説明

固体高分子電解質膜の製造方法

【解決手段】放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させ固体高分子電解質膜を製造する際、グラフト重合を非プロトン性極性溶媒中で行う固体高分子電解質膜の製造方法。
【効果】本発明の放射線グラフト重合による固体高分子電解質膜の製造方法では、僅かな放射線を照射するだけで。高グラフト率を有するグラフト膜が得られるため、膜劣化の少ない燃料電池用の固体高分子電解質膜の製造方法として適している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は固体高分子電解質膜の製造方法、特に燃料電池用として好適な固体高分子電解質膜に関する。
【背景技術】
【0002】
固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この燃料電池においては固体高分子電解質膜、白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固体高分子電解質膜の開発は最も重要な技術の一つである。
【0003】
固体高分子電解質膜型燃料電池においては、電解質膜の両面にガス拡散電極が複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このような電解質膜としては、電解質としてプロトンの移動速度が大きくイオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定でかつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性が優れていること、長期の使用に対する化学的な安定性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して過剰な透過性を有さないことなどが要求される。
【0004】
初期の固体高分子電解質膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系樹脂のイオン交換膜が電解質膜として使用された。しかし、この電解質膜は、耐久性が非常に低いため実用性に乏しく、そのためその後はデュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。
【0005】
しかしながら、「ナフィオン」等の従来のフッ素樹脂系電解質膜は、化学的な耐久性や安定性には優れているが、製造工程が多くコストが高くなる問題があり、実用化する場合の大きな障害になっている。そのため、前記「ナフィオン」等に替わる低コストの電解質膜を開発する努力が行われてきた。例えば、放射線グラフト重合法により、フッ素樹脂系の膜にスルホン基を導入して、固体高分子電解質膜を作製する方法が提案されている(特開2001−348439号公報(特許文献1)、特開2002−313364号公報(特許文献2)、特開2003−82129号公報(特許文献3))。
【0006】
このように放射線グラフト重合を用いることで、「ナフィオン」と同等或いはそれを凌ぐプロトン伝導度で、メタノール透過度が「ナフィオン」以下の電解質膜を得ることが可能である。しかしながら、高イオン伝導度を付与するためにはイオン交換基の数を増やすことが不可欠である。このため多量の放射線を照射しグラフト率の高い膜を準備する必要があるが、線量が増えるほど膜は劣化し機械的強度は低下する。
【0007】
【特許文献1】特開2001−348439号公報
【特許文献2】特開2002−313364号公報
【特許文献3】特開2003−82129号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、上記事情に鑑みなされたもので、放射線グラフト重合法による固体高分子電解質膜の製造において、照射する放射線量を低減し、かつ高グラフト率の固体高分子電解質膜を製造することができる方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記目的を達成するために鋭意検討を行った結果、放射線グラフト重合時にラジカル反応性モノマーに非プロトン性極性溶媒を混合し、グラフト重合を非プロトン性極性溶媒中で行うことで、グラフト率が格段に向上することから、低線量でも高グラフト率の固体高分子電解質膜が得られることを見出し、本発明をなすに至った。
【0010】
従って、本発明は、下記固体高分子電解質膜の製造方法を提供する。
請求項1:
放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させ固体高分子電解質膜を製造する方法であって、グラフト重合を非プロトン性極性溶媒中で行うことを特徴とする固体高分子電解質膜の製造方法。
請求項2:
非プロトン性極性溶媒が、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又はN−メチルピロリドンであることを特徴とする請求項1記載の固体高分子電解質膜の製造方法。
請求項3:
フッ素樹脂が、テトラフルオロエチレン重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン重合体から選ばれる少なくとも1種であることを特徴とする請求項1又は2記載の固体高分子電解質膜の製造方法。
請求項4:
ラジカル反応性モノマーが、スチレン若しくはトリフルオロスチレン又はそれらの誘導体から選ばれる少なくとも1種を含むことを特徴とする請求項1〜3のいずれか1項記載の固体高分子電解質膜の製造方法。
【発明の効果】
【0011】
本発明の放射線グラフト重合による固体高分子電解質膜の製造方法では、僅かな放射線を照射するだけで。高グラフト率を有するグラフト膜が得られるため、膜劣化の少ない燃料電池用の固体高分子電解質膜の製造方法として適している。
【発明を実施するための最良の形態】
【0012】
本発明において、固体高分子電解質膜は、放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させて製造され、このグラフト重合は非プロトン性極性溶媒中で行われる。
【0013】
ここで、使用されるフッ素樹脂としては、テトラフルオロエチレン重合体(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)、フッ化ビニリデン重合体(PVDF)等のフッ素樹脂が例示され、これらの1種を単独で又は2種以上を併用して使用することができる。
【0014】
なお、この場合、フッ素樹脂膜の膜厚は特に限定されないが、10〜100μm、特に10〜50μmであることが好ましい。
【0015】
フッ素樹脂膜には、ラジカル反応性モノマーをグラフト重合させるために放射線が照射される。本発明において照射する放射線としては、γ線、X線、電子線、イオンビーム、紫外線などが例示されるが、ラジカル生成の容易さからγ線、電子線が好ましい。
【0016】
放射線の吸収線量としては、1kGy以上、特に1〜100kGy、とりわけ1〜50kGyとすることが好ましく、1kGy未満ではラジカル生成量が少なく、グラフトし難くなる場合があり、100kGyを超えるとグラフト率が大きくなりすぎて、得られる電解質膜の機械的強度が低下する場合がある。
【0017】
更に、放射線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は100ppm以下、より好ましくは50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。
【0018】
放射線が照射されたフッ素樹脂膜には、ラジカル反応性モノマーがグラフト重合される。放射線グラフト重合は、フッ素樹脂膜に放射線を照射することでラジカルを生成し、そこをグラフト点としてラジカル反応性モノマーをグラフトする方法であるが、この場合、放射線を用いるグラフト法には、フッ素樹脂膜の主鎖に予め放射線を照射して、グラフトの起点となるラジカルを生成させた後、フッ素樹脂膜をモノマーと接触させてグラフト反応を行う前照射法と、モノマーとフッ素樹脂膜の共存下に放射線を照射する同時照射法とがあるが、本発明においては、いずれの方法をも採用できる。
【0019】
本発明において、フッ素樹脂膜に放射線を照射してグラフト重合させるラジカル反応性モノマーは、分子中にアルケニル基(例えばビニル基等)、アクリル基、メタクリル基などのラジカル反応性の基を1個以上有するモノマーであるが、スチレン系単官能モノマー、特に、スチレン若しくはトリフルオロスチレン又はそれらの誘導体から選ばれる少なくとも1種を含むことが好ましい。具体的には、スチレン、α−メチルスチレン、スチレンスルホン酸ナトリウム、トリフルオロスチレン等の置換されたスチレン誘導体などを挙げることができる。これらのラジカル反応性モノマーは、単独で使用しても、2種以上を適宜組み合わせて使用してもよい。
【0020】
更に、本発明においては、グラフト重合時に非プロトン性極性溶媒を用いる。非プロトン性極性溶媒としては、ラジカル反応性モノマーを均一に溶解するものが好ましく、例えば、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドンなどが挙げられる。非プロトン性極性溶媒は、単独で使用しても、2種以上を適宜組み合わせて使用してもよい。なお、本発明の効果を損なわない程度で、非プロトン性極性溶媒以外の溶媒を混合して用いてもよい。なお、溶媒の使用量は、ラジカル反応性モノマー100質量部に対して、50〜900質量部、特に100〜300質量部であることが好ましい。
【0021】
また、本発明においてグラフト重合を行う際は、窒素、アルゴンなどの不活性ガス雰囲気中が望ましく、酸素濃度は5容量%以下が好ましい。グラフト重合の反応条件としては、0〜100℃、特に40〜80℃の温度で、1〜40時間、特に4〜20時間反応させることが好ましい。
【0022】
ここで、放射線を照射したフッ素樹脂膜にグラフトするラジカル反応性モノマーの使用量は、フッ素樹脂膜100質量部に対してラジカル反応性モノマーを100〜10,000質量部、特に400〜2,000質量部使用することが好ましい。ラジカル反応性モノマーが少なすぎるとフッ素樹脂膜との接触が不十分となる場合があり、多すぎるとラジカル反応性モノマーが効率的に使用できなくなるおそれがある。また、フッ素樹脂膜にラジカル反応性モノマーをグラフト重合するに際しては、アゾビスイソブチロニトリル等の開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。
【0023】
上述したように、放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させた後、ラジカル反応性モノマーがグラフトして形成されたグラフト鎖には、通常、イオン伝導性基が導入される。イオン伝導性基としては、スルホン酸基等が挙げられ、スルホン酸基を導入するためのスルホン化は公知の方法によって行うことができ、例えばクロロスルホン酸−ジクロロエタン中に浸漬することによってクロロスルホン酸基を導入し、その後純水中に浸漬させ加水分解することによりスルホン化させる等の方法を採用し得る。
【0024】
このようにして得られた固体高分子電解質膜は、燃料電池用として好適に用いることができる。
【実施例】
【0025】
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
【0026】
[実施例1〜3、比較例1〜3]
縦5cm、横6cm、厚さ25μmのエチレン−テトラフルオロエチレン共重合体(ETFE、Norton社製)に室温、窒素雰囲気下で電子線を15kGy照射した(加速電圧100kV)。また、スチレンに、溶媒としてN,N−ジメチルホルムアミド(DMF)〔実施例1〕、アセトン〔実施例2〕、ジメチルスルホキシド(DMSO)〔実施例3〕、トルエン〔比較例1〕、メタノール〔比較例2〕、ヘキサン〔比較例3〕を、それぞれ質量比でトルエン:溶媒=1:3になるように加え、反応溶液とした。
【0027】
三方コックを付けた60ml試験管に、反応溶液を入れ15min窒素バブリングした後、照射した膜を浸漬し、室温で16hrグラフト重合した。取り出した膜をキシレン洗浄後、100℃、2hr減圧乾燥した。
【0028】
グラフト重合前後の膜質量変化から、次式によりグラフト率を求めた。各溶媒を用いて得られた膜のグラフト率を表1に示す。
グラフト率[%]=(グラフト重合後膜質量−グラフト重合前膜質量)/グラフト重合前膜質量×100
【0029】
【表1】


【特許請求の範囲】
【請求項1】
放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させ固体高分子電解質膜を製造する方法であって、グラフト重合を非プロトン性極性溶媒中で行うことを特徴とする固体高分子電解質膜の製造方法。
【請求項2】
非プロトン性極性溶媒が、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又はN−メチルピロリドンであることを特徴とする請求項1記載の固体高分子電解質膜の製造方法。
【請求項3】
フッ素樹脂が、テトラフルオロエチレン重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン重合体から選ばれる少なくとも1種であることを特徴とする請求項1又は2記載の固体高分子電解質膜の製造方法。
【請求項4】
ラジカル反応性モノマーが、スチレン若しくはトリフルオロスチレン又はそれらの誘導体から選ばれる少なくとも1種を含むことを特徴とする請求項1〜3のいずれか1項記載の固体高分子電解質膜の製造方法。

【公開番号】特開2008−243393(P2008−243393A)
【公開日】平成20年10月9日(2008.10.9)
【国際特許分類】
【出願番号】特願2007−78099(P2007−78099)
【出願日】平成19年3月26日(2007.3.26)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】