説明

容量性負荷駆動回路

【課題】容量性負荷の駆動信号にキャリアリップルが重畳することを回避する。
【解決手段】駆動波形信号をパルス変調して変調信号を生成し、電力増幅した後に平滑フィルターを通すことによって生成した駆動信号を容量性負荷に印加する。また、駆動信号に位相進み補償を行って帰還信号を生成し、駆動波形信号に負帰還させる。平滑フィルターと容量性負荷とは取り替え可能な配線によって接続されている。平滑フィルターと容量性負荷とを配線によって接続すると、その配線に関する配線情報が取得され、そして、配線情報に応じたキャリア周波数でパルス変調が行われる。こうすれば、配線に応じたキャリア周波数でパルス変調されるので、駆動信号にキャリアリップルが重畳することを回避することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧電素子などの容量性負荷に駆動信号を用いて駆動する技術に関する。
【背景技術】
【0002】
インクジェットプリンターに搭載されている噴射ヘッドのように、圧電素子などの容量性負荷によって構成されて、駆動信号が印加されることによって動作するアクチュエーターは数多く存在する。この駆動信号を、アナログ増幅回路を用いて生成しようとすると、アナログ増幅回路内を大きな電流が流れるために大きな電力が消費される。その結果、電力効率が低下するだけでなく、回路基板が大きくなり、更には、消費された電力が熱に変わるので大きな放熱版が必要になって、ますます基板が大型化する。
【0003】
そこで、アナログの駆動信号を直接増幅するのではなく、駆動信号の基準となる駆動波形信号をパルス変調して変調信号に一旦変換し、得られた変調信号を増幅した後に平滑フィルターを通すことによって、増幅された駆動信号を得るようにした技術が提案されている(特許文献1)。変調信号の増幅は、スイッチのON/OFFを切り換えるだけで実現することが可能である。更に、平滑フィルターは、コイルとコンデンサーとを組み合わせたLC回路を用いて実現できるので、原理的には電力を消費することがない。このため提案の技術によれば、大きな電力を消費することなく駆動信号を生成することが可能であり、回路基板を小型化することが可能である。
【0004】
この提案の技術は、LC回路で平滑フィルターを構成しているため、LC回路の共振周波数でゲインにピークが現れる。通常は、電気負荷が有する抵抗値によって、あるいは別途にダンピング抵抗を挿入することによって出力ピークを抑制するが、この方法では抵抗によって電力消費が発生する。そこで、出力段からのフィードバックを行って、出力ピークを抑制することが提案されている(特許文献2)。また、平滑フィルターを通った信号は位相が最大で180度まで遅れるので、出力段の信号でそのままフィードバックをかけると出力が発振する恐れがある。そこで、出力段の信号に位相進み補償をかけてからフィードバックすることが行われる。
【0005】
また、出力段からの信号をフィードバックする際に、平滑フィルターから容量性負荷までの配線が有する抵抗によって駆動信号の波形がなまる(波形の電圧変化がなだらかになる)ことを抑制するために、配線抵抗を考慮してフィードバックをかける技術(特許文献3)や、消費電力を抑制する目的で、パルス変調する際のキャリア周波数を駆動信号の波形に応じて切り換える技術(特許文献4)なども提案されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−168172号公報
【特許文献2】特開2009−153272号公報
【特許文献3】特開2005−329710号公報
【特許文献4】特開2007−190708号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、上述した特許文献1〜特許文献4を初めとする従来の技術では、平滑フィルターで除去している筈のキャリア周波数のリップル(キャリアリップル)が駆動信号に重畳する場合があるという問題があった。そのため、容量性負荷であるアクチュエーターを適切に駆動できなくなるという問題があった。
【0008】
この発明は、従来の技術が有する上述した課題の少なくとも一部を解決するためになされたものであり、平滑フィルター後の駆動信号にキャリア周波数のリップルが重畳することを回避可能な技術を提供することを目的とする。
【課題を解決するための手段】
【0009】
上述した課題の少なくとも一部を解決するために、本発明の容量性負荷駆動回路は次の構成を採用した。すなわち、
容量成分を有する容量性負荷に対して駆動信号を印加することによって、該容量性負荷を駆動する容量性負荷駆動回路であって、
前記駆動信号の基準となる駆動波形信号を発生する駆動波形信号発生回路と、
前記容量性負荷に印加された駆動信号から生成された帰還信号を、前記駆動波形信号から減算することによって誤差信号を出力する演算回路と、
前記誤差信号をパルス変調して変調信号を生成する変調回路と、
前記変調信号を電力増幅してパルス波状の電力増幅変調信号を生成するデジタル電力増幅器と、
前記パルス波状の電力増幅変調信号を平滑化することによって前記駆動信号を生成する平滑フィルターと、
前記駆動信号に位相進み補償を行い、該位相進み補償後の信号を前記帰還信号として出力する位相進み補償回路と、
前記平滑フィルターと前記容量性負荷とを接続し、取り替え可能に設けられた配線と、
前記配線についての情報である配線情報を取得する配線情報取得手段と、
前記変調回路が前記誤差信号をパルス変調する際のキャリア周波数を、前記配線情報に基づいて変更するキャリア周波数変更手段と
を備えることを要旨とする。
【0010】
こうした本発明の容量性負荷駆動回路においては、容量性負荷に印加すべき駆動信号の基準となる駆動波形信号を、パルス変調することによって変調信号を生成し、得られた変調信号を電力増幅した後に平滑化することによって、駆動信号を生成する。こうして容量性負荷に印加された駆動信号に対して位相進み補償を行って帰還信号を生成し、駆動波形信号に負帰還させる。平滑フィルターと容量性負荷とは配線によって接続されており、平滑フィルターから出力された駆動信号は、配線を経由して容量性負荷に印加される。また、配線は取り替え可能となっており、平滑フィルターと容量性負荷とを配線によって接続すると、その配線に関する配線情報が取得され、そして、配線情報に応じたキャリア周波数でパルス変調が行われるようになっている。
【0011】
こうすれば、駆動信号の基準となる駆動波形信号に対して、容量性負荷に印加された駆動信号を負帰還させるので、平滑フィルターの共振の影響で駆動信号が歪んでしまうことを抑制することができる。また、駆動信号を負帰還させるに際しては、位相を進ませる補償(位相進み補償)を行ってから負帰還させているので、平滑フィルターによって位相が遅れた駆動信号を負帰還させることが原因で駆動信号の出力が不安定になってしまうこともない。更に、詳細には後述するが、キャリアリップルが重畳し易い周波数は配線によって決まっている。従って、キャリアリップルが重畳し易い周波数に関連する情報を配線情報として記憶しておけば、接続された配線の配線情報を取得して、キャリアリップルの重畳し易い周波数を避けたキャリア周波数でパルス変調することがきる。その結果、駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【0012】
また、本発明の容量性負荷駆動回路においては、配線が有する誘導成分の大きさまたはインピーダンスに関連付けられた情報を、配線情報として取得しても良い。
【0013】
キャリアリップルが重畳し易い周波数は、配線が有する誘導成分の大きさまたはインピーダンスに強く影響される。従って、配線が有する誘導成分の大きさまたはインピーダンスに関連付けられた情報を配線情報として取得すれば、キャリアリップルの重畳し易い周波数を避けたキャリア周波数でパルス変調することができるので、駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【0014】
また、上述した本発明の容量性負荷駆動回路においては、配線の長さに関連付けられた情報を、配線情報として取得しても良い。
【0015】
配線が有する誘導成分の大きさは、配線の長さに大きく依存する。従って、配線の長さに関連付けられた情報を配線情報として記憶しておけば、キャリアリップルの重畳し易い周波数を避けたキャリア周波数でパルス変調して、駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【0016】
また、上述した本発明の容量性負荷駆動回路においては、配線情報が記載されたIDタグを配線に設けておいてもよい。
【0017】
こうすれば、容量性負荷駆動回路の操作者がIDタグに記載された配線情報を読み取って、配線情報を取得することで、キャリアリップルの重畳し易い周波数を避けたキャリア周波数でパルス変調することが可能となり、その結果、駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【0018】
また、上述した本発明の容量性負荷駆動回路においては、配線情報を読み出し可能に記憶した記憶媒体を搭載しておき、配線が接続されると、記憶媒体から配線情報を読み出すようにしてもよい。
【0019】
こうすれば、配線を接続するだけで配線情報が読み出されて、キャリアリップルの重畳し易い周波数を避けたキャリア周波数でパルス変調することができる。その結果、駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【0020】
また、上述した本発明の容量性負荷駆動回路においては、次のようにしても良い。先ず、配線の少なくとも平滑フィルター側のコネクターには端子が突設されており、配線を接続すると、平滑フィルターからの駆動信号が端子を介して伝達されるようにしておく。そして、コネクターには、駆動信号の伝達に拘わらない端子も突設可能としておき、配線情報取得手段は、駆動信号の伝達に拘わらない端子がコネクターに突設されているか否かを検出することによって、配線情報を取得するようにしてもよい。
【0021】
こうすれば、配線が接続された時に、駆動信号の伝達に拘わらない端子がコネクターに突設されているか否かに応じて、適切なキャリア周波数を選択してパルス変調することができる。その結果、駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【図面の簡単な説明】
【0022】
【図1】本実施例の容量性負荷駆動回路を搭載した液体噴射装置の構成を示した説明図である。
【図2】本実施例の容量性負荷駆動回路の回路構成を示した説明図である。
【図3】配線ケーブルが有する誘導成分(および抵抗成分)の影響でキャリアリップルが発生するメカニズムを示した説明図である。
【図4】第1実施例の容量性負荷駆動回路の一部を示した回路図である。
【図5】IDタグの配線情報に対応してキャリア周波数が変更される様子をまとめた説明図である。
【図6】配線情報に応じてキャリア周波数を変更することでキャリアリップルが重畳することを回避可能な理由を示した説明図である。
【図7】第1実施例の他の態様を例示した説明図である。
【図8】第2実施例の容量性負荷駆動回路の一部を示した回路図である。
【図9】第3実施例の容量性負荷駆動回路の一部を示した回路図である。
【発明を実施するための形態】
【0023】
以下では、上述した本願発明の内容を明確にするために、次のような順序に従って実施例を説明する。
A.装置構成:
B.容量性負荷駆動回路の回路構成:
C.キャリアリップルが発生するメカニズム:
D.第1実施例の容量性負荷駆動回路:
E.第2実施例の容量性負荷駆動回路:
F.第3実施例の容量性負荷駆動回路:
【0024】
A.装置構成 :
図1は、本実施例の容量性負荷駆動回路200を搭載した液体噴射装置100の構成を示した説明図である。図示されているように液体噴射装置100は、大きく分けると、液体を噴射する噴射ユニット110と、噴射ユニット110から噴射される液体を噴射ユニット110に向けて供給する供給ポンプ120と、噴射ユニット110および供給ポンプ120の動作を制御する制御ユニット130などから構成されている。液体噴射装置100は、パルス状の液体を噴射ユニット110から噴射することによって、生体組織を切除または切開することに使用する手術具としてのウォータージェットメスの一例である。
【0025】
噴射ユニット110は、金属製のフロントブロック113に、同じく金属製のリアブロック114を重ねてネジ止めした構造となっており、フロントブロック113の前面には円管形状の液体通路管112が立設され、液体通路管112の先端には噴射ノズル111が挿着されている。フロントブロック113とリアブロック114との合わせ面には、薄い円板形状の液体室115が形成されており、液体室115は、液体通路管112を介して噴射ノズル111に接続されている。また、リアブロック114の内部には、積層型の圧電素子によって構成されたアクチュエーター116が設けられている。噴射ユニット110と制御ユニット130とは配線ケーブル150によって接続されており、制御ユニット130内の容量性負荷駆動回路200からは、配線ケーブル150を介して駆動信号がアクチュエーター116に供給される。また、配線ケーブル150の一端側はコネクター152によって噴射ユニット110に取り付けられ、配線ケーブル150の他端側はコネクター154によって制御ユニット130に取り付けられている。このため、配線ケーブル150は、長さや特性の異なる種々の配線ケーブル150に取り替えることが可能となっている。尚、この配線ケーブル150が、本発明における「配線」に対応し、アクチュエーター116が、本発明における「容量性負荷」に対応する。
【0026】
供給ポンプ120は、噴射しようとする液体(水、生理食塩水、薬液など)が貯められた液体タンク123から、チューブ121を介して液体を吸い上げた後、チューブ122を介して噴射ユニット110の液体室115内に供給する。このため、液体室115は液体で満たされた状態となっている。
【0027】
そして、制御ユニット130から駆動信号をアクチュエーター116に印加すると、アクチュエーター116が伸張して液体室115が押し縮められ、その結果、液体室115内に充満していた液体が、噴射ノズル111からパルス状に噴射される。アクチュエーター116の伸張量は、駆動信号として印加される電圧に依存する。従って、所望の特性のパルス状の液体を噴射するためには、精度の良い駆動信号をアクチュエーター116に印加する必要がある。そこで、このような駆動信号を生成するために、制御ユニット130内には、以下に説明するような容量性負荷駆動回路200が搭載されている。
【0028】
B.容量性負荷駆動回路の回路構成 :
図2は、制御ユニット130に搭載された容量性負荷駆動回路200の回路構成を示した説明図である。図示されているように容量性負荷駆動回路200は、駆動信号の基準となる駆動波形信号(以下、WCOM)を出力する駆動波形信号発生回路210と、駆動波形信号発生回路210から受け取ったWCOMと後述する帰還信号(以下、dCOM)とに基づいて誤差信号(以下、dWCOM)を出力する演算回路220と、演算回路220からのdWCOMをパルス変調して変調信号(以下、MCOM)に変換する変調回路230と、変調回路230からのMCOMをデジタル的に電力増幅して電力増幅変調信号(以下、ACOM)を生成するデジタル電力増幅器240と、デジタル電力増幅器240からACOMを受け取って変調成分を取り除いた後、駆動信号(以下、COM)として噴射ユニット110のアクチュエーター116に供給する平滑フィルター250と、平滑フィルター250から出力されたCOMに対して位相を進ませる補償(位相進み補償)を加えて、dCOM(帰還信号)を生成する位相進み補償回路260とを備えている。
【0029】
このうち、駆動波形信号発生回路210は、WCOMのデータを記憶した波形メモリーや、D/A変換器を備えており、波形メモリーから読み出したデータをD/A変換器でアナログ信号に変換することによって、WCOM(駆動波形信号)を生成する。演算回路220では、こうして出力されたWCOMからdCOMを減算した信号を、dWCOM(誤差信号)として出力する。また逆に、駆動波形信号発生回路210は、WCOMのデータを記憶した波形メモリーからデジタルデータとしてWCOM(駆動波形信号)を読出し、A/D変換器でdCOMをデジタルデータとした後、信号処理回路を用いて演算回路220でWCOMからdCOMをデジタル演算により減算し、dWCOM(誤差信号)をデジタルデータとして生成する構成としてもよい。その場合、変調回路230は前記信号処理回路を用いてデジタル回路で構成し、dWCOMをデジタルデータのまま取り扱うようにする。
【0030】
変調回路230では、dWCOMを一定周期の三角波と比較することによって、パルス波状のMCOM(変調信号)を生成(パルス変調)する。ここで、パルス変調に用いる三角波の基底周波数(キャリア周波数)は、キャリア周波数変更手段280からの制御によって変更可能となっている。そして、キャリア周波数変更手段280は、配線情報取得手段270によって取得した配線情報(噴射ユニット110と制御ユニット130とを接続している配線ケーブル150に関する情報)に基づいてキャリア周波数を変更する。詳細には後述するが、こうして配線情報に基づいて、パルス変調する際のキャリア周波数を変更することによって、COMにキャリアリップルが重畳することを回避することが可能となる。
【0031】
変調回路230によって得られたMCOMは、デジタル電力増幅器240に入力される。デジタル電力増幅器240は、プッシュ・プル接続された2つのスイッチ素子(MOSFETなど)と、電源と、これらスイッチ素子を駆動するゲートドライバーとを備えている。MCOMがHigh状態の場合は、ハイサイド側のスイッチ素子がON状態になり、ローサイド側のスイッチ素子がOFF状態になって、電源の電圧VddがACOMとして出力される。また、MCOMがLow状態の場合は、ハイサイド側のスイッチ素子がOFF状態になり、ローサイド側のスイッチ素子がON状態になってグランドの電圧がACOMとして出力される。その結果、変調回路230の動作電圧とグランドとの間でパルス波状に変化するMCOMが、電源の電圧Vddとグランドとの間でパルス波状に変化するACOMに電力増幅される。この増幅では、プッシュ・プル接続された2つのスイッチ素子のON/OFFを切り換えているだけなので、アナログ波形を増幅する場合に比べて電力損失を大幅に抑制することが可能である。その結果、電力効率を向上させることが可能となるだけでなく、放熱のために大きなヒートシンクを設ける必要もなくなるので、回路を小型化することも可能となる。
【0032】
こうして電力増幅されたACOM(電力増幅変調信号)は、LC回路によって構成される平滑フィルター250を通すことによってCOM(駆動信号)に変換され、配線ケーブル150を介してアクチュエーター116に印加される。また、COMは演算回路220に負帰還されるが、平滑フィルター250を通過することによって、COMはWCOMに対して位相が遅れている。そこで、COMを単純に負帰還させるのではなく、コンデンサーと抵抗とによって構成された位相進み補償回路260を通して位相を進ませる補償(位相進み補償)を行い、得られた信号をdCOMとして演算回路220に負帰還させるようになっている。配線情報取得手段270の詳細な構成については後述する。
【0033】
ここで、図2に示されるように、配線ケーブル150も誘導成分および抵抗成分を有している。従って、この影響で、平滑フィルター250から出力されたCOMと、実際にアクチュエーター116に印加される信号(以下、RCOM)との間には、何某かのズレが生じているものと思われる。実際に検討してみると、配線ケーブル150の誘導成分(および抵抗成分)の影響で、実際にアクチュエーター116に印加されるRCOMにキャリアリップルが重畳し得ることが見いだされた。ここでキャリアリップルとは、アクチュエーター116に印加されるRCOMに含まれる、パルス変調に用いるキャリア信号(三角波信号)の信号成分を意味する。以下、この点について詳しく説明する。
【0034】
C.キャリアリップルが発生するメカニズム :
図3は、配線ケーブル150が有する誘導成分(および抵抗成分)の影響でキャリアリップルが発生するメカニズムを示した説明図である。図3(a)には、ACOMからRCOMまでの回路構成が示されている。平滑フィルター250のコイルのインダクタンスをLlpf とし、平滑フィルター250の容量成分のキャパシタンスをClpf とする。同様に、片側の配線が有する抵抗値およびインダクタンスを、Rc 、Lc とする。更に、容量性負荷のキャパシタンスをCloadとする。
【0035】
また便宜上、平滑フィルター250のコイルの伝達関数をZ1 とおき、配線ケーブル150の往き側(平滑フィルター250からアクチュエーター116へ送る側)の伝達関数をZa とおき、アクチュエーター116に配線ケーブル150の戻り側(アクチュエーター116から容量性負荷駆動回路200のグランドへ戻す側)を加えた部分の伝達関数をZb とおくと、Z1 、Za 、Zb はそれぞれ以下の式で与えられる。
Z1 =s・Llpf
Za =Rc +s・Lc
Zb =1/(s・Cload)+(Rc +s・Lc )
また、図3(a)に示した回路構成の中で、平滑フィルター250のコイルに直列に接続された伝達要素(配線ケーブル150の往復部分とアクチュエーター116と平滑フィルター250の容量成分)の伝達関数Z2 は、次式で与えられる。
Z2 ={1/(s・Clpf )}//{2(Rc +s・Lc )+1/(s・Cload)}
但し、sはラプラス演算子で、虚数単位jに角周波数ωをかけたものである。また//は、並列接続の合成インピーダンスを表す並列合成記号である。
すると、ACOMとRCOMとの間の伝達関数Hは、図3(b)の式で与えられる。
【0036】
図3(c)には、伝達関数Hのゲイン-周波数特性の一例が示されている。尚、図3(c)では、配線ケーブル150の単位長あたりの抵抗(=2×Rc )を、数百ミリΩ程度とし、単位長あたりのインダクタンス(=2×Lc )を数μH程度と想定して、種々の配線長で得られるゲイン−周波数特性を例示している。
【0037】
図3(c)中に示した破線は、配線ケーブル150の長さが2[m(メートル)]の場合のゲイン−周波数特性であり、一点鎖線は長さが1[m]の場合のゲイン−周波数特性であり、二点鎖線は0.5[m]の場合のゲイン−周波数特性である。また、実線は、配線ケーブル150なしの場合のゲイン−周波数特性を表している。図示されるように、配線ケーブル150を介してアクチュエーター116(容量性負荷)を接続すると、平滑フィルター250の共振周波数f0 よりも高周波数側に、配線ケーブル150のインダクタンスと容量性負荷とによる共振が発生する。また、配線ケーブル150の長さを変更すると配線ケーブル150のインダクタンス値が変化するので、共振周波数fc が変化する。従って、接続する配線ケーブル150の長さによっては、パルス変調時のキャリア周波数に共振ピークが接近(あるいは一致)して、アクチュエーター116に印加する駆動信号に非常に大きなキャリアリップルが残ってしまう場合が起こり得る。
【0038】
たとえば、デジタル電力増幅器240の電源電圧を100Vとし、平滑フィルター250とアクチュエーター116とを繋ぐ配線ケーブル150は、0.5[m]〜2[m]までの間で種々の長さのものが接続されるものとする。仮に、配線ケーブル150のインダクタンスが0であったとすると(ケーブル長が0[m]の場合に相当)、図3(c)に示した実線のゲイン−周波数特性に示されるように、キャリア周波数fc におけるゲインは−40dbであり、駆動信号に残るキャリアリップルは1Vppとなる。しかし、配線ケーブル150のケーブル長が0.5[m]の場合には、キャリア周波数fc におけるゲインは−40dbとなり、ケーブル長が1[m]の場合は−20dbとなり、ケーブル長が2[m]の場合は−45dbとなる。駆動信号に残るキャリアリップルは、それぞれ1Vpp、10Vpp、0.56Vppとなる。デジタル電力増幅器240によって増幅されたACOMを、平滑フィルター250を通して平滑化しているにも拘わらず、駆動信号にキャリアリップルが重畳することがあるのは、以上のようなメカニズムによるものと考えられる。
【0039】
キャリアリップルが重畳していたのではアクチュエーター116を適切に駆動することができない。しかし、配線中にダンピング抵抗を挿入したのでは、抵抗で電力を消費してしまうので電力効率が低下する。また、キャリアリップルの周波数成分が更に抑制されるように平滑フィルター250の特性を変更すると、平滑フィルター250の共振周波数f0 が低くなるので信号周波数の帯域が確保できなくなる。逆に、パルス変調時のキャリア周波数を高くすればキャリアリップルを抑制することができるが、パルス変調時あるいは変調信号の増幅時のスイッチング損失の増加を招くことになる。そこで、こうした問題を伴うことなく、キャリアリップルの無い駆動信号をアクチュエーター116に印加するために、以下のような方法を採用する。
【0040】
D.第1実施例の容量性負荷駆動回路 :
図4は、第1実施例の容量性負荷駆動回路200の一部を示した回路図である。第1実施例では、配線ケーブル150のケーブル長(あるいはケーブルの特性)に対応するIDタグ160が配線ケーブル150に設けられている。制御ユニット130の起動時に、IDタグ160に記載された配線情報(ケーブル長やケーブルの特性など)を液体噴射装置100の操作者が読み取って、スイッチ272のON/OFFを設定することでキャリア周波数変更手段280に配線情報を入力する。すると、キャリア周波数変更手段280は、入力された配線情報に基づいてキャリア周波数を変更する。変調回路230は、変更されたキャリア周波数を用いてdWCOMをパルス変調する。
【0041】
図5は、IDタグ160の配線情報に対応してキャリア周波数が変更される様子をまとめた説明図である。尚、ここでは配線情報として、配線ケーブル150の長さが記載されているものとする。たとえば、配線情報であるケーブル長がx[m(メートル)]であった場合は、液体噴射装置100の操作者がスイッチ272をOFFに設定する。すると、キャリア周波数変更手段280によってキャリア周波数fcx1 が選択される。また、配線情報であるケーブル長が2x[m]あるいは4x[m]であった場合には、スイッチ272をONに設定することで、キャリア周波数fcx2 が選択される。こうすることで、以下の理由から、アクチュエーター116への駆動信号にキャリアリップルが重畳することを回避することが可能となる。尚、図5では、配線情報としてケーブル長が記載されているものとして説明しているが、配線情報としては、単なる数字や記号であってもよく、あるいはスイッチ272の設定状態であってもよい。また、第1実施例では、スイッチ272が本発明における「配線情報取得手段」に対応する。
【0042】
図6は、配線情報に応じてキャリア周波数を変更することで、キャリアリップルが重畳することを回避可能な理由を示した説明図である。ここでは、接続される可能性のある配線ケーブル150は、x[m]、2x[m]、4x[m]の3種類であるとする。すると、それぞれの配線ケーブル150を用いたときに、配線ケーブル150とアクチュエーター116との間で生じる共振の共振周波数は、予め調べておくことができる。
【0043】
図6には、x[m]の配線ケーブル150を接続したときのゲイン−周波数特性が二点鎖線で示されている。また、2x[m]の配線ケーブル150を接続したときのゲイン−周波数特性が一点鎖線で示されており、4x[m]の配線ケーブル150のゲイン−周波数特性が破線で示されている。ここで、平滑フィルター250の共振周波数は、必要な信号周波数帯域から決定されており、それ以上には低くできない。すなわち高周波領域における減衰量をそれ以上大きくは設計できないものとする。そのように決定された平滑フィルター250の特性において、配線ケーブル150が接続されていない理想状態の場合に、アプリケーションのキャリアリップルの仕様値を最低限満足できる周波数(最低周波数)が、図6において「fcmin」と表示されている。また、スイッチング損失を抑制する観点、すなわちスイッチ素子の発熱による破壊防止の観点から、キャリア周波数をこれ以上には高くできない周波数が存在する。図6では、このような周波数(最高周波数)が「fcmax」と表示されている。パルス変調時のキャリア周波数は、最低周波数fcmin〜最高周波数fcmaxとの間で設計する必要がある。そこで、最低周波数fcmin〜最高周波数fcmaxとの間に、互いの間隔を離して2種類のキャリア周波数fcx1 ,fcx2 を設定しておく。また、キャリア周波数におけるゲインが−40db以下であれば、キャリアリップルが目立たないものとする。
【0044】
図6から明らかなように、ケーブル長がx[m]の配線ケーブル150を接続した場合は、キャリア周波数をfcx1 に設定すれば、ゲインを−40dbに抑えることが可能である。また、ケーブル長が2x[m]や4x[m]の配線ケーブル150を接続した場合は、キャリア周波数をfcx2 に設定することで、キャリア周波数におけるゲインを−40db以下に抑えることが可能である。そこで、図5に示すように、配線ケーブル150のケーブル長(すなわち、配線情報)に対してキャリア周波数を設定しておく。こうすれば、x「m」〜4x「m」のいずれの配線ケーブル150が接続された場合でも、アクチュエーター116への駆動信号にキャリアリップルが重畳してしまうことを回避することが可能となる。尚、予め設定しておく2種類のキャリア周波数fcx1 ,fcx2 としては、最低周波数fcmin、および最高周波数fcmaxを設定しておいても良い。
【0045】
あるいは、最低周波数fcmin〜最高周波数fcmaxとの間に、より多種類(3種類以上)のキャリア周波数を設定しておき、IDタグ160の配線情報に応じてキャリア周波数を設定するようにしても良い。
【0046】
図7は、3種類以上のキャリア周波数の中から配線情報に応じたキャリア周波数を選択する第1実施例の他の態様を例示した説明図である。図7(a)には、最低周波数fcmin〜最高周波数fcmaxとの間に、3種類のキャリア周波数fcx1 ,fcx2,fcx3 が設定されている様子が示されている。また、図7(b)には、IDタグ160に記載されたケーブル長(配線情報)に応じて、2つのスイッチを設定することにより、何れかのキャリア周波数が選択される様子が示されている。このようにキャリア周波数の種類を増やせば、接続される配線ケーブル150に応じて、より適切なキャリア周波数を選択することが可能となる。
【0047】
E.第2実施例の容量性負荷駆動回路 :
以上に説明した第1実施例では、IDタグ160に記載された配線情報を、液体噴射装置100の操作者がスイッチ272を設定することによって、キャリア周波数が選択されるものとして説明した。これに対して、配線ケーブル150を接続するだけで配線情報がキャリア周波数変更手段280に伝達されて、キャリア周波数が設定されるようにすることも可能である。尚、以下に説明する第2実施例および第3実施例において、第1実施例と同一の構成については同一の符号を付し、その説明を省略する。
【0048】
図8は、配線ケーブル150を接続することで配線情報に応じたキャリア周波数が設定されるようにした第2実施例の容量性負荷駆動回路200の一部を示した回路図である。第2実施例では、配線ケーブル150の制御ユニット130側(容量性負荷駆動回路200側)に接続されるコネクター154が雄コネクターとなっており、制御ユニット130側(容量性負荷駆動回路200側)のコネクターが雌コネクターとなっている。配線ケーブル150側のコネクター154には、端子274aおよび端子274bが立設されており、配線ケーブル150を制御ユニット130(容量性負荷駆動回路200)に接続すると、端子274aは平滑フィルター250から出力されるCOMのラインに接続され、端子274bはグランドラインに接続される。
【0049】
また、図8に示すように、第2実施例では、配線ケーブル150の制御ユニット130(容量性負荷駆動回路200)側のコネクター154に、もう1本の端子274cも設けられている。この端子274cは、配線ケーブル150を制御ユニット130(容量性負荷駆動回路200)に接続すると、容量性負荷駆動回路200側に設けられた接点を短絡させるようになっている。すなわち、コネクター154に端子274cが設けられていれば、容量性負荷駆動回路200の接点が短絡し、端子274cが設けられていなければ容量性負荷駆動回路200の接点が切断された状態となる。従って、配線ケーブル150のコネクター154に端子274cを設けるか否かによって、配線情報を記憶しておくことができる。
【0050】
そして、キャリア周波数変更手段280では、配線ケーブル150が接続されたときの接点の状態によって配線情報を検出して、キャリア周波数を設定する。たとえば、ケーブル長がx[m]の場合にはコネクター154に端子274cを設けずに、2x[m]または4x[m]の場合には端子274cを設けておく。そして、配線ケーブル150が接続されたときに、接点が短絡していればキャリア周波数fcx1 を選択し、接点が短絡していなければキャリア周波数fcx2 を選択するようにすれば、図5に示した場合と同様に配線ケーブル150に応じたキャリア周波数を設定することが可能となる。
【0051】
尚、以上の説明では、1本の端子274cの有無によって配線情報を記憶するものとしているから、配線情報は1ビットの情報となり、2種類のキャリア周波数fcx1 ,fcx2 の中から何れかを選択することができる。これに対して複数本の端子274cの有無によって配線情報を記憶すれば、配線情報のビット数が多くなるので、より他種類のキャリア周波数の中から適切なキャリア周波数を設定することが可能となる。
【0052】
F.第3実施例の容量性負荷駆動回路 :
上述した第2実施例では、配線ケーブル150のコネクター154に設けられた端子274cの有無によって配線情報を記憶するものとして説明した。これに対して、配線ケーブル150の制御ユニット130(容量性負荷駆動回路200)側のコネクター154に、配線情報を記憶したROM(記憶媒体)を予め搭載しておいてもよい。
【0053】
図9は、配線ケーブル150のコネクター154内に配線情報を記憶したROMを搭載した第3実施例の容量性負荷駆動回路200の一部を示した回路図である。第3実施例においては、配線ケーブル150の容量性負荷駆動回路200側のコネクター154にROM162が搭載されており、また、容量性負荷駆動回路200にはROM162のデータを読み取るROMデータリード回路276が設けられている。
【0054】
配線ケーブル150を制御ユニット130の容量性負荷駆動回路200に接続して、制御ユニット130を起動すると、容量性負荷駆動回路200に設けられたROMデータリード回路276によって、ROM162内に記憶されている配線情報が読み出されてキャリア周波数変更手段280に入力される。そして、図5または図7(b)に示すような対応関係に基づいて、配線情報に対応したキャリア周波数が選択されて、そのキャリア周波数でパルス変調が行われる。こうすれば、配線ケーブル150に応じたキャリア周波数でパルス変調を行うことができるので、アクチュエーター116に印加する駆動信号にキャリアリップルが重畳することを回避することが可能となる。
【0055】
以上、各種実施例の容量性負荷駆動回路について説明したが、本発明は上記すべての実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。例えば、薬剤や栄養剤を内包するマイクロカプセルを形成することに用いる流体噴射装置など、医療機器を含む様々な電子機器に本実施例の容量性負荷駆動回路を適用することで、電力効率が良く小型化の電子機器を提供することができる。また、インクジェットプリンターに搭載されて、インクを噴射する噴射ノズルを駆動するための容量性負荷駆動回路に対しても、本発明を好適に適用することが可能である。
【符号の説明】
【0056】
100…液体噴射装置、 110…噴射ユニット、 111…噴射ノズル、
112…液体通路管、 113…フロントブロック、 114…リアブロック、
115…液体室、 116…アクチュエーター、 120…供給ポンプ、
121…チューブ、 122…チューブ、 123…液体タンク、
130…制御ユニット、 150…配線ケーブル、 152…コネクター、
154…コネクター、 160…IDタグ、 162…ROM、
200…容量性負荷駆動回路、 210…駆動波形信号発生回路、
220…演算回路、 230…変調回路、 240…デジタル電力増幅器、
250…平滑フィルター、 260…補償回路、 270…配線情報取得手段、
272…スイッチ、 274a〜c…端子、
276…ROMデータリード回路、 280…キャリア周波数変更手段

【特許請求の範囲】
【請求項1】
容量成分を有する容量性負荷に対して駆動信号を印加することによって、該容量性負荷を駆動する容量性負荷駆動回路であって、
前記駆動信号の基準となる駆動波形信号を発生する駆動波形信号発生回路と、
前記容量性負荷に印加された駆動信号を用いて生成された帰還信号を、前記駆動波形信号から減算することによって誤差信号を出力する演算回路と、
前記誤差信号をパルス変調して変調信号を生成する変調回路と、
前記変調信号を電力増幅してパルス波状の電力増幅変調信号を生成するデジタル電力増幅器と、
前記パルス波状の電力増幅変調信号を平滑化することによって前記駆動信号を生成する平滑フィルターと、
前記駆動信号に位相進み補償を行い、該位相進み補償後の信号を前記帰還信号として出力する位相進み補償回路と、
前記平滑フィルターと前記容量性負荷とを接続し、取り替え可能に設けられた配線と、
前記配線についての情報である配線情報を取得する配線情報取得手段と、
前記変調回路が前記誤差信号をパルス変調する際のキャリア周波数を、前記配線情報に基づいて変更するキャリア周波数変更手段と
を備える容量性負荷駆動回路。
【請求項2】
前記配線情報は前記配線が有する誘導成分の大きさまたはインピーダンスに関連付けられた情報である請求項1に記載の容量性負荷駆動回路。
【請求項3】
前記配線情報は前記配線の長さに関連付けられた情報である請求項1または請求項2に記載の容量性負荷駆動回路。
【請求項4】
前記配線には、前記配線情報が記載されたIDタグが設けられている請求項1ないし請求項3の何れか一項に記載の容量性負荷駆動回路。
【請求項5】
請求項1ないし請求項3の何れか一項に記載の容量性負荷駆動回路であって、
前記配線には、前記配線情報を読み出し可能に記憶した記憶媒体が搭載されており、
前記配線情報取得手段は、前記記憶媒体から前記配線情報を読み出す手段である容量性負荷駆動回路。
【請求項6】
請求項1ないし請求項3の何れか一項に記載の容量性負荷駆動回路であって、
前記配線の少なくとも前記平滑フィルター側のコネクターには、該平滑フィルターからの前記駆動信号が伝達される端子が突設されており、
前記配線情報取得手段は、前記駆動信号が伝達されない端子が前記コネクターに突設されているか否かを検出することによって、前記配線情報を取得する手段である容量性負荷駆動回路。
【請求項7】
請求項1ないし請求項6の何れか一項に記載の容量性負荷駆動回路と、
液体を供給する供給ポンプと、
前記供給ポンプから供給された液体が流入する液体室と、前記容量性負荷であるアクチュエーターと、前記液体室に流入された液体を噴射する噴射ノズルとを有する噴射ユニットと、
を備え、
前記駆動信号が前記アクチュエーターに印加されることによって、前記液体室に流入された液体が前記噴射ノズルからパルス状に噴射される、
液体噴射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−116098(P2012−116098A)
【公開日】平成24年6月21日(2012.6.21)
【国際特許分類】
【出願番号】特願2010−268089(P2010−268089)
【出願日】平成22年12月1日(2010.12.1)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】