したがって、凝縮によって増加し、それ故に、小さな粒子を、電界に対してより敏感とする。両方のケースにおいて、十分な収率を有して小さな粒子の捕集が可能であるけれども、これらの静電集塵装置は、工業的利用を目的とし、また、第1のケースにおいて、非常に大量の水(毎時数十リットル)を必要とする可能性がある。したがって、それらは携帯用途に適していない。
【0005】
より一般的に言えば、それらの各サイズに起因し、上記した静電集塵装置は、携帯型マイクロシステムにおける吐出息によって搬送される粒子の静電捕集を可能とする利用に、適していない。
【0006】
本発明の目的は、携帯用途に適合し、吐出息から粒子の抽出が可能であり、かつ、エネルギ消費が抑制されている装置を提案することである。より詳しくは、本発明の目的は、その後の分析のため、吐出息によって搬送される病原体を静電捕集するための装置を提案することである。
【課題を解決するための手段】
【0007】
この目的は、吐出息から抽出された粒子の分析のためのシステムによって、また、吐出息から粒子を抽出するための装置によって、また、独立請求項において提示されている特徴を有し、吐出息によって搬送される粒子の静電捕集のための静電集塵装置によって、達成される。
【0008】
より詳しくは、この目的は、吐出息から粒子を抽出するための装置によって達成され、当該装置は、吐出息に含まれる水蒸気の凝縮によって液滴を生成するための冷却システム、グリッド形状を有しかつ出口開口部に向かって収斂している側壁が設けられ、前記側壁に向かって引きつけられる液滴が、後者に沿って前記出口開口部に向かって流れることを許容する液滴回収ユニット、および、前記液滴回収ユニットの内部に取り付けられる放電極を有し、前記液滴回収ユニットの側壁は、前記放電極に対する対電極を定義し、吐出息によって搬送される粒子を捕集する液滴を、前記側壁に向かって引きつける。
【0009】
したがって、吐出息から粒子の抽出が可能であり、携帯用途に適合し、かつ、エネルギ消費が抑制されている装置を、生産することが可能である。
【0010】
好ましい実施形態によれば、液滴回収ユニットの側壁は、複数の導電性ストリップを有する。導電性ストリップは、出口開口部に向かって収斂し、また、好ましくは、金属から形成される。好ましくは、導電性ストリップは、グリッド機能を得るように、互いに間隔を置いて配置される。
【0011】
グリッド形態は、液滴回収ユニットから吐出息が自由に出ることを許容する。したがって、吐出息は、吐出息によって搬送される粒子を捕獲する液滴を捕集するプロセスに干渉することなく、液滴回収ユニットから自由に出ることが可能である。
【0012】
好ましい実施形態によれば、液滴回収ユニットは、尖端部を有する円錐形状に形成されており、前記出口開口部を有する。前記導電性ストリップは、液滴回収ユニットを定義する円錐部のジェネレイタによって保持される(follow)。言い換えると、導電性ストリップは、下流は円錐部の尖端部によって支持され、上流は円錐部の基部によって支持される。
【0013】
円錐形状は、有利には、液滴回収ユニットを携帯システムにおける用途に適用することを可能とする。
【0014】
放電極は、点状部材あるいは線状部材として製造することが可能である。液滴回収ユニットの側壁の内側は、好ましくは、表面処理によって親水性とされる。この処理は、シリコン酸化物被覆(deposit)とすることが可能である。また、液滴回収ユニットの側壁の内側は、溝を形成することが可能である。その外側は、好ましくは、表面処理によって疎水性とされる。
【0015】
したがって、後者の出口開口部に向かって、液滴回収ユニットの側壁に沿った、吐出息によって搬送される粒子を捕集している液滴の流れが、向上する。
【0016】
冷却システムは、好ましくは、内壁を有するチャンバを有し、当該内壁は、表面処理によって疎水性にされている。前記液滴回収ユニットは、この冷却システムの下流に連結されている。
【0017】
したがって、液滴回収ユニットの前記壁に向かって、冷却システムの前記チャンバの内壁に沿った、吐出息に含まれる水蒸気の凝縮によって生成される液滴の流れが、向上する。
【0018】
好ましい実施形態によれば、前記液滴回収ユニットは、その出口開口部に向かって液滴回収ユニットの側壁に沿って流れた液滴を使用して捕集された粒子の分析のための流体マイクロシステムに連結されている。好ましくは、捕集される粒子は、病原体である。
【0019】
したがって、吐出息によって搬送される病原体を、迅速かつ効率的に捕集し、携帯システムによって分析することが可能である。
【0020】
また、本発明の目的は、吐出息から抽出された粒子の分析のためのシステムによって達成され、当該システムは、吐出息から粒子を捕集するための装置と、捕集された粒子の分析のための流体マイクロシステムとを有する。吐出息から粒子を捕集するための前記装置は、吐出息に含まれる水蒸気の凝縮によって液滴を生成するための冷却システムと、グリッド形状を有しかつ出口開口部に向かって収斂している側壁が設けられ、前記側壁に向かって引きつけられる液滴が、後者に沿って前記出口開口部に向かって流れることを許容する液滴回収ユニットと、前記液滴回収ユニットの内部に取り付けられる放電極と、を有しており、前記液滴回収ユニットの側壁は、吐出息によって搬送される粒子を捕集する液滴を、前記側壁に向かって引きつけるために、放電極に対する対電極を定義しており、捕集された粒子の分析のための前記流体マイクロシステムは、出口開口部において吐出息から粒子を捕集するために、前記装置に連結されている。
【0021】
また、本発明の目的は、吐出息によって搬送される粒子の静電捕集のための静電集塵装置によって達成され、当該静電集塵装置は、グリッド形状を有しかつ出口開口部に向かって収斂している側壁が設けられ、前記側壁に向かって引きつけられる液滴が、後者に沿って前記出口開口部に向かって流れることを許容する液滴回収ユニットと、液滴回収ユニットの内部に取り付けられる放電極と、を有し、液滴回収ユニットの側壁は、吐出息によって搬送される粒子を捕集する液滴を、前記側壁に向かって引きつけるために、放電極に対する対電極を定義する。
【図面の簡単な説明】
【0022】
【図1】本発明に係る吐出息から抽出される粒子の分析のためのシステムの斜視図である。
【図2】本発明に係る吐出息によって搬送される粒子の静電捕集のための静電集塵装置の拡大断面図である。
【図3】図2の静電集塵装置の円錐部の拡大斜視図である。
【図4】図2の静電集塵装置の拡大断面図であり、本発明に係るその作動原理を説明している。
【発明を実施するための形態】
【0023】
本発明に係る装置および静電集塵装置の利点に加えて実施形態の詳細は、一例として与えられかつ概略的に示される添付図面によって図解される実施形態の以下の詳細な説明から、明確となり、
図1は、本発明に係る吐出息から抽出される粒子の分析のためのシステムの斜視図、
図2は、本発明に係る吐出息によって搬送される粒子の静電捕集のための静電集塵装置の拡大断面図、
図3は、図2の静電集塵装置の円錐部の拡大斜視図、および、
図4は、図2の静電集塵装置の拡大断面図であり、本発明に係るその作動原理を説明している。
【0024】
添付図面の以下の詳細な説明において、同一の要素は、同一の識別表示によって表される。概して、これらの要素およびその機能性は、繰り返しを避けるため、簡潔さの理由で一度だけ記載される。用語、例えば、「左」、「右」、「頂部」、「底部」、「上方」、「下方」、「前方」あるいは「後方」は、添付図面の説明において、使用されるだろう。これらの用語は、通常、関連する図におけるコンポーネントの特定のポジションを参照しており、図によって異なる可能がある。
【0025】
図1は、本発明に係る吐出息から抽出された粒子の分析のためのシステム10の一例を示している。吐出息は、通常、水蒸気に満たされており、病原体を含んでいる粒子を含むことが可能であり、病原体は、例えば、ウイルス、バクテリア、細胞、抗体、抗原、核酸等であり、それを分析することは、望ましい。
【0026】
好ましい実施形態によれば、システム10は、吐出息から粒子を捕集するための装置30と、捕集された粒子の分析のための流体マイクロシステム20とを有する。装置30は、冷却システム16と、静電集塵装置を定義している液滴回収ユニット7とを有する。後者は、説明のため、図1において透明であるとして示されている。
【0027】
冷却システム16は、内壁19を有するチャンバ18を有し、当該内壁は、この場合、図において形状が円筒状である。好ましい実施形態によれば、冷却システム16は、液滴回収ユニット7の上流に位置決めされ、水密連結によって、後者に連結されている。冷却システム16は、水蒸気の凝縮によって液滴を得るために、吐出息に含まれる水蒸気を冷却することが可能である。図において、吐出息は、末端部3を経由し、チャンバ18に向かって搬送される。
【0028】
それにもかかわらず、留意すべき点は、冷却システム16の特定の位置および実施形態が、後者が凝縮によって液滴を得るために吐出息に含まれる水蒸気を冷却することを可能にする限り、図1に示されるそれらに限定されないことである。例えば、吐出息に含まれる水蒸気が、液滴回収ユニット7へ到着してからのみ冷却されるように、冷却システム16と液滴回収ユニット7とを組み合わせることが可能である。あるいは、液滴回収ユニット7自体を、例えば、冷却システム16との接触および伝導によって、冷却することも可能である。このように、異なる実施形態を構想しかつ広く検討することが可能である。
【0029】
図1に示されるように、液滴回収ユニット7は、側壁2を有し、当該側壁は、好ましくは、下方尖端部8に設けられる出口開口部9に向かって収斂している形状を、定義する。側壁2は、内側4および外側5を有する。図2〜4を参照し、後述されるように、液滴回収ユニット7は、有利にはグリッド形状である。
【0030】
液滴回収ユニット7の内部には、放電極1が取り付けられており、放電極1は、放電極1を取り囲んでいるイオン化気体のポケットから、イオンの流れを生成することが可能である。上記のイオンの流れの生成を許容するため、側壁2は、放電極1に対する対電極を定義する。このように、吐出息によって搬送される粒子を捕集することができる液滴は、放電極1の位置から液滴回収ユニット7の側壁2に向かって、イオンの流れによって、運び去られる。それらの軌道に沿って、これらの液滴は、捕集される粒子を捕獲し、側壁2に向かってそれらを搬送し、あるいは、捕獲した粒子を有する液滴は、側壁2に沿って出口開口部9に向かい、後者を経由して、マイクロシステム20に流れる液体膜6を形成する。
【0031】
好ましい実施形態によれば、出口開口部9は、マイクロシステム20の各入口に取り付けられる。後者は、捕集した粒子を回収するために、例えば、接着によって装置30に連結される。
【0032】
マイクロシステム20は、チャンバ22,23および通路24等の流体チャンバおよび通路を有するシリコン基板21を有する。後者は、フォトリトグラフィおよび標準シリコンエッチング技術によって、基板21の上面に形成することが可能である。装置30を経由して捕集される各サンプルの分析のための要求条件あるいは手順に応じ、流体チャンバ22,23および通路24に、10〜500μmオーダの深さを、設けることが可能である。
【0033】
マイクロシステム20の流体部品は、マイクロシステム20のための入口−出口として機能するホールが形成されているシリカウェーハ40を、基板21の頂部に取り付けることによって、水密とされている。あるいは、シリカウェーハ40は、ガラス、プラスチックあるいはマイクロシステム20を水密とすることが可能である他の材料から、形成することが可能である。ウェーハ40および基板21の組み立ては、コンポーネントの流体部品の周囲、すなわちチャンバ22,23および通路24の周囲における基板21上の接着材の被覆によって、不可逆に実施することが可能である。この粘着材の被覆は、例えば、接着材のスクリーン印刷によって形成される。適当なプロセスは、フランス特許第2856047号に記載されている。
【0034】
このように、多数のマイクロシステム20を、上述のように、単一のウェーハ上に組み立てることが可能である。組み立てがこのように達成されると、このウェーハは、適当なカッタを使用する切断によって,個々のコンポーネントに切り離すことが可能である。
【0035】
それにもかかわらず、留意すべき点は、吐出息から捕集される粒子の分析に適している流体マイクロシステムの生産が、当業者に知られていることである。したがって、マイクロシステム20およびその動作のより詳細な説明は、簡潔さのために省略される。
【0036】
図2は、図1の吐出息から粒子を捕集するための装置30を、拡大断面図で示している。図2に示されるように、冷却システム16のチャンバ18は、シール17によって末端部3に対して気密とされ、また、放電極1は、点状部材15である。
【0037】
あるいは、放電極1を、線状部材、特に、極性を与えられた(polarized)線状部材として、形成することが可能である。上記の線状部材は、点状部材15より広範囲な放電ゾーンを発生させることを可能にしており、対応する放電ゾーンが線状部材の全長を取り囲むように位置するためであり、したがって、吐出息から粒子の捕集を許容する。一例として、10KVの放電電圧を、50μmの直径を有する線状部材に適用することで、適当な放電ゾーンを生成することが可能である。この電圧は、より大きな直径を有する線状部材に対しては、増加させることが可能である。より小さい直径を有する線状部材、例えば、10ミクロンの直径を有する線状部材に対しては、それを減少させることが可能である。
【0038】
実施形態によれば、線状部材は、例えばタングステン等の力学的抵抗(mechanically resistant)を有する導電材料から形成される。好ましくは、使用する材料は、溶接あるいはハンダ付けすることが可能であり、例えば、銅等である。上記の線状部材は、好ましくは、液滴回収ユニット7の軸に対して平行に、好ましくは、その中央軸と平行に、位置決めされ、かつ、支持手段によって所定位置に固定され、当該支持手段は、例えば、側壁2の内側4に対して支持されており、線状部材の端部を後者に連結しているが、捕集された液滴の流れに干渉することはない。実施形態によれば、互いに略60度の間隔を置かれた3つの同一平面上の支持体は、それ故、星状の支持体を構成し、線状部材の各端部で支持手段として機能する。
【0039】
上記したように、好ましい実施形態によれば、装置30の液滴回収ユニット7は、グリッド形状である。その側壁2は、例えば、出口開口部9に向かって収斂している複数の導電性ストリップ34を有する。後者は、好ましくは、支柱(strut)37によって、相互連結しており、かつ、隙間35によって間隔を保っている。導電性ストリップ34は、放電極1に対する対電極を定義しており、かつ、好ましくは、金属からなる。
【0040】
隙間35は、それらのレイアウトを明確に説明するために、オーバーサイズで表示されている。それにもかかわらず、側壁2に向かってずっと搬送される液滴が、側壁2に沿って出口開口部9に向かって、自由に流れることができ、かつ、吐出息すなわちいかなる非凝縮性気体も、液滴回収ユニット7から自由に離れることができるように、隙間35をレイアウトすべきである。
【0041】
図3は、図1の液滴回収ユニット7を、拡大斜視図で示している。後者は、導電性ストリップ34、隙間35および支柱37を有する回収ユニット7のグリッド形状を、明確に示している。導電性ストリップ34および隙間35の一部のみ、表示の明快さのために、識別表示を使用して示されている。
【0042】
図3に示されるように、液滴回収ユニット7は、好ましくは、基部32と、出口開口部9を有する尖端部8と、を有する円錐状に形成される。回収ユニット7の円錐形状は、導電性ストリップ34を支持している円錐部のジェネレイタ(generator)によって定義される。図3に示される実施形態において、導電性ストリップ34は、円錐部のジェネレイタを表しており、円錐部の尖端部8によって下流に、また、その基部32によって上流に、すなわち、図2の冷却システム16の下流部によって、保持されている。
【0043】
液滴回収ユニット7の前記の実施形態および特にその円錐形状は、その内側4に、吐出息に対し、および、したがって後者によって搬送される粒子の軌道に対し、平行に配置されていない面を構成する利点を、提供する。液滴回収ユニット7のグリッド形状と同様に、この面は、少なくとも1つの導電性ストリップ34に近接しての粒子の通過を促進し、したがって、液滴回収ユニット7の捕集の有効性を増加させることを可能にし、吐出息によって搬送される粒子の軌道に対し平行に配置される構造のそれと異なる。
【0044】
それにもかかわらず、その他の実施形態が可能な点に留意する必要がある。例えば、本発明の文脈(context)に記載されている機能性が確保されると仮定するならば、導電性ストリップ34を、環形状、螺旋形状、山形形状あるいは他の形状に形成することが可能である。したがって、全てのこれらの異なる実施形態は、考慮される。
【0045】
留意すべき点は、図3に示される液滴回収ユニット7が、一例として、複数の支柱37を有することである。それにもかかわらず、好ましい実施形態によれば、導電性ストリップ34は、液滴回収ユニット7の基部32に近接して設けられる第1支柱と、尖端部8に近接して設けられる第2支柱とによって保持され、好ましくは、後者の下端から始まる。換言すれば、回収ユニット7を形成するために選択される円錐部の構造を維持するために本質的に機能する支柱37の数およびロケーションを、液滴回収ユニット7の機能性を変更することなく、修正することが可能である。
【0046】
円錐形状をした図3の液滴回収ユニット7を形成するために、幾つかの技術を構想し、また、考慮することが可能である。例えば、打抜きされた(stamped)アルミニウム合金からなる適当な寸法の円錐部を使用することが可能である。この円錐部において、円錐部の尖端部8における出口開口部9と同様に、隙間35を定義している側方排出スロットは、レーザ切断によって形成される。
【0047】
図4は、本発明に係る図1の装置30の作動原理を示している。好ましい実施形態によれば、吐出息60は、末端部3を経由し冷却システム16に向かって搬送される。吐出息60は、水蒸気が満ちており、かつ、捕集される粒子66を含んでいる。
【0048】
冷却システム16において、吐出息60は、凝縮によって水蒸気の液滴を得るために、冷却される。これらの液滴は、放電極1の点状部材15を取り囲んでいるイオン化気体50のポケットから生成されるイオンの流れによって、液滴回収ユニット7の側壁2に向かって搬送される。それらの軌道中において、説明のため矢印70によって示されるように、得られた液滴は、粒子66を捕獲しかつそれらを側壁2に向かって搬送する。
【0049】
側壁2に到着すると、液滴は、液体膜6をそこで形成し、出口開口部9に向かって側壁2に沿って流れる。静電集塵装置の動作、例えば、装置30によって定義されているものは、当業者に一般的に知られているため、より詳細な説明は、ここでは省略される。
【0050】
装置30の動作を向上するため、液滴回収ユニット7の側壁2の内側4を、表面処理によって、例えば、シリコン酸化物(SiO)被覆によって、親水性とすることも可能である。内側4はまた、液滴の流れの方向に向いた溝を形成することによって、構造化(structured)することが可能であり、溝形成は、流れを導くことの一助となる。さらに、その外側5は、表面処理によって、疎水性とすることも可能である。冷却システム16に関し、そのチャンバ18の内壁19はまた、表面処理によって、疎水性とすることも可能である。
【0051】
特定の実施形態を上述したけれども、その機能性を変更することなく、多数のバリエーションを、発明に係る締結手段(fastener)に対し、行なうことが可能である。したがって、全てのこれらのバリエーションは、また、構想され、かつ、一般的に考慮される。

【特許請求の範囲】
【請求項1】
吐出息から粒子を抽出するための装置であって、
吐出息に含まれる水蒸気の凝縮によって液滴を生成するための冷却システム(16)、
グリッド形状を有しかつ出口開口部(9)に向かって収斂している側壁(2)が設けられ、前記側壁(2)に向かって引きつけられる液滴が、後者に沿って前記出口開口部(9)に向かって流れることを許容する液滴回収ユニット(7)、および、
前記液滴回収ユニット(7)の内部に取り付けられる放電極(1)を有し、
前記液滴回収ユニット(7)の側壁(2)は、前記放電極(1)に対する対電極を定義し、吐出息によって搬送される粒子を捕集する液滴を、前記側壁(2)に向かって引きつける
ことを特徴とする装置。
【請求項2】
前記液滴回収ユニット(7)の前記側壁(2)は、複数の導電性ストリップ(34)を有することを特徴とする請求項1に記載の装置。
【請求項3】
前記導電性ストリップ(34)は、前記出口開口部(9)に向かって収斂することを特徴とする請求項2に記載の装置。
【請求項4】
前記導電性ストリップ(34)は、金属から形成されることを特徴とする請求項2又は請求項3に記載の装置。
【請求項5】
前記導電性ストリップ(34)は、互いに間隔を置いて配置されており、前記液滴回収ユニット(7)から吐出息が自由に出ることが許容されていることを特徴とする請求項2〜4のいずれか1項に記載の装置。
【請求項6】
前記液滴回収ユニット(7)は、尖端部(8)を有する円錐形状に形成されており、前記出口開口部(9)を有することを特徴とする請求項1〜5のいずれか1項に記載の装置。
【請求項7】
前記導電性ストリップ(34)は、前記液滴回収ユニット(7)を定義する円錐部のジェネレイタによって保持されることを特徴とする請求項2〜6のいずれか1項に記載の装置。
【請求項8】
前記放電極(1)は、点状部材あるいは線状部材であることを特徴とする請求項1〜7のいずれか1項に記載の装置。
【請求項9】
前記液滴回収ユニット(7)の側壁(2)の内側(4)は、表面処理によって親水性にされていることを特徴とする請求項1〜8のいずれか1項に記載の装置。
【請求項10】
前記処理は、シリコン酸化物被覆であることを特徴とする請求項9に記載の装置。
【請求項11】
前記液滴回収ユニット(7)の側壁(2)の内側(4)は、溝が形成されていることを特徴とする請求項1〜10のいずれか1項に記載の装置。
【請求項12】
前記液滴回収ユニット(7)の側壁(2)の外側(5)は、表面処理によって疎水性にされていることを特徴とする請求項1〜11のいずれか1項に記載の装置。
【請求項13】
前記冷却システム(16)は、内壁(19)を有するチャンバ(18)を有し、前記内壁(19)は、表面処理によって疎水性にされていることを特徴とする請求項1〜12のいずれか1項に記載の装置。
【請求項14】
前記液滴回収ユニット(7)は、前記冷却システム(16)の下流に連結されていることを特徴とする請求項1〜13のいずれか1項に記載の装置。
【請求項15】
前記液滴回収ユニット(7)は、その出口開口部(9)に向かって前記液滴回収ユニット(7)の側壁(2)に沿って流れた液滴によって捕集された粒子の分析のための流体マイクロシステムに連結されていることを特徴とする請求項1〜14のいずれか1項に記載の装置。
【請求項16】
前記粒子(66)は、病原体であることを特徴とする請求項1〜15のいずれか1項に記載の装置。
【請求項17】
吐出息から粒子を捕集するための装置(30)を有し、吐出息から抽出される粒子の分析のためのシステムであって、
吐出息に含まれる水蒸気の凝縮によって液滴を生成するための冷却システム(16)、
グリッド形状を有しかつ出口開口部(9)に向かって収斂している側壁(2)が設けられ、前記側壁(2)に向かって引きつけられる液滴が、後者に沿って前記出口開口部(9)に向かって流れることを許容する液滴回収ユニット(7)、
前記液滴回収ユニット(7)の内部に取り付けられる放電極(1)、
吐出息によって搬送される粒子を捕集する液滴を、前記側壁(2)に向かって引きつけるために、前記放電極(1)に対する対電極を定義する前記液滴回収ユニット(7)の側壁(2)、および、
捕集された粒子の分析のための流体マイクロシステム(20)を有し、
前記マイクロシステム(20)は、前記出口開口部(9)において吐出息から粒子を捕集するため、前記装置(30)に連結されている
ことを特徴とするシステム。
【請求項18】
吐出息から粒子を捕集するための前記装置(30)は、請求項2〜14のいずれか1項に従って、実現されていることを特徴とする請求項17に記載のシステム。
【請求項19】
吐出息によって搬送される粒子の静電捕集のための静電集塵装置であって、
グリッド形状を有しかつ出口開口部(9)に向かって収斂している側壁(2)が設けられ、前記側壁(2)に向かって引きつけられる液滴が、後者に沿って前記出口開口部(9)に向かって流れることを許容する液滴回収ユニット(7)、および、
前記液滴回収ユニット(7)の内部に取り付けられる放電極(1)を有し、
前記液滴回収ユニット(7)の側壁(2)は、前記放電極(1)に対する対電極を定義し、吐出息によって搬送される粒子を捕集する液滴を、前記側壁(2)に向かって引きつける
ことを特徴とする静電集塵装置。
【請求項20】
前記液滴回収ユニット(7)は、尖端部(8)を有する円錐形状に形成されており、前記出口開口部(9)を有することを特徴とする請求項19に記載の静電集塵装置。
【請求項21】
前記液滴回収ユニット(7)の前記側壁(2)は、複数の導電性ストリップ(34)を有し、
前記導電性ストリップ(34)は、前記液滴回収ユニット(7)を定義する円錐部のジェネレイタによって保持される
ことを特徴とする請求項20に記載の静電集塵装置。
【請求項22】
前記液滴回収ユニット(7)は、吐出息に含まれる水蒸気の凝縮によって液滴を生成するために、冷却されることを特徴とする請求項19〜21のいずれか1項に記載の静電集塵装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−258105(P2009−258105A)
【公開日】平成21年11月5日(2009.11.5)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−96410(P2009−96410)
【出願日】平成21年4月10日(2009.4.10)
【出願人】(509103819)
【出願人】(508157749)
【Fターム(参考)】