説明

小便器洗浄装置及び小便器洗浄システム

【課題】マイクロ波ドップラセンサの動作をランダム周期で間欠的に行う場合においても、蛍光灯などからのノイズによる誤動作を抑制することができる小便器洗浄装置を提供すること。
【解決手段】ボール部に向けて電波を送信し、その反射波を受信してドップラ信号を生成するマイクロ波ドップラセンサを有し、ドップラ信号に基づいてボール部内に洗浄水を供給する小便器洗浄装置において、ランダムな不等間隔サンプリング周期でマイクロ波ドップラセンサを間欠動作させるセンサ制御手段と、サンプリング周期で出力されるドップラ信号を順次A/D変換してドップラ信号データを生成するA/D変換手段と、ドップラ信号データを所定の等間隔サンプリング周期のデータへ補間する周期補間手段と、補間した前記等間隔サンプリング周期のデータに含まれるノイズを除去するデジタルフィルタとを備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、小便器洗浄装置及び小便器洗浄システムに関し、さらに詳細には、マイクロ波ドップラセンサから出力されるドップラ信号に基づいて尿流検出を行い、ボール部内に洗浄水を供給する小便器洗浄装置及び小便器洗浄システムに関する。
【背景技術】
【0002】
従来より、マイクロ波ドップラセンサを用いて人体や尿流を検出し、小便器のボール部内を洗浄する小便器洗浄装置が知られている(たとえば、特許文献1参照)。
【0003】
この種の小便器洗浄装置は、赤外線によって人体検出などを行う小便器洗浄装置に比べ、センサを小便器内に配置することができる点で有効である。すなわち、マイクロ波が陶器を透過することができるという特性を利用して、マイクロ波ドップラセンサを小便器の内側に隠すことができるため、小便器洗浄装置の美観を向上させることができるのである。
【0004】
また、マイクロ波ドップラセンサはドップラ効果を利用していることから、速度を検出することによって、尿流を使用者の体の動き等と区別して検出できる点で有効である。すなわち、マイクロ波ドップラセンサにより尿流を検出した後にのみ小便器のボール部内を洗浄することによって、利用者が用を足していないときに小便器の洗浄を行ってしまうことを防止することができる。
【0005】
ところが、このような小便器洗浄装置を蛍光灯のあるトイレブースに設置した場合、蛍光灯の配置や小便器洗浄装置の配置によっては、蛍光灯が発生するノイズがマイクロ波ドップラセンサによって受信されることがある。このようにノイズが受信されると、マイクロ波ドップラセンサから出力されるドップラ信号にノイズの影響が出る。このようにドップラ信号にノイズが混入すると、誤検出や検出漏れを起こしてしまうことがあり、尿流等の検出が困難になることがある。
【0006】
そこで、本出願人は、特許文献2に示すように、適応フィルタやノッチフィルタなどのデジタルフィルタを用いて、蛍光灯などからのノイズをマイクロ波ドップラセンサから出力されるドップラ信号から除去する便器洗浄装置を提案している。
【特許文献1】実開平2−69760号公報
【特許文献2】特開2004−293216号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところで、上記のような小便器洗浄装置は、家庭用トイレブースなどを除き、同一トイレブース内に複数設置されることが多い。たとえば、空港、駅、ホテル等のトイレブースなどである。しかし、上記のような小便器洗浄装置が同一トイレブース内に複数設置されると、隣接した小便器洗浄装置のマイクロ波センサ同士が影響しあい、人体や尿流の正常な検出ができないことがある。
【0008】
このようなマイクロ波センサ同士の影響を低減する問題に対して、特開2005−265615号公報には、マイクロ波ドップラセンサの動作をランダム周期で間欠的に行うことによって、マイクロ波ドップラセンサ同士の影響を無視できる程度にまで抑制し、マイクロ波ドップラセンサによる検出精度を向上させる技術が提案されている。
【0009】
そこで、小便器洗浄装置に本技術、すなわちマイクロ波ドップラセンサの動作をランダム周期で間欠的に行う技術を適用することにより、マイクロ波センサ同士の影響を低減することが考えられる。
【0010】
ところが、当該技術を上記従来の小便器洗浄装置にそのまま適用すると、デジタルフィルタによるノイズ低減効果が十分に得られなくなり、誤検出や検出漏れの恐れがあることが本発明者の鋭意研究によって見出された。すなわち、マイクロ波ドップラセンサの動作をランダム周期で間欠的に行うと、適応フィルタなどのデジタルフィルタによるノイズ除去機能が低減するのである。
【0011】
そこで、本発明は、マイクロ波ドップラセンサの動作をランダム周期で間欠的に行う場合においても、蛍光灯などからのノイズによる誤動作を抑制することができる小便器洗浄装置を提供することを目的とする。
【課題を解決するための手段】
【0012】
そこで、請求項1に記載の発明は、小便器と、前記小便器のボール部内へ洗浄水を供給する給水バルブと、前記ボール部に向けて電波を送信し、その反射波を受信してドップラ信号を生成するマイクロ波ドップラセンサと、前記ドップラ信号に基づいて尿流検出を行い、当該尿流検出に応じて前記給水バルブを制御し、前記ボール部内に洗浄水を供給する制御部と、を有する小便器洗浄装置において、前記制御部は、ランダムなサンプリング周期で前記マイクロ波ドップラセンサを間欠動作させるセンサ制御手段と、前記サンプリング周期で出力されるドップラ信号を順次A/D変換してドップラ信号データを生成するA/D変換手段と、前記ドップラ信号データを所定の等間隔サンプリング周期のデータへ補間する周期補間手段と、補間した前記等間隔サンプリング周期のデータに含まれるノイズを除去するデジタルフィルタと、を有し、前記デジタルフィルタの出力に応じて前記尿流検出を行うことを特徴とする。
【0013】
また、請求項2に記載の発明は、請求項1に記載の小便器洗浄装置において、前記デジタルフィルタは、適応フィルタであることを特徴とする。
【0014】
また、請求項3に記載の発明は、請求項1又は請求項2に記載の小便器洗浄装置において、前記周期補間手段は、前記A/D変換手段が出力する、連続した少なくとも2つ以上のA/D出力値を元に、前記補間を行うことを特徴とする。
【0015】
また、請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の小便器洗浄装置を複数設けてなる小便器洗浄システムとした。
【発明の効果】
【0016】
請求項1及び請求項4に記載の発明によれば、マイクロ波ドップラセンサを備えた小便器洗浄装置において、ランダム周期でマイクロ波ドップラセンサを間欠的に動作させることによって、他の小便器洗浄装置との干渉を可及的に抑制しつつ、ランダム周期で得られたデータを補間することによってデジタルフィルタのノイズ低減効果の低下を抑制して、尿流検出の精度を向上させることができる。
【0017】
また、請求項2に記載の発明によれば、ランダム周期で得られたデータを補間することによって適応フィルタによるノイズ低減効果の低下を抑制することができ、尿流検出の精度を向上させることができる。
【0018】
また、請求項3に記載の発明によれば、連続した少なくても2つ以上のA/D出力値を元に補間するので、制御部に新たな部品を追加することなく構成できる。
【発明を実施するための最良の形態】
【0019】
以下、本発明の最良の実施形態を図面に基づいて説明する。本実施形態においては、図1に示すように、トイレブース内に人体検出や尿流検出をマイクロ波ドップラセンサを用いて行う小便器洗浄装置Aを複数隣接させて配置した小便器洗浄装置システムSに関して説明する。
【0020】
図2は本発明の実施形態における小便器洗浄装置Aの全体構成図、図3は小便器洗浄装置Aの制御部8の概略構成図である。
【0021】
図2に示すように、本実施形態における小便器洗浄装置Aは、小便器1と、ボール部2と、給水路3の中途部に設けられ、小便器1のボール部2内へ洗浄水を供給する給水バルブ4と、ボール部2の底部に配置され、小便器1のボール部内の汚水を排水する排水路5と、この排水路5に連通するトラップ管路6と、小便器1のボール部2に向けて電波を送信し、その反射波を受信してドップラ信号を生成するマイクロ波ドップラセンサ7と、このマイクロ波ドップラセンサ7から出力されるドップラ信号に基づいて尿流検出を行い、この尿流検出の結果に応じて給水バルブ4を制御し、ボール部2内に洗浄水を供給する制御部8とを有している。なお、給水バルブ4は、電磁弁などから構成される。
【0022】
マイクロ波ドップラセンサ7は、小便器1の上部背面側に配置され、ボール部2を含む斜め下前方に向けてマイクロ波を放射して送信し、このマイクロ波の反射波を受信するものであり、尿流検出、すなわち小便器1のボール部2に尿が流れたことのほか、小便器1に人体が近づいてきたこと(人体近接)や小便器から人体が遠ざかったこと(人体離反)を検出するために用いられるものであり、図3に示すように構成されている。
【0023】
すなわち、マイクロ波ドップラセンサ7は、小便器1の上部背面側から正面側のボール部2に向けて電波を送信するために10.525GHzの電気信号である送信信号S1を生成する発振器71と、発振器71から出力される送信信号S1を10.525GHzのマイクロ波として送信する送信手段72と、送信手段72から送信されたマイクロ波が検出対象物によって反射され、その反射波を受信して電気信号に変換した受信信号S2を出力する受信手段73と、送信信号S1の周波数と受信信号S2の周波数との差分信号であるドップラ信号S3を出力する差分検出手段74から構成される。
【0024】
このマイクロ波ドップラセンサ7は、ドップラ効果を利用して以下の式(1)に基づいて検出対象物の動きを検出するために用いられるものである。
【0025】
基本式:ΔF=FS―Fb=2×FS×ν/c ・・・(1)
ΔF:ドップラ 周波数(ドップラ信号S3の周波数)
FS:送信周波数(送信信号S1の周波数)
Fb:反射周波数(受信信号S2の周波数)
ν:物体の移動速度
c:光速(300×106 m/s)
【0026】
すなわち、送信手段72から送信された周波数FSのマイクロ波は、速度νで移動している物体に反射する。この反射波は、相対運動によるドップラ周波数シフトを受けているためその周波数はFbとなる。そして、差分検出手段74によって、送信波と反射波の周波数差ΔFであるドップラ信号S3が検出信号として取り出され、このドップラ信号S3に基づいて、人体検出(人体接近検出や人体離反検出)及び尿流検出が行われる。
【0027】
ここで、本実施形態においては、物体の速度νが0.7(m/s)程度以下の速度であるときに、小便器洗浄装置Aを利用する人体が存在するものとして検出し、物体の速度νが1.4〜2.6(m/s)の速度のときにボール部2内に尿が流れているものとして検出するようにしている。したがって、人体検出するドップラ信号S3は凡そ50(Hz)以下となり、尿流検出するドップラ信号S3は凡そ100〜180(Hz)となる。
【0028】
また、マイクロ波ドップラセンサ7は、制御部8に接続されており、この制御部8によってその動作が制御され、かつドップラ信号S3に基づいた処理が行われる。
【0029】
制御部8は、図3に示すように、マイクロ波ドップラセンサ7から出力されるドップラ信号S3を増幅する増幅器10と、マイクロコンピュータ11から構成される。
【0030】
マイクロコンピュータ11は、乱数を発生する乱数発生器26と、マイクロ波ドップラセンサ7からのマイクロ波送信タイミングを乱数発生器26が生成する乱数に基づいて制御するセンサ制御手段としての送信タイミング制御手段27とを有している。ここで、乱数発生器26は、1〜α(たとえば、α=1000)の範囲内の乱数xを生成するように構成しているものとする。
【0031】
送信タイミング制御手段27は、乱数発生器26が生成する乱数xに基づいて、以下の式(2)による演算を行い、マイクロ波ドップラセンサ7を駆動させるためのタイミングt(n)を生成する。ここで、nはタイミングを生成するたびに+1だけインクリメントされる変数であり、t(n)はn番目のタイミング、β(n)はn番目の乱数xを意味する。なお、ここでは、T1=2(ms)とし、式(2)の演算をT1ごとに行うこととする。ただし、T1は2(ms)に限られるものではなく、たとえば、0.2(ms)としてもよい。
【0032】
t(n)=(n−1)×T1+β(n)/α×T1(ms)・・・(2)
【0033】
このように生成されるタイミングt(n)ごとに、マイクロ波ドップラセンサ7を駆動させるためのHighレベルの駆動信号S10がT2幅(ここでは、T2=10μsとする。)で送信される。このようにして生成された駆動信号S10の例を図4に示す。
【0034】
マイクロ波ドップラセンサ7は、Highレベルの駆動信号S10が送信タイミング制御手段27から送信されている間、発振器71を動作させ、送信手段72からマイクロ波を出力し、その反射波に基づいたドップラ信号S3を出力する。
【0035】
このようにランダムな不等間隔サンプリング周期で取得及び出力されるドップラ信号S3は、増幅器10で増幅され、マイクロコンピュータ11に入力される。
【0036】
マイクロコンピュータ11は、増幅器10で増幅されたドップラ信号S4をA/D変換してデジタルドップラ信号データS5を生成するA/D変換手段としてのA/Dコンバータ20を有しており、送信タイミング制御手段27から出力されるHighレベルの駆動信号S10と同期して動作するように構成されている。このように駆動信号S10によりランダムな不等間隔サンプリング周期でマイクロ波ドップラセンサ7及びA/Dコンバータ20を間欠動作させ、デジタルドップラ信号データS5を生成する。図5にデジタルドップラ信号データS5(t(1)〜t(9))の例を示す。
【0037】
また、マイクロコンピュータ11は、A/Dコンバータ20から出力されるデジタルドップラ信号データS5を所定の等間隔サンプリング周期(ここでは、2(ms)とする。)のデータへ補間する周期補間手段21、補間したデジタルドップラ信号データS6(以下、「補間データS6」とする。)に含まれるノイズを除去するデジタルフィルタである適応フィルタ22、人体検出に必要な周波数帯域F1(50(Hz)以下)を通過させそれ以外の帯域を除去するための第1帯域フィルタ23aと尿流検出に必要な周波数帯域F2(100〜180(Hz))を通過させそれ以外の帯域を除去するための第2帯域フィルタ23bとを有するバンドパスフィルタ23、適応フィルタ22及びバンドパスフィルタ23によってノイズ除去されたデジタルドップラ信号データS8,S8’から人体検出や尿流検出を行う検出判定処理部24、人体検出や尿流検出に基づいた検出判定処理部24からの制御によって給水バルブ4を制御する給水バルブ制御部25などを有している。また、マイクロコンピュータ11は、周期補間手段21から出力される補間データS6を遅延させる遅延回路30をも有している。
【0038】
検出判定処理部24は、人体検出周波数帯域F1のドップラ信号S8が所定期間継続して一定の閾値以上のとき人体近接検出を行い、給水バルブ制御部25を介して給水バルブ4を制御して、小便器1のボール部2上部から洗浄水を所定期間供給することにより利用者が排尿する前にボール部2内を事前洗浄する。その後、検出判定処理部24は、尿流検出周波数帯域F2のドップラ信号S8’が所定期間継続して一定の閾値以上のとき尿流検出を行い、この尿流検出が終了したときと判定すると、その後人体検出周波数帯域F1のドップラ信号S8が所定期間継続して一定の閾値以下のとき人体離反検出を行い、ボール部2上部から洗浄水を供給する(以下、「本洗浄」という。)。なお、尿流検出する前に、所定期間継続して人体検出周波数帯域F1のドップラ信号S8が所定期間継続して一定の閾値以下のときには、検出判定処理部24は、人体離反したことを検出し、本洗浄は行わない。
【0039】
ところで、上記適応フィルタ22やバンドパスフィルタ23は、人体検出や尿流検出を精度よく行うためにノイズを除去するものである。
【0040】
たとえば、適応フィルタ22は、蛍光灯9からのノイズを除去するために設けられたものである。すなわち、上述のように小便器1の設置場所における照明器具として多用されている蛍光灯9はノイズを発生することが知られている。特にマイクロ波ドップラセンサ7の指向特性パターン内に蛍光灯9が存在する場合、蛍光灯9が発するノイズがマイクロ波ドップラセンサ7で受信されやすくなる。蛍光灯9が発するノイズがマイクロ波ドップラセンサ7によって受信されたとき、マイクロ波ドップラセンサ7から出力されるドップラ信号には蛍光灯9が発するノイズが混入することになる。適応フィルタ22はノイズが混入したドップラ信号からそのノイズを除去するのである。
【0041】
蛍光灯9からのノイズの特徴は、ある程度の周期性が見られること、完全な正弦波ではなく所々に波形の乱れや大きなうねりが見られることなどがあることであり、このことは本出願人の特開2004−293216号明細書で詳解している。すなわち、蛍光灯9に供給する商用電源の周波数が例えば60Hzのとき、蛍光灯9のノイズの周波数スペクトルは、120Hzを最大振幅ピークとし、その2倍の240Hzにもピークが見られ、さらに20Hzとその2倍の40Hz、3倍の60Hzにもピークが見られる。このように蛍光灯9のノイズは、120Hzを基本成分としながらも、そのn次高調波成分や、電源周波数とは直接は関連のない周波数とそのn次高調波成分などが、複雑に組み合わされた波形となっている。なお、商用電源の周波数が50Hzのとき、蛍光灯9のノイズの周波数スペクトルは、100Hzを最大振幅ピークとし、その2倍の200Hzにもピークが見られることになる。小便器洗浄装置Aは、人体検出は50Hz以下のドップラ信号を検出することによって行い、尿流検出は100〜180Hzのドップラ信号を検出することによって行うため、蛍光灯9からのノイズは可及的に低減する必要がある。
【0042】
そこで、本実施形態における小便器洗浄装置Aにおいては、適応フィルタ22を設けて蛍光灯ノイズなどの周期性のあるノイズを除去するようにしている。すなわち、適応フィルタ22によってドップラ信号の周期性成分を予測し、観測したドップラ信号からこれを減算することによって、周期成分である蛍光灯9のノイズを効果的に取り除くのである。なお、人体検出や尿流検出すべきドップラ信号S3は、180Hz以下の周波数成分が多く含まれるものの、時間軸で見ればランダム性周波数成分の信号になっている。これは、人体が近接したり離反するときには人体の速度が時間的に変わるためであり、また壁面を流れる水流も含めて、尿流が移動したり、脈動したりすることによって形成される様々な水流をマイクロ波ドップラセンサ7が検出しているためである。このように、ランダム性周波数成分つまり人体移動や尿流の検出成分だけを得ることができる。すなわち、適応フィルタ22では、周期性成分を取り除き、人体検出及び尿流検出に必要なランダム性周波数成分は取り除かれないのである。
【0043】
本実施形態の小便器洗浄装置Aにおける適応フィルタ22の構成および動作について、図3,図6を参照してさらに詳しく説明する。
【0044】
これらの図に示すように、A/Dコンバータ20から出力されたデジタルドプラ信号データX[n]は、遅延回路30に入力される。Z-1はZ変換を表しており、本実施形態においては、Z変換を行う遅延素子30aが10段で遅延回路30を構成している。遅延素子30aは各サンプリング時間(ここでは、デジタルドップラ信号データS5のサンプリング時間と同じ100μsとする)毎に次段へ入力信号値を送出するので、本実施形態の遅延回路30より出力されるデジタルドプラ信号データX[n]は、10サンプリング前の入力信号に等しい。
【0045】
本実施形態においては、適応フィルタ22を、デジタルフィルタ31と、信号加算回路32と、フィルタ係数更新回路33とで構成している。
【0046】
デジタルフィルタ31は、遅延回路30から送出される信号を受信し、ノイズ予測波形y[n]を出力する。本実施形態ではデジタルフィルタ31として64段のFIR型のデジタルフィルタを用いている。FIR型デジタルフィルタのフィルタ係数h0〜h63を、各対応する遅延素子30aの各段とそれぞれ乗算し、さらに、その結果の加算合計を算出して出力信号y[n]を得る。各フィルタ係数h0〜h63は、後述するフィルタ係数更新回路33により、入力信号x[n]に含まれる蛍光灯9のノイズなど周期成分信号のみを取り出すように予め調節されており、出力信号y[n]はノイズ除去に最適な信号となっている。
【0047】
また、信号加算回路32は、入力信号x[n]に、デジタルフィルタ31の出力信号y[n]の反転信号すなわち逆位相信号である−y[n]を加算する。前述したように、y[n]は入力信号に含まれる周期成分、すなわち蛍光灯9のノイズなどの周期成分信号となっているので、結果的に周期性ノイズの逆位相信号を入力信号x[n]と加算することになる。
【0048】
そして、加算結果ε[n]は、入力信号x[n]から蛍光灯9のノイズなどの周期性ノイズが取り除かれた信号となっている。なお、デジタルフィルタ31の周期性ノイズの予測信号y[n]は、x[n]のノイズ成分と完全に一致しないので、加算結果ε[n]は必ずしも0にはならない。
【0049】
次に、フィルタ係数更新回路33は、ノイズ予測誤差である前述した加算結果ε[n]を最小にすべく、デジタルフィルタ31のフィルタ係数h0〜h63を調節する機能を有している。本実施形態では適応フィルタ22の係数更新方法として、計算処理を簡略化することが可能なLMS(Least Mean Square)法を使用している。このLMS法によれば、加算結果ε[n]にステップサイズμ49の2倍を乗じた上で、各対応する遅延素子の各段をさらに乗じ、現在時刻の各フィルタ係数h[n]に足し合わせて、次時刻の各フィルタ係数h[n+1]を得ている。
【0050】
この方法により、計算開始時刻においては残差ε[n]の絶対値は大きいものの、時刻が経過するにつれてε[n]の絶対値が0に収束していくという結果が得られる。ここで、ステップサイズμ49は収束の速度と収束後の誤差量を決定するパラメータであり、一般には0<μ<1なる値を設定する。
【0051】
以上のように、本実施形態の小便器洗浄装置Aは、遅延回路30と適応フィルタ22とを備え、適応フィルタ22に、デジタルフィルタ31、信号加算回路32およびフィルタ係数更新回路33を設けたことにより、蛍光灯9からのノイズを除去することができ、これによって、小便器洗浄装置Aの誤動作をなくすことができる。
【0052】
なお、ノイズ成分を除去する手段として、適応フィルタ22に代えて、例えば、ノッチフィルタも有効である。すなわち、特定の周波数のみを選択して減衰させるものである。ノイズの周波数が既知であれば、その周波数を選択減衰するようにノイズの特性を選定することにより、ノイズを効率的に除去することができる。なお、ノッチフィルタの周波数の選択範囲より人体検出や尿流検出の周波数の範囲の方が十分広ければ、ノイズ周波数部分を減衰させても尿流検出に大きな影響はない。なお、商用電源の2次高調波のノイズは、西日本地域では120Hz、東日本地域では100Hzとなり地域によって除去する周波数を変える必要がある。さらに、目的とする尿流の周波数範囲に、複数の周波数のノイズ成分が見られる場合、一つのノッチフィルタでは対応できないので複数個のノッチフィルタを使用することとなる。本実施形態においては、周波数が既知でなくても、複数個のノイズであってもノイズの状況に応じて有効にノイズ除去を行うため、適応フィルタ22を設けている。
【0053】
ところで、本実施形態における小便器洗浄装置Aは、上述のようにマイクロ波ドップラセンサ7及びA/Dコンバータ20をランダムな不等間隔サンプリング周期で間欠動作させており、適応フィルタ22に入力されるデジタルドップラ信号データS5は、ランダムな周期でサンプリングされたデジタルデータとなる。
【0054】
このように、生成されたデジタルドップラ信号データS4を適応フィルタ22やバンドパスフィルタ23などのデジタルフィルタに入力すると、これらのフィルタの特性を十分に生かすことができない恐れがある。すなわち、ドップラ信号のノイズを十分に除去することができない恐れがある。また、適応フィルタ22に代えて、ノッチフィルタを適用した場合であっても同様である。
【0055】
そこで、本実施形態における小便器洗浄装置Aは、適応フィルタ22やバンドパスフィルタ23の前段にデジタルドップラ信号データS5を所定の等間隔サンプリング周期(ここでは、0.1msとする。)のデータへ補間する周期補間手段21を設けている。
【0056】
ランダムに離散しているデジタルドップラ信号データS5を所定の等間隔サンプリング周期へ補間する方法としては、2点補間法、ラグランジェ補間法などがある。
【0057】
2点補間法は、隣接する2つのデータの中間値を算出して所定の等間隔サンプリング周期への補間を行う補間方法である。すなわち、隣接するデジタルドップラ信号データS5をそれぞれ直線で結び、所定周期(ここでは、2msとする。)毎にその直線と交わる位置へデジタルドップラ信号データS5を補完するのである。図7は、2点補間によってデジタルドップラ信号データS5を補間した様子を示す図であり、白丸はデジタルドップラ信号データS5を、黒丸は補間データS6を示している。
【0058】
次に、ラグランジェ補間法について説明する。なお、ここでは、4点のデジタルドップラ信号データS5を元に、所定の等間隔サンプリング周期への補間を行うものについて説明するが、これに限られるものではない。
【0059】
図8に示すように、4点のデジタルドップラ信号データ(X0、f0),(X1,f1),(X2,f2),(X3,f3)について、ラグランジェ補間を行う場合、Xの値L(X)は次のように算出することができる。
【0060】
【数1】

【0061】
図9は、デジタルドップラ信号データS5をそのまま入力した場合(無補間)、デジタルドップラ信号データS5を周期補間手段21によって2点補間して入力した場合(2点補間)、デジタルドップラ信号データS5を周期補間手段21によってラグランジェ補間して入力した場合(ラグランジェ補間)の、それぞれの適応フィルタ22におけるノイズ除去特性を示している。なお、マイクロ波ドップラセンサ7を等間隔で間欠動作させたときにマイクロ波ドップラセンサ7から出力されるドップラ信号を入力した場合(等間隔サンプリング)の適応フィルタ22におけるノイズ除去特性も参考のために図示している。
【0062】
この図に示すように、デジタルドップラ信号データS5をそのまま入力した場合に比べデジタルドップラ信号データS5を補間して入力した場合の方が適応フィルタ22におけるノイズ除去特性が改善していることがわかる。特に、蛍光灯9によるノイズ周波数40Hz,100Hz,120Hz,180Hz,200Hzでは、デジタルドップラ信号データS5をそのまま入力した場合に比べノイズ除去が半減している。したがって、マイクロ波ドップラセンサ7の動作をランダム周期で間欠的に行った場合でも、適応フィルタ22によるノイズ除去機能の低減を抑えることができる。
【0063】
次に、バンドパスフィルタ23について説明する。このバンドパスフィルタ23は、いわゆる帯域通過フィルタである。
【0064】
バンドパスフィルタ23は、第1帯域フィルタ23aと第2帯域フィルタ23bとから構成され、適応フィルタ22と同様に、これらはFIR型デジタルフィルタを使用している。ここで、第1帯域フィルタ23aは、そのフィルタ係数h[n]として、人体の検出範囲である50Hzまでの信号を取り出すように設定されおり、第2帯域フィルタ23bは、そのフィルタ係数h[n]として、尿流の検出範囲である100Hz〜180Hzを取り出すように設定されている。なお、バンドパスフィルタ23と適応フィルタ22の順番を交換し、バンドパスフィルタ23、適応フィルタ22の順番に配置しても、同様の機能、効果が得られる。
【0065】
また、バンドパスフィルタ23についても適応フィルタ22の場合と同様に、デジタルドップラ信号データS5をそのまま入力するとノイズ除去機能が低下するが、デジタルドップラ信号データS5を補間した後の補間データを入力することによりバンドパスフィルタ23のノイズ除去機能の低下を抑制することが可能となる。
【0066】
ここで、図10のフローチャートを参照して、本実施形態の小便器洗浄装置Aの動作について説明する。
【0067】
小便器洗浄装置Aの電源がONされると、送信タイミング制御手段27はランダムな不等間隔のパルス信号を含む駆動信号S10をマイクロ波ドップラセンサ7に出力し、マイクロ波ドップラセンサ7をランダムな不等間隔サンプリング周期で間欠動作させる(STEP1)。
【0068】
マイクロ波ドップラセンサ7から間欠出力されたドップラ信号S3は、増幅器10で増幅され、A/Dコンバータ20によってA/D変換されてデジタルドップラ信号データS5が生成される。ここで、デジタルドップラ信号データS5は、ランダムな不等間隔サンプリングによる離散的なデータであるため、上述のように後段の適応フィルタ22やバンドパスフィルタ23などのデジタルフィルタのノイズ除去機能に影響を及ぼす。そこで、デジタルドップラ信号データS5を所定周期の等間隔サンプリングデータとなるように補間する周期補間手段21を設けており、この周期補間手段21によって補間データが生成され、後段の適応フィルタ22へ出力される。
【0069】
上述のようにマイクロ波ドップラセンサ7の受信手段73は、送信マイクロ波の反射波に加え、蛍光灯9などからのノイズも受信してしまう。そのためドップラ信号S3にノイズ成分が混入される。したがって、補間データS6にもノイズが含まれることになるが、上述のように適応フィルタ22及びバンドパスフィルタ23によりノイズが取り除かれる。すなわち、適応フィルタ22によってドップラ信号S3の周期性成分のみを予測し、観測したドップラ信号からこれを減算して、ランダム性周波数成分のみ得る。そして、バンドパスフィルタ23を介して、人体検出のための周波数帯域(50Hz以下)の信号S8と、尿流検知のための周波数帯域(100Hz〜180Hz)の信号S8’とが検出判定処理部24に入力される。
【0070】
検出判定処理部24は、使用者が小便器1に近づくのを待つ(STEP2)。すなわち、検出判定処理部24において、入力された信号S8の振幅の移動平均の算出を逐次行う。検出判定処理部24によって算出された信号S8の移動平均値が、あらかじめ設定された振幅の判定閾値より大きくかつ一定時間連続して継続した場合、人体接近検出を行う。
【0071】
人体接近検出を行う(STEP2:Yes)と、検出判定処理部24は、給水バルブ制御部25を制御して、給水バルブ4を開き、ボール部2内に洗浄水を供給して小便器1の事前洗浄を行う(STEP3)。
【0072】
その後、検出判定処理部24は、使用者が小便器1から離れるか(STEP4)、使用者が放尿するのを待つ(STEP5)。
【0073】
使用者が小便器1から離れたことの検出(人体離反検出)は、検出判定処理部24において、入力された信号S8の振幅の移動平均の算出を逐次行い、その移動平均値が、あらかじめ設定された振幅の判定閾値よりも一定時間に亘って小さいことを検出することによって行われる。
【0074】
また、使用者が放尿したことの検出(尿流検出)は、検出判定処理部24において、入力された信号S8’の振幅の移動平均の算出を逐次行い、その移動平均値が、あらかじめ設定された振幅の判定閾値より大きくかつ一定時間連続して継続したことを検出することによって行われる。
【0075】
人体離反検出したとき(STEP4:Yes)、検出判定処理部24は、使用者が放尿せずに小便器1から離れたと判定し、S1の処理に戻す。
【0076】
一方、尿流検出したとき(STEP5:Yes)、その後使用者が小便器1から離れるまで待つ(STEP6)。すなわち、検出判定処理部24において、入力された信号S8の振幅の移動平均の算出を逐次行い、その移動平均値が、あらかじめ設定された振幅の判定閾値より大きくかつ一定時間連続して継続するまで待つ。
【0077】
使用者が小便器1から離れたとき(STEP6:Yes)、検出判定処理部24は、給水バルブ制御部25を制御して、給水バルブ4を開き、ボール部2内に洗浄水を供給して小便器1の本洗浄を行う(STEP7)。
【0078】
以上のように本実施形態における小便器洗浄装置Aによれば、マイクロ波ドップラセンサ7をランダム周期で間欠動作させることによって、マイクロ波ドップラセンサを利用した小便器洗浄装置が隣接したときにおいて、マイクロ波ドップラセンサ同士の影響を抑制し、マイクロ波ドップラセンサによる検出精度を向上させることができると共に、ランダム周期で間欠動作させたマイクロ波ドップラセンサから出力させたドップラ信号を補間することによって、適応フィルタなどのデジタルフィルタによるノイズ低減効果への影響を抑制することが可能となる。
【0079】
以上、本発明の実施の形態のうちいくつかを図面に基づいて詳細に説明したが、これらは例示であり、上記記載の態様を始めとして、当業者の知識に基づいて、種々の変形、改良を施した他の実施形態で実施をすることができる。
【0080】
たとえば、本実施形態においては、マイクロ波ドップラセンサ7は、小便器1の上部背面側から正面側のボール部2に向けて電波を送信するようにしたが、これに限られるものではなく、マイクロ波ドップラセンサ7を小便器1の下部背面側に取り付け、起立した使用者の正面に向かって斜め上方に向けて電波を送信するようにしてもよく、また、マイクロ波ドップラセンサ7を小便器1の高さ方向の中央付近の背面側に設置し、水平方向、あるいは斜め下方へ向けて電波を送信するようにしてもよい。
【0081】
また、本実施形態においては、10.525GHzのマイクロ波を用いたマイクロ波ドップラセンサについて説明したが、これに限られず、電波を利用するものであれば、その周波数は限られない。また、赤外線等の光波や超音波等の音波を利用するドップラセンサを用いてもよい。
【0082】
また、乱数発生器26と、送信タイミング制御手段27とをマイクロコンピュータ11で構成するようにしたが、これに限られるものではなく、その他の半導体集積回路で構成するようにしてもよい。
【図面の簡単な説明】
【0083】
【図1】本発明の実施の形態である小便器洗浄システムを示す図である。
【図2】本発明の実施の形態である小便器洗浄装置の概略構成図である。
【図3】図2に示す小便器洗浄装置の制御部の概略構成図である。
【図4】図2に示す送信タイミング制御手段から出力される駆動信号の例を示す図である。
【図5】ランダムな周期でサンプリングしたドップラ信号の例を示す図である。
【図6】図3に示す適応フィルタのブロック図である。
【図7】2点補間法による補間の説明図である。
【図8】ラグランジェ補間法による補間の説明図である。
【図9】図3に示す適応フィルタにおけるノイズ除去特性を示す図である。
【図10】図2に示す便器洗浄装置の動作状態を示すフローチャートである。
【符号の説明】
【0084】
A 小便器洗浄装置
1 小便器
2 ボール部
3 給水路
4 給水バルブ
5 排水路
6 トラップ管路
7 マイクロ波ドップラセンサ
8 制御部
9 蛍光灯
10 増幅器
11 マイクロコンピュータ
20 A/Dコンバータ
21 データ補間手段
22 適応フィルタ
23 バンドパスフィルタ
24 検出判定処理部
25 給水バルブ制御部
26 乱数発生器
27 送信タイミング制御手段
30 遅延回路
31 デジタルフィルタ
32 信号加算回路
33 フィルタ係数更新回路
71 発振器
72 送信手段
73 受信手段
74 差分検出手段

【特許請求の範囲】
【請求項1】
小便器と、前記小便器のボール部内へ洗浄水を供給する給水バルブと、前記ボール部に向けて電波を送信し、その反射波を受信してドップラ信号を生成するマイクロ波ドップラセンサと、前記ドップラ信号に基づいて尿流検出を行い、当該尿流検出に応じて前記給水バルブを制御し、前記ボール部内に洗浄水を供給する制御部と、を有する小便器洗浄装置において、
前記制御部は、
ランダムなサンプリング周期で前記マイクロ波ドップラセンサを間欠動作させるセンサ制御手段と、
前記サンプリング周期で出力されるドップラ信号を順次A/D変換してドップラ信号データを生成するA/D変換手段と、
前記ドップラ信号データを所定の等間隔サンプリング周期のデータへ補間する周期補間手段と、
補間した前記等間隔サンプリング周期のデータに含まれるノイズを除去するデジタルフィルタと、を有し、
前記デジタルフィルタの出力に応じて前記尿流検出を行う
ことを特徴とする小便器洗浄装置。
【請求項2】
前記デジタルフィルタは、適応フィルタであることを特徴とする請求項1に記載の小便器洗浄装置。
【請求項3】
前記周期補間手段は、
前記A/D変換手段が出力する、連続した少なくとも2つ以上のA/D出力値を元に、前記補間を行うことを特徴とする請求項1又は請求項2に記載の小便器洗浄装置。
【請求項4】
請求項1〜3のいずれか1項に記載の小便器洗浄装置を複数設けてなる小便器洗浄システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2007−239271(P2007−239271A)
【公開日】平成19年9月20日(2007.9.20)
【国際特許分類】
【出願番号】特願2006−61516(P2006−61516)
【出願日】平成18年3月7日(2006.3.7)
【出願人】(000010087)TOTO株式会社 (3,889)
【Fターム(参考)】