説明

太陽光発電システム及び電源制御装置

【課題】待機電力の削減、余剰電力の有効利用、及びバッテリの過充電/過放電防止を複合的に実現することができる太陽光発電システムを提供する。
【解決手段】通常、太陽電池1の太陽光発電電力は、インバータ4を介して交流負荷5に供給されると共にバッテリ3に充電される。電源制御装置6は、交流負荷5へ流れる交流電流値が電流閾値未満になり、かつ所定時間が経過したら、インバータ4を停止させて待機電力を削減させ、バッテリ3の過放電を抑止する。また、バッテリ充電監視回路16がバッテリ3の充電状態を常時監視し、バッテリ3が充電完了した後の余剰電力は、出力切替回路17を介して、ヒータ18に給電されて温水タンク19の温水に蓄熱し、給湯機器20及び冷暖房機器21に供給される。または、余剰電力は冷却装置22に冷熱として蓄熱し、冷温供給機器23に供給される。よって、余剰電力の有効利用を実現できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽光発電システム及び電源制御装置に関する。
【背景技術】
【0002】
図6は、一般的な独立型太陽光発電システムの構成を示すブロックである。図6に示すように、一般的な独立型太陽光発電システムにおいては、太陽電池101で発電された直流電力は、充電回路102を介して、バッテリ103に充電されると共にインバータ104に供給される。そして、この直流電力は、インバータ104によって所望の電圧の交流電力に変換されて、家電製品などの交流負荷105に供給される。また、雨天や夜間などで太陽電池101が発電していないときは、バッテリ103に充電された直流電力がインバータ104に供給され、インバータ104によって交流電力に変換されて交流負荷105に供給される。
【0003】
ここで、太陽電池101が発電していないときで、交流負荷105への供給電力がゼロのときは、バッテリ103が切り離されてインバータ104の消費電力を最小にするようにして、無駄な消費電力の削減化を図っている。また、太陽電池101が発電を行う昼間において、交流負荷105で消費されなかった電力(直流電力)を太陽電池101から充電回路102を介してバッテリ103へ充電することにより、太陽電池101の発電電力を無駄なくバッテリ103へ回収している。さらに、図6では図示されていないが、太陽電池の発電電圧を昇圧する第1コンバータとバッテリの電圧を昇圧する第2コンバータとを並列にしてインバータに接続することにより、太陽電池からインバータへ供給される発電電力の電圧変換を1回のみにして、太陽電池の発電電力の変換効率の低下を防止する技術も開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−153464号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、前述の図6や特許文献1に開示された独立型太陽光発電システムは、交流負荷105の負荷状態に係わらず(つまり、交流負荷105が無負荷の状態であっても)、インバータ104は常に動作している。そのため、インバータ104は常に待機電力を消費し続けているので、独立型太陽光発電システムとしては電力の無駄な消費が多くなり、バッテリ103が過放電となるおそれがある。また、太陽電池101の発電中において交流負荷105で消費されなかった電力は、バッテリ103へ充電し続けられるため、バッテリ103が過充電となってそのバッテリ103の寿命を低下させてしまうおそれもある。また、バッテリ3の充電完了後の余剰電力も有効に利用されていない。
【0006】
すなわち、従来の独立型太陽光発電システムにおいては、交流負荷105が無負荷であるときの待機電力の削減、太陽電池101の発電中における過充電によって生じるバッテリ103の寿命低下の回避、及び発電中の太陽電池101からバッテリ103への充電完了後の余剰電力の利用方法などについては全く考慮されていない。言い換えると、従来の技術では、電力会社からの商用電力を利用しない独立型太陽光発電システムにおける電力資源が無駄に消費され、かつ、バッテリの寿命を低下させる要因となっている。なお、上記従来例では独立型太陽光発電システムについて述べたが、商用電力と系統連系している系統連系型太陽光発電システムを含めた一般的な太陽光発電システムにおいては、待機電力の削減、余剰電力の有効利用、及びバッテリの寿命低下の回避などについては考慮されていない。
【0007】
本発明は、このような事情に鑑みてなされたものであり、使い勝手のよい太陽光発電システムを提供することを目的とする。
【課題を解決するための手段】
【0008】
前記目的を達成するために、本発明は、太陽電池で発電された太陽光発電電力が、インバータを介して交流負荷に供給されると共にバッテリに充電される太陽光発電システムであって、前記インバータから前記交流負荷へ流れる交流電流値を検出する電流検出手段と、前記電流検出手段が検出した交流電流値と電流閾値との比較結果に基づいて前記インバータの起動/停止を制御し、待機電力を削減させる電源制御手段とを備える太陽光発電システムを提供する。
【0009】
好ましい形態としては、前記電源制御手段は、前記交流電流値が前記電流閾値未満であって、かつ所定時間を経過したときに、前記インバータを自動停止させて前記待機電力を削減させる。また、前記電源制御手段は、前記待機電力の削減中に前記インバータを周期的に断続運転させ、前記交流電流値が前記電流閾値以上になったときに該インバータを自動起動させる。
【0010】
また、本発明によれば、使い勝手のよい太陽光発電システムを提供することができる。
【発明の効果】
【0011】
本発明によれば、交流負荷の未使用時において、インバータを含めた太陽光発電システム全体の待機電力を削減することにより、バッテリの過放電を防止することができる。また、バッテリの充電が完了した後の余剰電力を温熱や冷熱として蓄熱することにより、過充電防止によるバッテリの長寿命化と、余剰電力の有効利用とを併せて実現することができる。
【図面の簡単な説明】
【0012】
【図1】本発明の第1実施形態に適用される独立型太陽光発電システムの構成を示すブロック図である。
【図2】図1に示す独立型太陽光発電システムにおいて、インバータが自動停止するまでの各部の動作状態を示したタイムチャートである。
【図3】図1に示す独立型太陽光発電システムにおいて、インバータが自動起動するまでの各部の動作状態を示したタイムチャートである。
【図4】図1に示す独立型太陽光発電システムにおいて、インバータの待機電力を削減させるための電源制御装置の動作の流れを示すフローチャートである。
【図5】図1に示す独立型太陽光発電システムにおいて、余剰電力によって蓄熱するまでの各部の動作状態を示したタイムチャートである。
【図6】一般的な独立型太陽光発電システムの構成を示すブロックである。
【発明を実施するための形態】
【0013】
《概要》
本発明の実施形態では、太陽光発電システムとして、商用電力と系統連系を行わないで、独立した電力系統により太陽電池の電力系統システムを完結させる独立型太陽光発電システムについて説明する。すなわち、本発明の実施形態に係る独立型太陽光発電システムでは、図1を参照すると、従来の独立型太陽光発電システムと同様に、基本的には、太陽電池1で発電された太陽光発電電力は、インバータ4を介して交流電力として交流負荷5に供給されると共に、交流負荷5で使用されなかった電力(すなわち、太陽光発電電力と交流電力との差分電力)は、バッテリ充電電力としてバッテリ3に充電されるように構成されている。
【0014】
本実施形態の独立型太陽光発電システムでは、このような基本的な構成に加えて、図1に示すように、交流負荷5の停止時にはインバータ4を自動停止させ、かつ、交流負荷5の再起動時はインバータ4を自動起動させる自動停止/自動起動機能が付加されている。これにより、交流負荷5が停止しているときにはインバータ4を停止させて待機電力を低減させることで、バッテリ3の不要な過放電を防止することができる。
【0015】
また、太陽電池1で発電された太陽光発電電力が交流負荷5で消費されず、かつバッテリ3の充電完了によって蓄電されなかった余剰電力は、ヒータ18に給電することによって温水タンク19に温水として蓄熱し、給湯機器20や冷暖房機器21より温水を供給する温水供給機能が付加されている。さらに、上記の余剰電力を冷却装置22に給電して冷熱を蓄熱し、冷熱供給機器23より冷熱を供給する冷熱供給機能が付加されている。これらの機能により、余剰電力によってバッテリ3が過充電するのを防止することができると共に、余剰電力の有効利用を図ることができる。
【0016】
すなわち、本実施形態の独立型太陽光発電システムは、従来の独立型太陽光発電システムに対して、待機電力を低減させるためのインバータの自動停止/自動起動機能と、余剰電力を有効に利用するための温水供給機能及び冷熱供給機能とが付加されたことにより、待機電力の削減、余剰電力の有効利用、及びバッテリの過充電/過放電防止を複合的に実現することができる。
【0017】
以下、本発明に係る独立型太陽光発電システムの実施形態について図面を参照しながら詳細に説明する。
【0018】
《第1実施形態》
〈独立型太陽光発電システムの構成〉
先ず、本発明の第1実施形態に係る独立型太陽光発電システムの構成について説明する。図1は、本発明の第1実施形態に適用される独立型太陽光発電システムの構成を示すブロック図である。すなわち、図1は、本発明の第1実施形態に係る独立型太陽光発電システムにおいて、インバータ4を含めたシステム全体の待機電力の削減、余剰電力を蓄熱して熱源としての有効利用、及びバッテリ3の過充電/過放電の防止などを複合的に実現させるように構成した複合式の独立型太陽光発電システムの構成を示している。
【0019】
図1に示すように、本発明の第1実施形態に適用される独立型太陽光発電システムは、太陽電池1から充電回路2を経由して出力切替回路17に接続されている。そして、この出力切替回路17の第1出力端子から、インバータ4に接続されると共にバッテリ充電監視回路(バッテリ充電監視手段)16を経由してバッテリ3に接続されている。また、インバータ4の出力側は、CT(電流検出手段)7を経由して交流負荷5に接続されている。さらに、この出力切替回路17の第1出力端子から、独立型太陽光発電システムの全体を制御する電源制御装置(電源制御手段)6に接続されている。
【0020】
また、出力切替回路17の第2出力端子から、温水タンク19内のヒータ(加熱手段)18と冷却装置(冷却手段)22とに接続されている。さらに、温水タンク19から給湯機器20及び冷暖房機器21が接続され、冷却装置22から冷温供給機器23が接続されている。なお、出力切替回路17には、充電モードと蓄熱モードとを手動で切替えることができる充電/蓄熱モード手動切替スイッチ24が接続されている。
【0021】
また、電源制御装置6から、CT7、インバータ運転接点8、手動復帰接点(手動復帰手段)9、及び外部復帰接点(外部復帰手段)10が接続されている。この電源制御装置6は、CT7が検出した交流負荷5へ流れる交流電流値の電流監視値、手動復帰接点9の信号、及び外部復帰接点10の信号をそれぞれ受信してインバータ運転接点8を動作させ、インバータ4を起動/停止させる機能を備えている。
【0022】
電源制御装置6内の電流監視制御回路11は、CT7を介して、交流負荷5へ流れる交流電流値を監視する電流監視機能と、インバータ4から交流負荷5へ流れる交流電流の通電時間をカウントするタイマ機能とを備えていて、交流負荷5の運転状態を示す信号を連続運転指令回路12へ送信する。なお、電源制御装置6の電源はバッテリ3から供給されている。
【0023】
また、電源制御装置6に設けられた電流監視制御回路11は、周期運転指令回路(周期運転指令手段)13に起動信号を出力してインバータ4を周期的に断続運転させる機能を備えている。なお、周期運転指令回路13は、周期運転指令回路電源15から電源が供給されている。また、図中の2つのダイオード14は、連続運転指令回路12及び周期運転指令回路13のそれぞれで増幅された信号が他方の増幅回路に流れ込むことを防止する機能を備えていて、連続運転指令回路12と周期運転指令回路13の動作の独立性を保つために設けられたものである。
【0024】
すなわち、本実施形態の独立型太陽光発電システムは、従来の独立型太陽光発電システムに加えて、電源制御装置6の電流監視制御回路11が、インバータ4から交流負荷5へ流れる交流電流値(電流監視値)をCT7で監視し、その交流電流値が電流閾値未満であって、かつ所定時間を経過した場合には、インバータ4を自動停止させることによって待機電力の削減化を図っている。
【0025】
また、電源制御装置6の連続運転指令回路12が、インバータ4を自動的に再起動させるために、インバータ4を周期的に断続運転させ、そのときに交流負荷5に流れる交流電流値が電流閾値以上であった場合には、自動的にインバータ4を連続運転に切り替えるようにしている。
【0026】
なお、交流負荷5を任意に使用できるようにするために、インバータ4に手動復帰接点9を設け、この手動復帰接点9を手動で操作することによってインバータ4を任意に起動させる機能と、外部復帰接点10により、交流負荷5の起動スイッチ(図示せず)と連動させて、インバータ4を自動起動させる機能とが付加された構成となっている。ここで、外部復帰接点10は交流負荷5側に設けられているが、この外部復帰接点10の信号が電源制御装置6の連続運転指令回路12で受信されることによってインバータ運転接点8を動作させて、インバータ4を自動起動させることができる。
【0027】
すなわち、本実施形態の独立型太陽光発電システムは、太陽電池1で発電された太陽光発電電力のうち、交流負荷5で交流電力として使用されなかった電力(つまり、太陽光発電電力と交流電力との差分である差分電力)をバッテリ充電電力としてバッテリ3に充電する基本的な構成に加えて、バッテリ充電監視回路16、出力切替回路17、ヒータ18、温水タンク19、及び冷却装置22などが追加されている。これによって、バッテリ3の充電完了後の余剰電力は、ヒータ18へ給電されて温水タンク19内の水を加温することによって温水として蓄熱され、温熱源として給湯機器20や冷暖房機器21に利用できるように構成されている。また、前記の余剰電力を冷却装置22に給電して、冷水や氷などの冷熱として蓄熱し、冷熱源として冷温供給機器23に供給できるように構成されている。
【0028】
〈独立型太陽光発電システムの動作〉
次に、図1に示す本実施形態に係る独立型太陽光発電システムの動作について説明する。図2は、図1に示す独立型太陽光発電システムにおいて、インバータが自動停止するまでの各部の動作状態を示したタイムチャートである。すなわち、図2は、横軸が時間軸であり、縦軸は上段から、インバータ4の運転/停止状態、交流負荷5の運転/停止状態、及び各時刻における交流電流値の概略波形と電流閾値とを示している。したがって、図2のタイムチャートを参照して、図1に示す独立型太陽光発電システムにおけるインバータ4の待機電力削減のための動作概要を説明する。
【0029】
図2に示すように、時刻t0以降におけるインバータ4及び交流負荷5の運転/停止状態において、時刻t1からt2の期間、及び時刻t3からt4の期間においては、それぞれ、交流負荷5が停止して交流電流値が電流閾値より小さくなっている。しかし、それぞれの期間(t1〜t2、t3〜t4)は、あらかじめ設定した所定時間より短いので、インバータ4はそのまま運転を継続している。ところが、時刻t5からt6の期間では、交流負荷5が停止して交流電流値が電流閾値より小さくなり、かつ交流電流値が電流閾値より小さい時間が所定時間より長くなっているので、時刻t6においてインバータ4は停止する。
【0030】
すなわち、交流負荷5の連続運転中(時刻t0〜t1)において、CT7で監視している交流電流値(電流監視値)が電流閾値以上の場合は、インバータ4は連続運転している。また、交流負荷5の断続運転中(時刻t1〜t4)においては、CT7で監視している交流電流値が電流閾値未満であっても、交流負荷5の停止時間(時刻t1〜t2、及び時刻t3〜t4)が所定時間以下(図2では、時間軸で1目盛り及び2目盛り)のときは、インバータ4はそのまま連続運転している。
【0031】
ところが、交流負荷5が時刻t5で停止して、CT7で監視している交流電流値が電流閾値未満となり、かつ所定時間以上(時刻t5〜t6の3目盛りの時間以上)経過したときには、時刻t6においてインバータ4を停止させる。これにより、時刻t6以降においてはインバータ4の待機電力を削減させることができる。ここで、CT7で監視している交流負荷5の交流電流値と比較される電流閾値は、交流負荷5の待機電流を超過した値に設定することで、独立型太陽光発電システムの安定した使用性を確保することができる。
【0032】
次に、本発明の独立型太陽光発電システムによって削減できる待機電力量について説明する。例えば、インバータ4の定格出力電力が500Wで電力変換効率が90%である場合において、電力変換損失の50%程度が待機電力であると仮定したときの削減できる待機電力量について説明する。
【0033】
インバータ4の待機電力は、(500W×(1−0.9))/2=25Wである。したがって、交流負荷5の停止した無負荷状態が10時間経過した場合には、25W×10h=250Whの待機電力量を削減することができる。ここで、独立型太陽光発電システムが12Vのバッテリ3を使用している場合は、(25W/12V)×10h=21Ah程度のバッテリ3の電力量を削減できることになる。
【0034】
次に、待機電力を削減するために停止しているインバータ4に対して、そのインバータ4の待機電力の削減状態を維持しながら、交流負荷5の負荷状態に応じてインバータ4を自動起動させる方法について図3を参照しながら説明する。図3は、図1に示す独立型太陽光発電システムにおいて、インバータ4が自動起動するまでの各部の動作状態を示したタイムチャートである。
【0035】
すなわち、図3は、横軸が時間軸であり、縦軸は上段から、インバータ4の運転/停止状態、交流負荷5の運転/停止状態、及び各時刻における交流電流値の概略波形と電流閾値とを示している。この図では、電源制御装置6の周期運転指令回路13によりインバータ4を周期的に断続運転させ、その時に交流負荷5に流れる電流(交流電流値)を電流監視制御回路11で監視することにより、交流負荷5の運転/停止状態を検知して、インバータ4の運転/停止状態を切り替えることを示している。言い換えると、電源制御装置6に備えられた電流監視制御回路11が周期運転指令回路13に起動信号を出力し、インバータ4を周期的に断続運転させている。
【0036】
図3に示すように、インバータ4を周期的に断続運転させて、時刻がt1〜t2、t3〜t4、t5〜t6、t7〜t8の各期間のように、交流負荷5の交流電流値が電流閾値未満であれば、インバータ4を周期運転モード(すなわち、擬似停止状態による待機電力の削減状態)とする。そして、時刻t9において交流負荷5が運転を開始し、時刻t10において交流負荷5へ流れる交流電流値が電流閾値以上になった場合には、電源制御装置6の連続運転指令回路12によってインバータ4を連続運転させる。なお、図中の時刻t9〜t10までの破線は、交流負荷5の運転開始の操作から、インバータ4が自動起動するまでの期間を示したものである。
【0037】
以上のような動作により、インバータ4が連続運転を開始した時刻t10以降は、図1に示す周期運転指令回路電源15を遮断して周期運転指令回路13の電源を断ち、インバータ4の周期運転の動作を停止させる。これによって、交流負荷5の連続運転中における電源制御装置6の電力消費を減少させて、待機電力を低減させることができる。
【0038】
また、上述したようなインバータ4の自動起動の機能以外において、インバータ4の連続運転を可能とするために、図1に示すように手動復帰接点9を設けることもできる。すなわち、この手動復帰接点9により、インバータ4を手動で連続運転の状態にする機能を実現することができる。また、交流負荷5に外部復帰接点10を設け、この外部復帰接点10に交流負荷5の起動接点を接続して外部復帰接点10と連動させることにより、インバータ4を任意に自動起動させる機能を実現させることもできる。なお、手動復帰接点9及び外部復帰接点10の信号を、電源制御装置6の連続運転指令回路12へ直接入力することにより、任意のタイミングで確実にインバータ4を動作させることが可能となる。
【0039】
図4は、図1に示す独立型太陽光発電システムにおいて、インバータの待機電力を削減させるための電源制御装置の動作の流れを示すフローチャートである。したがって、図4を参照しながら、インバータ4の待機電力を削減させるための動作の流れを説明する。先ず、インバータ4が連続運転中であるとき(ステップS1)、電源制御装置6は、交流負荷5へ流れる交流電流値が電流閾値未満であり、かつ所定時間が経過したか否かを判定する(ステップS2)。
【0040】
ここで、交流電流値が電流閾値未満ではないとき、または交流電流値が電流閾値未満であっても所定時間が経過していないときは(ステップS2でNo)、ステップS2の判定を継続する。一方、ステップS2において、交流負荷5へ流れる交流電流値が電流閾値未満であり、かつ所定時間が経過したときには(ステップS2でYes)、電源制御装置6はインバータ4を自動停止させる(ステップS3)。これによって、インバータ4の待機電力を削減させることができる。
【0041】
その後、電源制御装置6は、インバータ4を周期的に断続運転させる周期運転モードを開始する(ステップS4)。そして、電源制御装置6は、インバータ4の手動復帰接点9が入り(ON)になっているか否かを判定し(ステップS5)、手動復帰接点9がONになっていなければ(ステップS5でNo)、インバータ4の外部復帰接点10が入り(ON)になっているか否かを判定する(ステップS6)。
【0042】
ここで、インバータ4の外部復帰接点10がONになっていなければ(ステップS6でNo)、電源制御装置6は、インバータ4の周期運転を継続させ(ステップS7)、交流負荷5へ流れる交流電流値が電流閾値以上であるか否かを判定する(ステップS8)。このとき、交流電流値が電流閾値以上でなければ(ステップS8でNo)、ステップS5に戻って前述のステップS5〜ステップS8の処理を繰り返すが、交流電流値が電流閾値以上であれば(ステップS8でYes)、電源制御装置6は、インバータ4の連続運転を再開させる(ステップS9)。
【0043】
なお、ステップS5において手動復帰接点9がONになっているとき(ステップS5でYes)、または、ステップS6においてインバータ4の外部復帰接点10がONになっているときは(ステップS6でYes)、電源制御装置6は、直ちにインバータ4の連続運転を再開させる(ステップS9)。
【0044】
図5は、図1に示す独立型太陽光発電システムにおいて、余剰電力によって蓄熱するまでの各部の動作状態を示したタイムチャートである。すなわち、図5は、横軸が時間軸であり、縦軸は上段から、太陽電池1によって発電された太陽光発電電力、インバータ4から交流負荷5へ出力される交流電力、太陽電池1からバッテリ3へ充電されるバッテリ充電電力、及び余剰電力としてヒータ18や冷却装置22へ供給される蓄熱電力を示している。
【0045】
したがって、図5を参照しながら、余剰電力を利用した熱変換及び蓄熱の機構について説明する。図5に示すように、時刻t1において太陽電池1が発電を開始して太陽光発電電力が発生した後は、その太陽光発電電力は全てバッテリ充電電力としてバッテリ3に充電される。そして、交流負荷5が時刻t2において起動し時刻t3において停止するまでの期間は、太陽電池1によって発電された太陽光発電電力から交流負荷5で消費される交流電力を差し引いた差分電力がバッテリ充電電力となってバッテリ3に充電される。
【0046】
また、時刻t3から時刻t4までの期間は、交流負荷5が停止して交流電力がゼロになるので、太陽電池1によって発電された太陽光発電電力が全てバッテリ充電電力となってバッテリ3に充電される。
【0047】
ここで、図1に示すバッテリ充電監視回路16が、バッテリ3の充電電圧と充電電流とを常時監視することにより、バッテリ3の充電状態をリアルタイムで検出している。したがって、時刻t4において、バッテリ充電監視回路16がバッテリ3の充電完了を検出した後は、電源制御装置6が出力切替回路17の経路を切替え、太陽光発電電力を余剰電力として出力切替回路17からヒータ18または冷却装置22へ給電する。
【0048】
すなわち、太陽電池1からバッテリ3への充電が完了して余剰電力が発生する時刻t4以降においては、太陽電池1の発電が停止する時刻t5までの期間は太陽光発電電力が全て余剰電力となり、この余剰電力が蓄熱電力としてヒータ18または冷却装置22へ給電される。これにより、温水タンク19にはヒータ18の加熱によって温水が蓄熱され、冷却装置22には冷水または氷として冷熱が蓄熱される。
【0049】
以上を要約すると、図5は、太陽電池1によって発電された太陽光発電電力と、交流負荷5へ供給された交流電力と、バッテリ3へ充電されるバッテリ充電電力と、ヒータ18や冷却装置22へ給電される蓄熱電力(余剰電力)との推移を示しており、太陽電池1で発電された太陽光発電電力は、交流負荷5が停止中の場合は、全てバッテリ充電電力としてバッテリ3に充電される(時刻t1〜t2)。次に、時刻t2で交流負荷5が起動すると、太陽光発電電力の一部が交流電力として交流負荷5に消費され、太陽光発電電力と交流電力との差分電力が、バッテリ充電電力としてバッテリ3へ充電される(時刻t2〜t3)。
【0050】
その後、時刻t3において、再び交流負荷5が停止して交流電力がゼロになると、太陽光発電電力が全てバッテリ充電電力となってバッテリ3へ充電される(時刻t3〜t4)。
【0051】
そして、バッテリ充電監視16が、バッテリ3の充電電圧及び充電電流によってバッテリ3の充電完了を検出したとき以降(時刻t4以降)においては、太陽光発電電力は全て余剰電力となり、出力切替回路17を介して、ヒータ18または冷却装置22へ蓄熱電力として給電される。さらに、ヒータ18が温水タンク19内の水を加温することにより温熱源として利用され、冷却装置22では冷水または氷として冷熱源が蓄熱されて利用される(時刻t4〜t5)。
【0052】
ここで、時刻t4以降においてはバッテリ3の充電が完了しているので、電源制御装置6は、バッテリの充電が完了した時刻t4以降は、バッテリ3の充電状態を監視するバッテリ充電監視回路16の電源を遮断してもよい。これによって、バッテリ充電監視回路16で消費される電力を減らすことができるので、太陽光発電システム全体の待機電力を削減することが可能となる。
【0053】
なお、図5では、時刻t3で交流負荷5が停止してから、時刻t4においてバッテリ3の充電完了が検出された後の余剰電力を蓄熱電力として利用する状態を示している。したがって、時刻t4以降では太陽光発電電力の全てが余剰電力となり蓄熱電力として利用されることになる。
【0054】
しかし、交流負荷5が時刻t4を過ぎた時刻まで運転をしていて、交流電力が時刻t4を過ぎた時刻まで交流負荷5に供給されている場合は、時刻t4以降においては、太陽光発電電力から交流電力を差し引いた電力分が余剰電力となって蓄熱電力として利用されることになる。
【0055】
また、交流負荷5が再起動したときは、バッテリ3から交流負荷5への給電が開始される。そして、バッテリ充電監視回路16がバッテリ3の充電容量の低下を検出したときは、出力切替回路17の切替えにより、太陽電池1によって発生された太陽光発電電力を、再度、インバータ4及びバッテリ3へ自動的に供給することができる。
【0056】
なお、図1に示す充電/蓄熱モード手動切替スイッチ24は、バッテリ3への充電モードとヒータ18及び冷却装置22への蓄熱モードとの優先切替の選択を可能としたスイッチである。したがって、充電/蓄熱モード手動切替スイッチ24を操作することにより、手動にて、任意に、充電モードに切替えてバッテリ3を充電したり、蓄熱モードに切替えてヒータ18や冷却装置22へ給電したりすることが可能となる。
【0057】
以上のようにして、余剰電力を蓄熱電力としてヒータ18に供給し、温水タンク19に蓄えられた温水は、給湯機器20や冷暖房機器21によって温熱源として利用される。また、余剰電力を蓄熱電力として冷却装置22に供給することにより、冷却装置22に蓄えられた冷水または氷は、冷温供給機器23によって冷熱源として利用される。このようにして、太陽光発電電力の余剰電力は昼夜を問わず熱源として有効に利用することができる。特に、系統連系型太陽光発電システムに比べて電力資源が乏しい独立型太陽光発電システムにあっては、このような余剰電力の利用は、天然資源を有効活用する効果が著しく大きくなる。
【0058】
すなわち、本実施形態に係る独立型太陽光発電システムは、一般的な独立型太陽光発電システムと比較して、待機電力の削減、使用性の向上、及び余剰電力の最適な配分などによるバッテリ3の過充電/過放電の防止と長寿命化を図ることができる。その結果、独立型太陽光発電システム全体の長寿命化と信頼性の向上を図ることが可能となる。
【0059】
また、余剰電力の有効活用の一つとして、余剰電力を熱エネルギーに変換することにより、温水タンク19には温熱として蓄熱し、冷却装置22には冷熱として蓄熱し、それぞれ蓄熱された熱エネルギーを、給湯機器20、冷暖房機器21、及び冷温供給機器23に供給することにより、昼夜を問わず、太陽光発電電力の余剰電力を熱源として利用することができる。
【0060】
以上述べたように、本実施形態の独立型太陽光発電システムによれば、インバータ4や周期運転指令回路13やバッテリ充電監視回路16などの待機電力を削減することにより、バッテリ3の過放電を防止することができる。また、余剰電力をヒータ18や冷却装置22に給電することにより、バッテリ3の過充電を防止することができると共に、バッテリ3の寿命低下を防止して独立型太陽光発電システムの長寿命化を図ることができる。さらに、太陽電池1で発電された太陽光発電電力のうち、交流負荷5で消費されないでバッテリ3の充電完了によって発生した余剰電力を、ヒータ18に給電して温熱として蓄熱したり、冷却装置22に給電して冷熱として蓄熱したりして利用することができる。これにより、余剰電力は給湯機器20や冷暖房機器21の温熱源として有効に利用することができると共に、冷温供給機器23により冷熱源として有効に利用することが可能となる。
【0061】
《第2実施形態》
本発明の第2実施形態では、太陽光発電システムや風力発電システムによって2次的に発生する余剰電力の利用方法の応用例について説明する。すなわち、独立型太陽光発電システムや系統連系型太陽光発電システムに限らず、太陽光発電や風力発電などの自然エネルギー発電システムで発生した余剰電力を、温熱または冷熱として蓄熱し、蓄熱された熱エネルギーを給湯機器や冷暖房機器や工業用熱源として、さまざまな分野において利用することが可能である。
【0062】
ちなみに、図1の太陽光発電システムにおいては、ヒータ18を電熱ヒータのイメージで記載したが、電熱ヒータではなく、ヒートポンプ機能を有するいわゆるエコキュート(登録商標)システム等の冷凍サイクルに対して、第1実施形態で述べた余剰電力の利用方法を応用することができる。すなわち、第1実施形態で述べたような手法によって取り出された余剰電力を、エコキュートシステム等の冷凍サイクルの圧縮機に供給することにより、比較的安価に余剰電力を熱エネルギーとして回収するシステムを構築することができる。
なお、冷凍サイクルは、図示しない凝縮器と蒸発器の使い方によって、簡単に給湯機にも冷水機にも使え、さらには、冷暖房の空調機にも使える。
【0063】
《まとめ》
以上、本発明に係る太陽光発電システムについて、独立型太陽光発電システムの実施形態を例に挙げて具体的に説明したが、本発明は前述した実施形態の内容に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能であることは言うまでもない。すなわち、本発明は、独立型太陽光発電システムに限らず、商用電力系統と連系する系統連系型太陽光発電システムにおいても、待機電力の削減、余剰電力の有効利用、及びバッテリの過充電/過放電防止などに応用することができる。また、独立型/連系型の太陽光発電システムに限らず、風力発電システムや潮力発電システムなどを含めた自然エネルギー発電システムにおいても同様に応用することができる。
【産業上の利用可能性】
【0064】
本発明は、特に、商用電力を受電することができない海上、離島、山小屋などに設置された独立型太陽光発電システムとして有効に利用することができるが、これに限らず、商用電力系統と連系する系統連系型太陽光発電システムにおいても、待機電力の削減、余剰電力の有効利用、及びバッテリの過充電/過放電防止などを実現するために有効に利用することができる。また、太陽光発電システムに限らず、風力発電システムや潮力発電システムなどを含めた自然エネルギー発電システムにおいても利用することができる。
【符号の説明】
【0065】
1 太陽電池
2 充電回路
3 バッテリ
4 インバータ
5 交流負荷
6 電源制御装置(電源制御手段)
7 CT(電流検出手段)
8 インバータ運転接点
9 手動復帰接点(手動復帰手段)
10 外部復帰接点(外部復帰手段)
11 電流監視制御回路
12 連続運転指令回路
13 周期運転指令回路(周期運転指令手段)
14 ダイオード
15 周期運転指令回路電源
16 バッテリ充電監視回路(バッテリ充電監視手段)
17 出力切替回路
18 ヒータ(加熱手段)
19 温水タンク
20 給湯機器
21 冷暖房機器
22 冷却装置(冷却手段)
23 冷温供給機器
24 充電/蓄熱モード手動切替スイッチ

【特許請求の範囲】
【請求項1】
太陽電池で発電された太陽光発電電力が、インバータを介して交流負荷に供給されると共にバッテリに充電される太陽光発電システムであって、
前記インバータから前記交流負荷へ流れる交流電流値を検出する電流検出手段と、
前記電流検出手段が検出した交流電流値と電流閾値との比較結果に基づいて前記インバータの起動/停止を制御し、待機電力を削減させる電源制御手段と
を備えることを特徴とする太陽光発電システム。
【請求項2】
前記電源制御手段は、前記交流電流値が前記電流閾値未満であって、かつ所定時間を経過したとき、前記インバータを停止させて前記待機電力を削減させることを特徴とする請求項1に記載の太陽光発電システム。
【請求項3】
前記電源制御手段は、前記待機電力の削減中に前記インバータを周期的に断続運転させ、前記交流電流値が前記電流閾値以上になったとき該インバータを起動させることを特徴とする請求項2に記載の太陽光発電システム。
【請求項4】
前記電源制御手段は、前記インバータが起動した後は、該インバータを周期的に断続運転させる周期運転指令手段の電源を遮断することにより前記待機電力を削減させることを特徴とする請求項3に記載の太陽光発電システム。
【請求項5】
前記電源制御手段は、前記バッテリの充電が完了した後は、該バッテリの充電状態を監視するバッテリ充電監視手段の電源を遮断することにより前記待機電力を削減させることを特徴とする請求項1乃至4のいずれかに記載の太陽光発電システム。
【請求項6】
前記待機電力の削減中に前記インバータを手動起動させるための手動復帰手段をさらに備えることを特徴とする請求項1乃至5のいずれかに記載の太陽光発電システム。
【請求項7】
前記待機電力の削減中に前記インバータを起動させるための外部復帰手段をさらに備えることを特徴とする請求項1乃至6のいずれかに記載の太陽光発電システム。
【請求項8】
前記バッテリ充電監視手段が監視した前記バッテリの充電状態が充電完了であるとき、前記太陽光発電電力の余剰電力は加熱手段へ給電されて温水タンク内に蓄熱されることを特徴とする請求項5乃至7のいずれかに記載の太陽光発電システム。
【請求項9】
前記温水タンク内に蓄熱された熱エネルギーは、給湯機器または冷暖房機器の少なくとも一方へ供給されることを特徴とする請求項8に記載の太陽光発電システム。
【請求項10】
前記バッテリ充電監視手段が監視した前記バッテリの充電状態が充電完了であるとき、前記太陽光発電電力の余剰電力は冷却手段へ給電されて冷熱として蓄熱されることを特徴とする請求項5乃至7のいずれかに記載の太陽光発電システム。
【請求項11】
前記冷却手段が冷熱として蓄熱した熱エネルギーは、冷温供給機器へ供給されることを特徴とする請求項10に記載の太陽光発電システム。
【請求項12】
前記加熱手段または前記冷却手段へ給電された前記余剰電力は、任意のタイミングで、前記交流負荷及び前記バッテリへの給電系統へ切替できることを特徴とする請求項8乃至11のいずれかに記載の太陽光発電システム。
【請求項13】
前記太陽電池の電力系統システムが、独立した電力系統によって完結された独立型太陽光発電システムとして構成されていることを特徴とする請求項1乃至12のいずれかに記載の太陽光発電システム。
【請求項14】
太陽電池で発電された太陽光発電電力が、インバータを介して交流負荷に供給されると共にバッテリに充電される太陽光発電システムにおける電源制御装置であって、
前記インバータから前記交流負荷へ流れる交流電流値を検出し、
前記検出した交流電流値と電流閾値との比較結果に基づいて前記インバータの起動/停止を制御し、待機電力を削減させること
を特徴とする電源制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−62927(P2013−62927A)
【公開日】平成25年4月4日(2013.4.4)
【国際特許分類】
【出願番号】特願2011−199129(P2011−199129)
【出願日】平成23年9月13日(2011.9.13)
【出願人】(000153443)株式会社日立情報制御ソリューションズ (359)
【Fターム(参考)】