説明

固定砥粒ワイヤソーに使用したクーラントの処理方法及びその処理装置

【課題】使用後のクーラント中から被切断物の切粉を高効率で回収するとともに固定砥粒ワイヤの寿命延長並びに切削面精度の向上を図ることができる、固定砥粒ワイヤソーに使用したクーラントの処理方法及びその処理装置を提供する。
【解決手段】固定砥粒ワイヤソー21において切断対象ワークを切断するときに使用したクーラントを遠心分離機25に導いて、粗大な切削屑を主とする異物と、微細な切削屑を含有する切削屑含有液体とに分離し、粗大な切削屑を主とする異物を遠心分離機の長手方向の一方の端部の開口から排出して切削屑回収タンク23に回収し、切削屑含有液体を遠心分離機25の長手方向の他方の端部のオーバーフロー開口から排出してクーラントとして再使用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固定砥粒ワイヤソーに使用したクーラントの処理方法及びその処理装置に関し、特に、シリコン、石英、セラミック等の硬質材料の切断やスライスや内面研磨やダイシングやインゴット切り出し用に用いられる、砥粒をワイヤに固着した固定砥粒ワイヤを使用するワイヤソーにおいて切断のために使用したクーラントの処理方法及びその処理装置に関するものである。
【背景技術】
【0002】
従来から、切断対象ワークをスライス状に切断する手段としてワイヤソーが用いられている。このワイヤソーとは、テンションを付与した細いワイヤ列を走行させ、そのワイヤ列に砥粒を含有するスラリー状の研磨材を吹き付けながら被切断物(例えば、シリコンインゴット)をワイヤ列に押し当てて、遊離砥粒の研磨作用によって被切断物をウェハ状に切断する装置であり、同時に複数枚のウェハを得ることが可能であるから、マルチ切断法とも呼ばれている。図7に、一例として単結晶シリコンの加工に使われるマルチワイヤソーの概略構成を示す。
【0003】
図7を簡単に説明すると、繰り出しボビン41から供給されたワイヤ42は、ワイヤをガイドするための多数のガイドローラ43を経て多数の溝を有する複数の溝付きローラ44において所定ピッチのワイヤ列を形成し、そのワイヤ列に対してフィードユニット45によって被切断物46を押し当てつつノズル47からワイヤ列に向けて遊離砥粒を含有するスラリーを吹き付けることによって被切断物46をウェハ状に切断し、その後、ワイヤ列は多数のガイドローラ48を経て巻き取りボビン49に巻き取られる。ワイヤ42は溝付きローラ44に付設された駆動モータ50の駆動力によって走行するが、そのとき、ダンサーローラ51、52の動きの情報が繰り出しボビン41および巻き取りボビン49の回転にフィードバックされ、一定のテンションが保たれる。通常、ワイヤ42はその材料としての有効利用と切断面粗さ改善など品質面からの要請で一定の双方向走行または一方向走行を行いながら前進し、最終的に巻き取りボビン49に巻き取られる。
【0004】
上記のように遊離砥粒を用いて切断する場合において、その遊離砥粒含有スラリーには、切断動作によって温度が上昇する砥粒を冷却する作用が期待されている。というのは、砥粒の温度が一定以上に上昇すると砥粒の摩耗が促進されて切れ味が悪くなるので、砥粒は適当な温度に冷却する必要がある。しかし、遊離砥粒を含有するスラリーには、被切断物の切粉や破砕した砥粒や摩耗したワイヤの鉄分などの種々雑多な物質が蓄積するので、切断時間が長くなると、スラリーの冷却作用が低下して砥粒の温度上昇を抑えきれずに砥粒の切れ味を低下させてしまう。
【0005】
さらに、ワイヤソーによる切断技術が適用される最も大きい市場は、半導体や太陽電池用シリコンインゴットを切断する分野であり、それら切断対象の原料となるポリシリコンが近年不足しているので、被切断物の切粉であるシリコン粉を如何にして効率的に回収するかが重要なテーマとなっている。
【0006】
そこで、遊離砥粒を用いて切断する場合において、特許文献1には、水溶性クーラント、砥粒及びシリコン粒を少なくとも含有する、シリコンウェハの製造プロセスでの使用済みスラリーから水溶性クーラントを予め除去することによって固形分を得て、その固形分から、水溶性クーラントに対し相溶性を有しかつ水溶性クーラントよりも沸点が低い低沸点有機溶媒を用いて前記固形分中に残留する水溶性クーラントを抽出し、抽出に用いた低沸点有機溶媒を遠心分離によって除去し、遠心分離により得られる固形分を回収するという提案が開示されている。
【0007】
また、遊離砥粒を用いて切断する方式として、特許文献2には、ワイヤソーに用いた使用後の砥粒スラリーを第1の遠心分離機に導いて、回収砥粒を含有する粗粒混合液体と微細な切削屑及び破砕砥粒を含有する微粒混合液体とに分離し、前記粗粒混合液体を第2の遠心分離機に導いて、さらに回収砥粒表面に付着する切削屑及び破砕砥粒を回収砥粒から分離して、回収砥粒混合液体と微粒混合液体とを分離し、前記第1の遠心分離機から取り出した微粒混合液体と前記第2の遠心分離機から取り出した微粒混合液体とを高密度電場内に通すことにより、微粒固体と回収切削液体とを分離し、前記第2の遠心分離機により分離した前記回収砥粒混合液体と前記高密度電場により分離した回収切削液体とを混合し、砥粒スラリーとして再使用するという提案が開示されている。
【特許文献1】特開2007−246367号公報
【特許文献2】特開平11−172237号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
そもそも図7に示すように、スラリー状の遊離砥粒を用いて切断する方式は、その砥粒が作業台上に飛散し、乾燥して作業環境が汚されるという欠点があるとともに、廃液処理や切断されたウェハの洗浄が必要であるなどの余分な処理が必要である。また、遊離砥粒を含有するスラリーには、砥粒(一般にはSiC砥粒が用いられることが多い)や破砕した砥粒や摩耗したワイヤの鉄分などの種々雑多な物質が含まれているので、その中から被切断物の切粉であるシリコン粉を回収することは容易ではない。しかも、その遊離砥粒含有スラリーは高粘度であるから、特許文献1に記載されたように、特殊な溶媒を用いたり、特許文献2に記載されたように、2台の遠心分離機を用いても、シリコン粉を効率的に回収することは困難である。
【0009】
一方、砥粒をワイヤに固着した固定砥粒ワイヤによるマルチワイヤソーは、従来の遊離砥粒によるスライス方式に代わる技術として、特にシリコンインゴット・サファイアインゴット等のスライスマーケットでの利用が期待されている技術である。一般に、固定砥粒ワイヤにおいて実際に切断作業を実行する砥粒には、鉱物中で最も硬いダイヤモンドが砥粒として使用されている。しかし、ダイヤモンドが如何に硬くても、繰り返し切断作業に使用されることにより摩耗することは避けられない。ダイヤモンド砥粒が摩耗する要因はスライス時の発熱であり、如何にして固定砥粒ワイヤに十分なクーラントを供給し、そのクーラントにより、切断に伴ってダイヤモンド砥粒に発生する熱を効果的に吸収できるかどうかがポイントとなる。しかし、クーラントを循環使用することによって、クーラント中には被切断物の切粉や破砕した砥粒や摩耗したワイヤの金属分などの異物が蓄積するので、切断量が多くなると、クーラントの冷却作用が低下してダイヤモンド砥粒の温度上昇を抑えきれずにダイヤモンド砥粒の摩耗が促進され、固定砥粒ワイヤの寿命が低下してしまう。また、クーラント中に切削屑などの異物が蓄積することによってクーラントの性能が失われ、スライス精度が低下する。
【0010】
本発明は、従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、固定砥粒ワイヤによるマルチワイヤソーにおけるクーラント中から被切断物の切粉を高効率で回収するとともに固定砥粒ワイヤの寿命延長並びに高精度のスライスの実現を図ることができる、固定砥粒ワイヤソーに使用したクーラントの処理方法及びその処理装置を提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明の固定砥粒ワイヤソーに使用したクーラントの処理方法は、固定砥粒ワイヤソーにおいて切断対象ワークを切断するときに使用したクーラントを遠心分離機に導いて、粗大な切削屑を主とする異物と、微細な切削屑を含有する切削屑含有液体とに分離し、粗大な切削屑を主とする異物を遠心分離機の長手方向の一方の端部の開口から排出して切削屑回収タンクに回収し、切削屑含有液体を遠心分離機の長手方向の他方の端部のオーバーフロー開口から排出してクーラントとして再使用することを特徴としている。
【0012】
また、本発明の固定砥粒ワイヤソーに使用したクーラントの処理装置は、固定砥粒ワイヤソーと、クーラントタンクと、切削屑回収タンクと、分離液タンクと、切削屑含有クーラントを粗大な切削屑を主とする異物と微細な切削屑を含有する切削屑含有液体とに分離する遠心分離機と、補給クーラントタンクと、固定砥粒ワイヤソーにおいて使用したクーラントをクーラントタンクに導く第1パイプと、クーラントタンク内の切削屑含有クーラントを遠心分離機に導く第2パイプと、遠心分離機から排出された粗大な切削屑を主とする異物を切削屑回収タンクに導く第3パイプと、遠心分離機から排出された微細な切削屑を含有する切削屑含有液体を分離液タンクに導く第4パイプと、分離液タンク内の分離液をクーラントタンクに導く第5パイプと、補給クーラントタンク内の新液クーラントをクーラントタンクに導く第6パイプと、クーラントタンク内のクーラントを固定砥粒ワイヤソーのクーラント供給手段に導く第7パイプとを備え、遠心分離機の長手方向の一方の端部には遠心分離後の粗大な切削屑を主とする異物を排出する開口を有し、遠心分離機の長手方向の他方の端部には遠心分離後の微細な切削屑を含有する切削屑含有液体を排出するオーバーフロー開口を有することを特徴としている。
【発明の効果】
【0013】
本発明の固定砥粒ワイヤソーに使用したクーラントの処理方法及びその処理装置は上記のように構成されているので、走行する固定砥粒ワイヤにクーラントを供給しながら、この固定砥粒ワイヤに切断対象ワークを押し付けてそのワークを切断する固定砥粒ワイヤソーにおいて、粗大な切削屑と微細な切削屑を含有する使用済みのクーラントを、粗大な切削屑を主とする異物と、微細な切削屑を含有する切削屑含有液体とに分離し、粗大な切削屑を主とする異物を切削屑回収タンクに回収し、微細な切削屑を含有する切削屑含有液体をクーラントとして再使用することにより、クーラント中に異物が蓄積してクーラントの異物濃度が上昇することなく、被切断物の切粉を高効率で回収するとともに固定砥粒ワイヤの寿命延長並びに高精度のスライスを実現することができる。
【発明を実施するための最良の形態】
【0014】
固定砥粒ワイヤに用いるワイヤは、電気メッキが可能で強度と弾性率がガイドローラや溝付きローラ間の張力に耐えるものであれば、特に制限はなく、このようなワイヤとしては、例えば、長尺のピアノ線などの鋼線、タングステン線、モリブデン線などの金属ワイヤを挙げることができる。
【0015】
本発明で使用するワイヤの直径は、被切断物の形状および特性により適宜選択することができ、通常は0.05〜0.5mm程度が採用されることが多いが、0.05mm以下の細線であっても、0.05mmを超える厚めの線であっても、本発明の効果は同じである。
【実施例】
【0016】
以下に、本発明の実施例を説明するが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において、適宜変更と修正が可能である。
(1)電気メッキによる固定砥粒ワイヤの製造
図1に示すような概略構成のメッキ装置により固定砥粒ワイヤを製造した。すなわち、送り出し機1から直径160μmの鋼製ワイヤ2を送り出し、その鋼製ワイヤ2をアルカリ脱脂槽(pHが11のアルカリ脱脂剤)3でアルカリ脱脂し、酸洗槽(pHが1の硫酸)4で酸洗し、水洗槽5で水洗し、前処理槽(スルファミン酸ニッケル・4水和物が600g/リットル、pHが4.2の浴組成)6で前処理し、鋼製ワイヤ2の表面にメッキ槽7で厚さ7μmのニッケルメッキを施した。メッキ槽7のメッキ浴の組成は、スルファミン酸ニッケル・4水和物が600g/リットル、塩化ニッケル・6水和物が55g/リットル、pH緩衝剤としての硼酸が30g/リットル、第1種光沢剤(サッカリン)が15ミリリットル/リットル、第2種光沢剤(2ブチン−1,4ジオール)が50ミリリットル/リットル、ニッケルを予め被覆してなる粒径が15〜25μmのダイヤモンド砥粒(被覆ニッケルの厚みが0.1〜1.0μm)を10g/リットル含有し、メッキ条件は、pHが3.0であり、温度が55℃であり、電流密度が45A/dm2であった。なお、このときの電流効率は、90%であった。
【0017】
その後、ニッケルメッキ被膜を形成した鋼製ワイヤ2を水洗槽8で水洗した後、ニッケルメッキ被膜中にダイヤモンド砥粒を固着した鋼製ワイヤ2を巻取機9に巻き取った。
(2)固定砥粒ワイヤソー
図2は上記のようにして得た固定砥粒ワイヤを用いたワイヤソーの一例を示す概略構成図である。このワイヤソーは、ワイヤ繰り出しボビン11a、多数のガイドローラ12a、12b、12c、12d、12e、12f、12g、12h、12i、12j、12k、溝付きローラ13、14、クーラント供給手段15およびワイヤ巻き取りボビン11bを備えている。16は切断対象ワーク(例えば、半導体インゴット)であり、17はワーク保持手段、18はワーク送りモータ、19はワイヤである。ワーク送りモータ18は切断対象ワーク16を保持したワーク保持手段17を自在に昇降させることができる。
(3)固定砥粒ワイヤソーに使用したクーラントの処理装置
図3は固定砥粒ワイヤソーに使用したクーラントの処理装置の一例を示す概略構成図である。図3において、21は固定砥粒ワイヤソー、22はクーラントタンク、23は切削屑回収タンク、24は分離液タンク、25は遠心分離機(概略構成は図4参照)、26は補給クーラントタンク、27aは固定砥粒ワイヤソー21において使用したクーラントをクーラントタンク22に導く第1パイプ、27bはクーラントタンク22内の切削屑含有クーラントを遠心分離機25に導く第2パイプ、27cは遠心分離機25から排出された粗大な切削屑28a(例えば、シリコン粉)を主とする異物を切削屑回収タンク23に導く第3パイプ、27dは遠心分離機25から排出された微細な切削屑を含有する切削屑含有液体を分離液タンク24に導く第4パイプ、27eは分離液タンク24内の分離液をクーラントタンク22に導く第5パイプ、27fは補給クーラントタンク26内の新液クーラントをクーラントタンク22に導く第6パイプ、27gはクーラントタンク22内のクーラントを固定砥粒ワイヤソー21のクーラント供給手段(図2の参照番号15)に導く第7パイプ、27hは新液クーラントを補給クーラントタンク26に導く第8パイプ、27iは純水を補給クーラントタンク26に導く第9パイプである。Pはポンプを示す。
(4)遠心分離機
図4は遠心分離機25(図3参照)の概略構成を示す図である。図4において、29は外側シェルであり、外側シェル29の長手方向の一方の端部には遠心分離後の粗大な切削屑28aを主とする異物を排出する開口30を有し、外側シェル29の長手方向の他方の端部には遠心分離後の微細な切削屑を含有する切削屑含有液体を排出するオーバーフロー開口31を有している。外側シェル29の他方の端部には軸29aが延設されており、軸29aは図示しないモータにより矢示方向に回転することができる。
【0018】
外側シェル29の一方の端部を切り欠いてクーラント受け入れパイプ32が外側シェル29内に挿入されている。このクーラント受け入れパイプ32は図示しないモータにより外側シェル29と一体となって同じ方向に同じ回転速度で回転することができる。
【0019】
クーラント受け入れパイプ32内にはクーラントタンク22内のクーラントを導入する第2パイプ27bが挿入されており、第2パイプ27bとクーラント受け入れパイプ32の間隙にはリング状のパッキン33が介装されて密封性が確保されている。クーラント受け入れパイプ32には、外側シェル29の内壁に向けて切削屑を含有するクーラントを排出する開口32aが設けられている。
【0020】
クーラント受け入れパイプ32と外側シェル29の間には複数のリング状の仕切り壁34aと34bが設置されている。このリング状の仕切り壁34aと34bにはやや右方に傾斜したリング状の邪魔板35が取り付けられている。リング状の仕切り壁34aと34bにはリング状の邪魔板35が取り付けられた箇所から内側の部分に、図5(a)(b)に示すように、複数の開口36が設けられている。
(5)固定砥粒ワイヤソーに使用したクーラントの処理方法
以上のように構成される固定砥粒ワイヤソーによれば、図2において、ワイヤ繰り出しボビン11aから繰り出されたワイヤ19は、ガイドローラ12a、12b、12c、12d、12e、12fおよび溝付きローラ13を経てクーラント供給手段15に達する。クーラント供給手段15からワイヤ19に供給されるクーラントによって、ワイヤ19に固着したダイヤモンド砥粒の切断に伴って発生する熱はクーラントに吸収されて、ダイヤモンド砥粒の温度上昇を抑えて摩耗を抑制し、固定砥粒ワイヤの長寿命化を図ることができる。
【0021】
ワイヤ19は、溝付きローラ13と14の外周面に多数回螺旋状に巻き付けられた後、ガイドローラ12g、12h、12i、12j、12kを経てワイヤ巻き取りボビン11bに巻き取られる。なお、溝付きローラ13と14の外周面にはワイヤを螺旋状に巻き付けるための溝が形成されている。この溝付きローラ13と14の間のワイヤ列に対して、クーラント供給手段15からクーラント(本実施例においては、鉱油、アニオン系界面活性剤および水を含有するもの)が供給される。溝付きローラ13と14の間のワイヤ列に対しては、ワーク送りモータ18によってワーク保持手段17とともに適切な速度で下降する切断対象ワーク16が当接することにより多数のウェハに切断される。この切断の過程におけるワイヤ19に固着したダイヤモンド砥粒の温度上昇は、上記したクーラントの作用によって効果的に抑えられる。
【0022】
なお、上記の説明では、ワイヤ19は繰り出しボビン11aから巻き取りボビン11bに向かって一方向走行する場合について述べたが、繰り出しボビン11aから巻き取りボビン11bに向かう場合と巻き取りボビン11bから繰り出しボビン11aに向かう場合とを交互に繰り返す双方向走行を行って、最終的に巻き取りボビン11bに巻き取るようにすることもできる。この双方向走行の場合、切断対象ワーク16と溝付きローラ14の間にもクーラント供給手段を備えることが好ましい。
【0023】
上記の固定砥粒ワイヤソーに使用したクーラントは、以下に説明するように処理される。
【0024】
図3に示すように、固定砥粒ワイヤソー21のクーラント供給手段(図2の参照番号15)からワイヤ(図2の参照番号19)に供給されたクーラントは集合配管に集められた後、第1パイプ27aを経てクーラントタンク22に導かれる。クーラントタンク22内の切削屑含有クーラントは第2パイプ27bを経て遠心分離機25に導かれ、後記するような遠心分離処理が施された後、粗大な切削屑28aを主とする異物は第3パイプ27cを経て切削屑回収タンク23に導かれ、微細な切削屑を含有する切削屑含有液体は第4パイプ27dを経て分離液タンク24に導かれる。分離液タンク24内の分離液は第5パイプ27eを経てクーラントタンク22に導かれる。補給クーラントタンク26には、必要に応じてクーラントの濃度および量を調整するために、第8パイプ27hを経て適宜新液クーラントが補給されるとともに第9パイプ27iを経て適宜純水が補強される。補給クーラントタンク26内の新液クーラントは第6パイプ27fを経てクーラントタンク22に導かれる。クーラントタンク22内のクーラントは、第7パイプ27gを経て固定砥粒ワイヤソー21のクーラント供給手段(図2の参照番号15)に導かれる。
【0025】
第2パイプ27bを経て遠心分離機25に導かれたクーラントは以下のように処理される。
【0026】
図4において、第2パイプ27b内の切削屑を含有するクーラント37は、クーラント受け入れパイプ32内に排出される。クーラント受け入れパイプ32は外側シェル29と一体となって同じ方向に同じ回転速度で回転しているので、クーラント受け入れパイプ32内に排出されたクーラント37はクーラント受け入れパイプ32に設けられた開口32aから一定のタイミングで外側シェル29内に向けて排出される。このようにして、外側シェル29内に排出された切削屑を含有するクーラント37の流れの中で、図4において右方にあるオーバーフロー開口31に至る流れについて、まず説明する。
【0027】
リング状の仕切り壁34aにはリング状の邪魔板35が取り付けられた箇所から内側の部分に、図5(a)に示すように、複数の開口36が設けられているので、この開口36を通過することができる大きさの切削屑とクーラントが仕切り壁34aを通過して、仕切り壁34aと仕切り壁34aとで囲まれた右方の区画に進入することができる。しかしながら、仕切り壁34aには邪魔板35が取り付けられているので、さらに、この邪魔板35を乗り越えた切削屑とクーラントが外側シェル29の内側面に接するように滞留する。以後、同様にして、リング状の仕切り壁34aに設けられた開口36を通過することができる大きさの切削屑とクーラントが仕切り壁34aを通過して、仕切り壁34aと仕切り壁34aとで囲まれた、さらに右方の区画に進入することができる。しかしながら、仕切り壁34aには邪魔板35が取り付けられているので、さらに、この邪魔板35を乗り越えた切削屑とクーラントが外側シェル29の内側面に接するように滞留する。このようにして外側シェル29の内側面に接するように滞留するクーラント37の液面がオーバーフロー開口31の下端面31aを乗り越える程度の高さになると、微細な切削屑を含有するクーラント(分離液)がオーバーフロー開口31から第4パイプ27dに向けて排出される。仕切り壁34aに設けられた開口36と邪魔板35によって通過できる大きさの切削屑が選別される結果、仕切り壁34aと仕切り壁34aとで囲まれた区画の中で、オーバーフロー開口31に近い区画のクーラント中には微細な切削屑28bを主とする、破砕した砥粒や摩耗したワイヤの金属分など比較的小さな異物が存在し、オーバーフロー開口31から遠い区画のクーラント中には粗大な切削屑28aが存在する。
【0028】
次に、外側シェル29内に排出された切削屑を含有するクーラント37の流れの中で、図4において左方にある開口30に至る流れについて、説明する。
【0029】
開口32aから外側シェル29内に一定のタイミングで切削屑を含有するクーラントが排出されると、外側シェル29はクーラント受け入れパイプ32とともに回転しているので、切削屑は遠心力により外側シェル29の内壁面に押し付けられて、小さい切削屑は凝集して大塊になろうとする。しかしながら、仕切り壁34aには邪魔板35が取り付けられているので、この邪魔板35を乗り越えた切削屑の中で仕切り壁34aに設けられた開口36を通過することができる大きさの切削屑とクーラントが左方の区画に進入する。左方の区画に進入した切削屑の中でリング状仕切り壁34bに取り付けられた邪魔板35を乗り越えて仕切り壁34bに設けられた開口36を通過することができる大きさの切削屑は仕切り壁34bを通過して、仕切り壁34bと仕切り壁34bとで囲まれた左方の区画に進入する。しかし、邪魔板35にはそのような開口は存在しないので、凝集して大塊となった切削屑の中で邪魔板35を乗り越えてリング状の仕切り壁34bに設けられた開口36を通過することができる大きさの切削屑が仕切り壁34bを通過して、仕切り壁34bと仕切り壁34bとで囲まれた、さらに左の区画に進入することができる。さらに、外側シェル29は、図4に示すように、開口30に向かって先細り状に外径が小さくなっており、開口30はオーバーフロー開口31に対して上下方向でみた場合に高位置にあるので、仕切り壁34bと仕切り壁34bとで囲まれた区画の中で開口30に近い区画には、クーラントはほとんど存在せず、粗大な切削屑28aを主とする異物が大半を占める。このようにして、開口30に達した粗大な切削屑28aを主とする異物は、第3パイプ27cに向けて排出される。
(6)切削屑回収効果の確認
a.対象液体
図4に示す遠心分離機を用いて、本発明の実施例として、固定砥粒ワイヤソーの切断に使用される上記組成(鉱油、アニオン系界面活性剤および水を含有するもの)からなるクーラントを遠心分離した場合と、比較例として、同クーラントを遠心分離しなかった場合におけるクーラントの単位容積当たりの重量(kg/リットル)を調査した。
b.切断対象と切断時間
正方形断面(高さが156mmで幅が156mmのもの)で長さが200mmの直方体状のシリコンインゴットから厚さが0.2mmで上記正方形断面のウェハを切り出す作業を繰り返し行った。なお、1回のシリコンウェハの切り出し作業を3時間連続して行った。
c.ワイヤソーおよびクーラント処理装置
図3に示す構成の装置を用いた。なお、この切断作業においては、実施例および比較例ともに、第9パイプ27iから補給クーラントタンク26に純水は補給せず、第8パイプ27hから補給クーラントタンク26に適宜新液クーラントを補給するとともに、補給クーラントタンク26内の新液クーラントを第6パイプ27fを経てクーラントタンク22に導いた。
【0030】
また、比較例においては、遠心分離を行わなかったので、固定砥粒ワイヤソーの切断に使用したクーラントは第1パイプ27aを経てクーラントタンク22に供給され、クーラントタンク22内のクーラントは第7パイプ27gを経て固定砥粒ワイヤソー21のクーラント供給手段に返送された。従って、比較例においては、第2パイプ27bを経てクーラントタンク22内のクーラントが遠心分離機25に導かれることはなく、第5パイプ27eを経て分離液タンク24内の分離液がクーラントタンク22に導かれることもなかった。
d.遠心分離条件
遠心力は2000G、遠心分離機に対するクーラントの供給量は197リットル/時間である。
e.遠心分離結果
以上のように、固定砥粒ワイヤソーによりシリコンインゴットを切断するときに使用したクーラントを遠心分離した場合と、同上クーラントを遠心分離しなかった場合とにおけるクーラントの単位容積当たりの重量(kg/リットル)を図6に示す。図6において、縦軸は図3の装置において、クーラントタンク22内のクーラントの単位容積当たりの重量(kg/リットル)を示し、横軸において、0は切断作業開始時を示し、1、2、3、4、5、6は、それぞれ1回目、2回目、3回目、4回目、5回目、6回目のシリコンウェハの3時間連続切り出し作業終了時を示す。切断作業開始時はクーラントは新液の状態であり、異物は含まれていないが、切断作業時間が長くなるとともに、クーラントには被切断物の切粉や破砕した砥粒や摩耗したワイヤの鉄分などの異物が蓄積するので、クーラントの冷却作用が低下し、ダイヤモンド砥粒の温度上昇を抑えきれずにダイヤモンド砥粒の摩耗が促進され、固定砥粒ワイヤの寿命低下を招いてしまう。クーラントに含まれる被切断物の切粉などの異物の量が増えると、クーラントの単位容積当たりの重量(kg/リットル)は大きくなる。従って、クーラントの単位容積当たりの重量(kg/リットル)の推移を見れば、クーラントの性状の変化を知ることができるのである。
【0031】
図6において、記号「○」は遠心分離を行った場合を示し(実施例)、記号「●」は遠心分離を行わなかった場合(比較例)を示す。本発明の方法に従って遠心分離を行うことによって、図6に示すように、クーラントの単位容積当たりの重量(kg/リットル)はほとんど変化せず、固定砥粒ワイヤソーにおいてシリコンインゴットの切断に長時間使用しても、クーラントの性状が変化しないことが分かる。
【0032】
しかし、固定砥粒ワイヤソーにおいてシリコンインゴットの切断に使用するクーラントを本発明の方法に従って遠心分離しなかった場合、図6に示すように、クーラントの単位容積当たりの重量(kg/リットル)の数値は切断作業時間が長くなるにつれて確実に大きくなっており、遠心分離をしないことによってクーラントには被切断物の切粉などの異物がどんどんと蓄積されていくことが分かる。
【0033】
また、6回目のシリコンウェハの3時間連続切り出し作業終了時の切削屑回収タンク23内の切削屑の成分(重量%)を蛍光X線定量分析により分析した結果を以下の表1に示す。
【0034】
【表1】

表1に明らかなように、切削屑中の大部分はSiであり、切削屑からシリコン粉を高効率で回収することが可能である。なお、表1において、Ca、PおよびAlはクーラントの成分である。
【0035】
以上の詳細な説明で明らかなように、本発明の方法および装置によれば、固定砥粒ワイヤソーの切断作業を長時間してもクーラントの性状が変化しないことが分かる。また、遠心分離によって分離した切削屑からシリコン粉を高効率で回収することが可能である
【産業上の利用可能性】
【0036】
本発明の方法および装置は、シリコン、石英、セラミック等の硬質材料の切断やスライスや内面研磨やダイシングやインゴット切り出し用に用いる固定砥粒ワイヤソーに使用したクーラントの処理に用いることができる。
【図面の簡単な説明】
【0037】
【図1】図1は固定砥粒ワイヤを製造するに好適なメッキ装置の概略構成図である。
【図2】図2は固定砥粒ワイヤソーの一例を示す概略構成図である。
【図3】図3は固定砥粒ワイヤソーに使用したクーラントの処理装置の一例を示す概略構成図である。
【図4】図4は遠心分離機の概略構成を示す図である
【図5】図5(a)(b)はリング状の仕切り壁に設けた開口を示す図である。
【図6】図6は固定砥粒ワイヤソーにおける切断作業時間とクーラントの単位容積当たりの重量(kg/リットル)との関係を示す図である。
【図7】図7は一般的なマルチワイヤソーの概略構成図である。
【符号の説明】
【0038】
1 送り出し機
2 鋼製ワイヤ
3 アルカリ脱脂槽
4 酸洗槽
5 水洗槽
6 前処理槽
7 メッキ槽
8 水洗槽
9 巻取機
11a ワイヤ繰り出しボビン
11b ワイヤ巻き取りボビン
12a、12b、12c、12d、12e、12f、12g、12h、12i、12j、12k ガイドローラ
13、14 溝付きローラ
15 クーラント供給手段
16 切断対象ワーク
17 ワーク保持手段
18 ワーク送りモータ
19 ワイヤ
21 固定砥粒ワイヤソー
22 クーラントタンク
23 切削屑回収タンク
24 分離液タンク
25 遠心分離機
26 補給クーラントタンク
27a 第1パイプ
27b 第2パイプ
27c 第3パイプ
27d 第4パイプ
27e 第5パイプ
27f 第6パイプ
27g 第7パイプ
27h 第8パイプ
27i 第9パイプ
P ポンプ
28a 粗大な切削屑
28b 微細な切削屑
29 外側シェル
29a 軸
30 開口
31 オーバーフロー開口
32 クーラント受け入れパイプ
33 パッキン
34a、34b 仕切り壁
35 邪魔板
36 開口
37 クーラント
41 繰り出しボビン
42 ワイヤ
43 ガイドローラ
44 グルーブローラ
45 フィードユニット
46 被切削物
47 ノズル
48 ガイドローラ
49 巻き取りボビン
50 駆動モータ
51 ダンサーローラ
52 ダンサーローラ

【特許請求の範囲】
【請求項1】
固定砥粒ワイヤソーにおいて切断対象ワークを切断するときに使用したクーラントを遠心分離機に導いて、粗大な切削屑を主とする異物と、微細な切削屑を含有する切削屑含有液体とに分離し、粗大な切削屑を主とする異物を遠心分離機の長手方向の一方の端部の開口から排出して切削屑回収タンクに回収し、切削屑含有液体を遠心分離機の長手方向の他方の端部のオーバーフロー開口から排出してクーラントとして再使用することを特徴とする固定砥粒ワイヤソーに使用したクーラントの処理方法。
【請求項2】
固定砥粒ワイヤソーと、クーラントタンクと、切削屑回収タンクと、分離液タンクと、切削屑含有クーラントを粗大な切削屑を主とする異物と微細な切削屑を含有する切削屑含有液体とに分離する遠心分離機と、補給クーラントタンクと、固定砥粒ワイヤソーにおいて使用したクーラントをクーラントタンクに導く第1パイプと、クーラントタンク内の切削屑含有クーラントを遠心分離機に導く第2パイプと、遠心分離機から排出された粗大な切削屑を主とする異物を切削屑回収タンクに導く第3パイプと、遠心分離機から排出された微細な切削屑を含有する切削屑含有液体を分離液タンクに導く第4パイプと、分離液タンク内の分離液をクーラントタンクに導く第5パイプと、補給クーラントタンク内の新液クーラントをクーラントタンクに導く第6パイプと、クーラントタンク内のクーラントを固定砥粒ワイヤソーのクーラント供給手段に導く第7パイプとを備え、遠心分離機の長手方向の一方の端部には遠心分離後の粗大な切削屑を主とする異物を排出する開口を有し、遠心分離機の長手方向の他方の端部には遠心分離後の微細な切削屑を含有する切削屑含有液体を排出するオーバーフロー開口を有することを特徴とする固定砥粒ワイヤソーに使用したクーラントの処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−29998(P2010−29998A)
【公開日】平成22年2月12日(2010.2.12)
【国際特許分類】
【出願番号】特願2008−196044(P2008−196044)
【出願日】平成20年7月30日(2008.7.30)
【出願人】(597150599)ジャパンファインスチール株式会社 (11)
【Fターム(参考)】