説明

後輪用ドライブシャフト

【課題】軽量で高効率、かつ低コストな後輪用ドライブシャフトを提供すること。
【解決手段】中空シャフト2の両端に等速自在継手3、4を取り付けた後輪用ドライブシャフト1において、中空シャフト2が、軸方向の全長にわたって外径5および肉厚Tがほぼ同一であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、中空シャフトの両端に等速自在継手を取り付けた後輪用ドライブシャフトに関する。
【背景技術】
【0002】
例えば、自動車のドライブシャフトに使用されるシャフトは、その種類を構造面で大別すると、中実の棒材から加工された中実シャフトと、鋼管などから加工された中空シャフトに分けられる。近年、自動車の足回りの軽量化、捩じり剛性やNVH特性の向上といった機能面での必要性から中空シャフトや中空ロングステムタイプの外側継手部材が用いられることが多くなってきた。中空シャフトのうち一体型のものは、例えば、鋼管をその軸心周りに回転させながら、高速度で直径方向に打撃して縮径させるスウェージング加工や鋼管をダイスに軸方向に押し込むことで縮径させるプレス加工により成形されたものが用いられる(例えば、特許文献1)。
【0003】
自動車のドライブシャフトとしては、前輪用ドライブシャフトと後輪用ドライブシャフトがある。前輪用ドライブシャフトは前輪駆動車(FF車)の前輪と4輪駆動車の前輪に使用され、後輪用ドライブシャフトは後輪駆動車(FR車)の後輪と4輪駆動車の後輪に使用される。前輪用ドライブシャフトは、車輪が操舵されるので、通常、アウトボード側(車輪側)には、大きな作動角が取れるが軸方向に変位しない固定式等速自在継手が使用され、インボード側(デフ側)には、最大作動角は比較的小さいが作動角を取りつつ軸方向変位が可能な摺動式等速自在継手が使用される。一方、後輪用ドライブシャフトは、車輪が操舵されないので高作動角を必要としないため、インボード側と同様にアウトボード側にも摺動式等速自在継手が使用されることがある。また、後輪用ドライブシャフトにおいても、アウトボード側に固定式等速自在継手が使用され、インボード側に摺動式等速自在継手が使用される場合もある。
【0004】
上記の一体型の中空シャフトを用いた従来のドライブシャフトを図11および図12に基づいて詳述する。このドライブシャフト101は、前輪用ドライブシャフトであり、インボード側には摺動式等速自在継手103が連結され、アウトボード側には固定式等速自在継手104が連結されている。摺動式等速自在継手103としてトリポード型等速自在継手が示され、固定式等速自在継手104は、8個のボールを用いたツェッパ型等速自在継手が示されている。摺動式等速自在継手103は、外側継手部材105、内側継手部材としてのトリポード部材106とローラ107とからなり、トリポード部材106に形成した3本の脚軸108にローラ107が回転自在に嵌合されている。ローラ107は外側継手部材105に形成されたトラック溝109に転動自在に収容されている。トリポード部材106と中空シャフト102の一端がスプライン130(セレーションも含まれる。以下、同じ)により結合され、止め輪111によって軸方向に固定されている。外側継手部材105の外周と中空シャフト102の外周にブーツ120の両端部が取り付けられ、継手内部が密封されている。継手内部には潤滑剤としてのグリースが封入されている。
【0005】
一方、固定式等速自在継手104は、外側継手部材112、内側継手部材113、ボール114および保持器115とからなる。外側継手部材112の球面状内周面118には軸方向に曲線状に湾曲した8本のトラック溝116が形成されている。内側継手部材113の球面状外周面119には、外側継手部材112のトラック溝116に対向するトラック溝117が形成され、両トラック溝116、117間にボール114が配置されている。ボール114は保持器115に収容され、保持器115の内外周面は内側継手部材113の球面状外周面119と外側継手部材112の球面状内周面118にそれぞれ嵌合している。内側継手部材113と中空シャフト102の他端がスプライン131により結合され、止め輪122によって軸方向に固定されている。外側継手部材112の外周と中空シャフト102の外周にブーツ121の両端部が取り付けられ、継手内部が密封されている。
【0006】
図12は、中空シャフト102の一部断面図である。この中空シャフト102は、軸方向の全長にわたって中空の筒状部材で、軸方向の中間部に大径部125と、この大径部125よりも軸方向両端側に小径部126b、128bと、軸方向中間部側の小径部126a、128aとの間に最小軸径部127、129とを有している。大径部125と小径部126a、128aとの間、小径部126a、126b、128a、128bと最小軸径部127、129との間は、テーパ部136、137、138、139、140、141を介して連続している。最小軸径部129は、固定式等速自在継手が大きな最大作動角を取ったときにも、外側継手部材112と干渉しないように寸法が定められており、この寸法にインボード側の最小軸径部127も準じている。小径部126b、128bの両端部には等速自在継手103、104の内側継手部材106、113に連結されるスプライン130a、131aと、内側継手部材106、113を軸方向に固定するための止め輪111、122を装着する止め輪溝132、133が形成されている。小径部126a、128aには、ブーツを固定するためのブーツ溝134、135が形成されている。
【0007】
次に、中空シャフト102の加工方法を説明する。例えば、中空シャフト102の軸方向中間部の大径部125は鋼管の形状になっており、小径部126a、126b、128a、128b、最小軸径部127、129およびテーパ部136、137、138、139、140、141をスウェージ加工やプレス加工により縮径させる。この縮径により、小径部126a、126b、128a、128b、最小軸径部127、129およびテーパ部136、137、138、139、140、141は大径部125よりも肉厚が増加する。その後、小径部126b、128bの両端部にスプライン130a、131aが転造加工され、止め輪溝132、133およびブーツ溝134、135が切削加工される。なお、ブーツ溝134は、スウェージング加工で成形することがあり、ブーツ溝135は、ローリング加工で成形することがある。そして、中空シャフト102の強度を確保するために必要な範囲に熱処理を行う。
【0008】
上記のように、前輪駆動車、後輪駆動車といった2輪駆動車のドライブシャフトにおいて、必要な捩じり強度を確保するには、中空シャフトの両端のスプライン部又は最小軸径部の肉厚をある程度厚くしておく必要があるが、当該部のような小径部分で肉厚を確保するには、スウェージ加工やプレス加工により鋼管を縮径し、肉厚を増加させる必要がある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2007−315463号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
後輪用ドライブシャフトでは、高作動角を必要としないため、前輪駆動車の前輪用ドライブシャフトのように高作動角時にシャフトと固定式等速自在継手の外側継手部材との干渉を避けるためのシャフトへの凹み部(最小軸径部)を設ける必要がない。また、4輪駆動車の後輪用ドライブシャフトにおいては、入力トルクが低く、必要強度が前輪駆動車や後輪駆動車といった2輪駆動車のドライブシャフトより低いことが多い。このような4輪駆動車の後輪用ドライブシャフトに、前述した鋼管に縮径加工を施し、軸方向の中央部に鋼管の形状を残した中空シャフトを適用した場合、鋼管の直径が大きいため、中実シャフトと比較してあまり重量が軽減されない上に、スウェージ加工やプレス加工などの縮径加工などでコストアップとなり、中空シャフト適用のメリットがなくなってしまう。
【0011】
上記のような課題に鑑み、本発明は、軽量で高効率、かつ低コストな後輪用ドライブシャフトを提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明者らは、上記の目的を達成するために種々検討した結果、中空シャフトを鋼管に縮径加工を施さないで形成するという新たな着想に加えて、さらに、強度アップのために中空シャフトの両端に嵌合する等速自在継手の内側継手部材のスプラインを大径にするという新たな着想に至った。
【0013】
前述の目的を達成するための技術的手段として、本発明は、中空シャフトの両端に等速自在継手を取り付けた後輪用ドライブシャフトにおいて、前記中空シャフトが、軸方向の全長にわたって外径および肉厚がほぼ同一であることを特徴とする。これにより、中空シャフトの軸方向の全長にわたって外径および肉厚がほぼ同一で、ほとんど段差のない形状にすることができるので、軽量化が図れる。また、段差がほとんど無いため、スウェージ加工やプレス加工などの縮径加工を廃止し、鋼管(パイプ材)に直接スプラインやブーツ溝を加工することで、コスト低減を図ることができる。スプライン径をサイズアップしない場合は、要求強度が低い4輪駆動車の後輪用ドライブシャフトに好適である。
【0014】
そして、スプライン径をサイズアップした場合は、シャフト強度に余裕ができるため、薄肉化でき、さらに軽量化を図ることができる。また、スプライン径が上がれば、2輪駆動の後輪用ドライブシャフトのように高い強度レベルが要求される場合でも、鋼管をスウェージ加工やプレス加工などの縮径加工により肉厚を増加させることなく、鋼管の肉厚そのままで適用することができ、2輪駆動の後輪用ドライブシャフトに好適である。
【0015】
中空シャフトが、鋼管からなり、絞り加工を行わずに仕上げられ、この鋼管をシームレス管とすることにより、小径厚肉鋼管がそのまま適用することができ、コスト低減と共に強度を確保することができる。
【0016】
中空シャフトは、その半径方向の肉厚全域に高周波焼入れによる硬化層が形成されている。これにより、薄肉で軽量な中空シャフトでも十分な強度を確保することができる。
【0017】
中空シャフトは、その軸端のスプライン部にショットピーニングによる圧縮残留応力が付与することができる。これにより、薄肉で軽量な中空シャフトであっても、さらに強度を向上することができる。
【0018】
中空シャフトの内径部に封止部材を入れることが望ましい。これにより、継手内部のグリースが中空シャフトの内部に流入することを防止することができ、グリースの封入量を抑制することができる。
【0019】
中空シャフトの両端に取り付けられた等速自在継手が、一端が固定式等速自在継手であり、他端が摺動式等速自在継手であるドライブシャフトを構成することや中空シャフトの両端に取り付けられた等速自在継手がいずれも摺動式等速自在継手であるドライブシャフトを構成することができる。車種、使用条件に応じて、最適な後輪用ドライブシャフトを実現することができる。
【0020】
中空シャフトに防錆処理を施すことが望ましい。これにより、薄肉の中空シャフトにもかかわらず、腐食による軸方向中間部の強度低下を防止することができる。
【0021】
スプライン径のサイズアップの具体的な方法として、固定式等速自在継手の内側継手部材の軸方向長さを短縮し、トルクを伝達するボールのピッチ円直径(PCD)をDb、内側継手部材の内径スプラインのピッチ円直径(PCD)をDsとしたとき、Db/Dsの比を2.16以下することが望ましい。また、摺動式等速自在継手のトルクを伝達するボールのピッチ円直径(PCD)をDb、内側継手部材の内径スプラインのピッチ円直径(PCD)をDsとしたとき、Db/Dsの比を2.28以下にすることが望ましい。さらに、摺動式等速自在継手としてクロスグルーブ型等速自在継手を使用した場合に、トルクを伝達するボールの個数を8個以上とし、ボールのピッチ円直径(PCD)をDb、内側継手部材の内径スプラインのピッチ円直径(PCD)をDsとしたとき、Db/Dsの比を2.0以下にすることが望ましい。
【0022】
上記の構成により、等速自在継手の内側継手部材のスプライン径が上がり、シャフト強度に余裕ができるため、薄肉化でき、さらに軽量化を図ることができる。また、2輪駆動の後輪用ドライブシャフトのように高い強度レベルが要求される場合でも、鋼管をスウェージ加工やプレス加工などの縮径加工により肉厚を増加させることなく、鋼管の肉厚そのままで適用することができる。
【0023】
以上のように、本発明のドライブシャフトは、4輪駆動車の後輪用ドライブシャフトや2輪駆動の後輪用ドライブシャフトに好適である。
【発明の効果】
【0024】
本発明によれば、中空シャフトの軸方向の全長にわたって外径および肉厚がほぼ同一で、ほとんど段差のない形状にすることができるので、軽量化が図れる。また、段差がほとんど無いため、スウェージ加工やプレス加工などのシャフトの縮径加工を廃止し、鋼管(パイプ材)に直接スプラインやブーツ溝を加工することで、コスト低減を図ることができる。スプライン径をサイズアップしない場合は、要求強度が低い4輪駆動車の後輪用ドライブシャフトに好適である。
【0025】
また、スプライン径をサイズアップした場合は、シャフト強度に余裕ができるため、薄肉化でき、さらに軽量化を図ることができる。スプライン径が上がれば、2輪駆動の後輪用ドライブシャフトのように高い強度レベルが要求される場合でも、鋼管をスウェージ加工やプレス加工などの縮径加工により肉厚を増加させることなく、鋼管の肉厚そのままで適用することができ、2輪駆動の後輪用ドライブシャフトに好適である。
【図面の簡単な説明】
【0026】
【図1】本発明の第1の実施形態に係るドライブシャフトの一部縦断面図である。
【図2】第1の実施形態に適用する中空シャフトの一部縦断面図である。
【図3】第1の実施形態に適用するインボード側摺動式等速自在継手の正面図である。
【図4】従来のインボード側摺動式等速自在継手の正面図である。
【図5】第1の実施形態に適用する中空シャフトの変形例を示す一部縦断面図である。
【図6】第1の実施形態に適用する中空シャフトの第2の変形例を示す一部縦断面図である。
【図7】本発明の第2の実施形態に係るドライブシャフトの一部縦断面図である。
【図8】第2の実施形態に適用する中空シャフトの一部縦断面図である。
【図9】第2の実施形態に適用するアウトボード側固定式等速自在継手の正面図である。
【図10】従来のアウトボード側固定式等速自在継手の正面図である。
【図11】従来のドライブシャフトの一部縦断面図である。
【図12】従来の中空シャフトの一部縦断面図である。
【発明を実施するための形態】
【0027】
以下に本発明の実施の形態を図面に基づいて説明する。
【0028】
本発明の第1の実施形態を図1〜図3に示す。図1は本実施形態の後輪用ドライブシャフトの一部縦断面である。図示のように、ドライブシャフト1は、中空シャフト2と、その一端に連結された摺動式等速自在継手3、他端に連結された摺動式等速自在継手4とを備える。図1の左側がアウトボード側(車輪側)で、摺動式等速自在継手4が連結され、右側がインボード側(デフ側)で、摺動式等速自在継手3が連結される。摺動式等速自在継手3、4は、いずれもクロスグルーブ型等速自在継手である。摺動式等速自在継手3、4の外周と中空シャフト1の外周にブーツ6、7の両端が取り付けられ、継手内部を密封している。継手内部には潤滑剤としてのグリースが封入されている。
【0029】
インボード側の摺動式等速自在継手3は、外側継手部材8、内側継手部材10、ボール11および保持器12とからなる。アウトボード側の摺動式等速自在継手4は、外側継手部材9、内側継手部材10、ボール11および保持器12とからなる。インボード側の摺動式等速自在継手3とアウトボード側の摺動式等速自在継手4は、継手内部の構成部品は同じであるので、本実施形態の以下の説明においては、インボード側の摺動式等速自在継手3の内部の構成部品を説明し、アウトボード側の摺動式等速自在継手4において同じ機能を有する部位には同一の符合を付して重複説明を省略する。
【0030】
図3にインボード側の摺動式等速自在継手3を拡大した正面図を示す。外側継手部材8は円筒状内周面13に10本のトラック溝14a、14bが形成されている。このトラック溝14a、14bは、直線状に延び、継手軸線に対して互いに逆方向に傾斜しており、円周方向に交互に配列されている。内側継手部材10の凸状外周面15には、外側継手部材8のトラック溝14a、14bに対向して10本のトラック溝16a、16bが形成されている。トラック溝16a、16bも直線状に延び、継手軸線に対して互いに逆方向に傾斜しており、円周方向に交互に配列されている。外側継手部材8のトラック溝14aと内側継手部材10のトラック溝16aが対となり、また、外側継手部材8のトラック溝14bと内側継手部材10のトラック溝16bが対となり、トラック溝14a、16aおよびトラック溝14b、16bの各交差部にボール11が保持される。保持器12は、その球状外周面17が外側継手部材8の円筒状内周面13に案内され、凹状内周面18は、内側継手部材10の凸状外周面15との間に、軸方向に相対移動可能な隙間が形成されている(図1参照)。保持器12のポケット19にボール11が収容されている。トラック溝14a、16aおよびトラック溝14b、16bの各交差部にボール11が保持され、保持器12のポケット19にボール11が整列されているので、継手に角度変位が生じたときでも常に作動角の二等分面内にボール11が維持され、等速でトルクが伝達される。また、トラック溝14a、16aおよびトラック溝14b、16bの各交差部にボール11が保持される構造になっているので、ボール11とトラック溝14a、16aおよびトラック溝14b、16bとの間のがたつきを少なくすることができ、特に、がたつきを嫌う自動車のドライブシャフトに用いられる。
【0031】
図1に示すように、内側継手部材10の凸状外周面15と保持器12の凹状内周面18との間に、軸方向に相対移動可能な隙間が形成されているので、この隙間分だけ内側継手部材10と保持器12とが軸方向に相対移動することができ、内側継手部材10の凸状外周面15と保持器12の凹状内周面18とが当接することにより、相対移動量、すなわち、摺動ストロークが規定される。
【0032】
外側継手部材8はディスク状に形成されており、両側面にはシールプレート20とブーツアダプタ21が装着され、ブーツアダプタ21の先端部にブーツ6の大径側端部が固定されている。ブーツ6の小径側端部は中空シャフト2の外径にブーツバンド22により締め付け固定されている。摺動式等速自在継手8、9の内側継手部材10は、中空シャフト2の両軸端にスプライン結合26、27され、止め輪28、29により軸方向に固定されている。
【0033】
図3に示すように、外側継手部材8にはボルト用貫通孔23が設けられており、このボルト用貫通孔23に対応して、シールプレート20とブーツアダプタ21にもボルト用貫通孔(図示省略)が設けられている。これにより、図示しないデフ側相手部材に対して、ブーツアダプタ21、外側継手部材8、シールプレート20を挟んだ状態でボルトにより締め付け固定される。アウトボード側の摺動式等速自在継手4は、外側継手部材9がカップ部23とその底部にステム部24とが一体に形成されている。ステム部24のスプライン25が図示しない車輪を取り付けたハブ輪に連結される。
【0034】
図2は、中空シャフト2の一部縦断面図である。中空シャフト2は、軸方向の全長にわたって、外径5および肉厚Tがほぼ同一で、ほとんど段差のない形状になっている。中空シャフト2の両軸端にはスプライン26a、27aが形成され、軸方向の中間部側にブーツ溝34、35が形成されている。スプライン26a、27aの軸端側に止め輪溝32、33が形成されている。中空シャフト2の中心線より下側が縦断面図であり、クロスハッチングした部分が強度を確保するために焼入れ硬化されている。焼入れ硬化層は、軸方向では、中空シャフト2の一端の止め輪溝32の手前から他端の止め輪溝33の手前まで、ほぼ軸方向の全長にわたって形成されている。半径方向では、中空シャフト2が軸方向全域にわたって比較的に薄肉形状であるため、外径面から内径面まで肉厚Tの全体に形成されている。これにより、捩じり強度の向上を図ることができる。中空シャフト2は、軸方向全長にわたって外径5および肉厚Tがほぼ同一で、ほとんど段差のない形状になっているので、中実シャフトに比較して大幅な軽量化が見込める。また、段差がほとんど無いため、スウェージ加工やプレス加工などのシャフトの縮径加工を廃止し、鋼管(パイプ材)に直接スプラインやブーツ溝を加工することで、コスト低減を図ることができる。縮径加工は高価な設備や金型を必要とするため、コストアップの要因となっている。
【0035】
この中空シャフト2の材料となる鋼管(パイプ材)としては、小径厚肉鋼管が適することが多く、シームレス管が好適である。
【0036】
中空シャフト2の両軸端のスプライン26a、27aの部分にショットピーニングを施し、外表面に圧縮残留応力を付与することで、捩じり疲労強度を向上させることができる。薄肉形状である場合、熱処理時の圧縮残留応力が小さいため、ショットピーニングによる残留圧縮応力向上の効果が大きい。
【0037】
中空シャフト2を鋼管から完成品に形状を仕上げるまでに、必要な追加加工として、ブーツ溝34、35、両端部のスプライン26a、27aの成形加工、止め輪溝32、33の加工などがある。ブーツ溝34、35はローリング加工や切削加工が適用でき、両端部のスプライン26a、27aの成形には、転造加工やプレス加工が適用でき、特に薄肉の場合はプレス加工が適している。止め輪溝32、33は旋削等で加工することができる。従来の中空シャフトと同様、上記のような加工は必要であるが、大幅なコストアップとなるスウェージ加工やプレス加工による中空シャフト2の縮径加工を省略することができる。
【0038】
本実施形態のドライブシャフト1に適用される等速自在継手3、4の内側継手部材10、10のスプライン径はサイズアップされている。この寸法設定を可能にした新たな設計思想を以下に説明する。
【0039】
図4に、従来の摺動式等速自在継手であるクロスグルーブ型等速自在継手を示す。この等速自在継手203は、外側継手部材208、内側継手部材210、ボール211および保持器212からなる。この摺動式等速自在継手203では、トルクを伝達するボール211の個数が6個であり、1個のボール211が負担するトルク負荷が大きいため、直径の大きいボール211が使用されている。その結果、トラック溝216a、216bが深くなり、内側継手部材210のスプライン底までの肉厚を確保すると、スプラインのピッチ円直径Ds1が小さくならざるを得なかった。
【0040】
これに対して、本実施形態のドライブシャフトに適用するクロスグルーブ型等速自在継手3は、図3に示すように、ボール11の個数が10個であり、1個のボール11が負担するトルク負荷が軽減されるため、直径の小さいボール11が使用できる。その結果、トラック溝16a、16bが浅くなり、内側継手部材10のスプライン底までの肉厚が稼げるため、スプラインのピッチ円直径Ds2を大きくすることができる。後輪用ドライブシャフト用としては、ボール11の個数を10個としたクロスグルーブ型等速自在継手3が最も軽量化に適している。この場合、ボール11のピッチ円直径Db2とスプラインのピッチ円直径Ds2との比Db2/Ds2≦2となるまでスプライン径を上げることができるため、中空シャフト2は極めて薄肉化が図られ、軽量化が見込める。
【0041】
また、継手の作動面では、ボール11の個数を10個としたクロスグルーブ型等速自在継手3は、継手軸線に対して互いに逆方向に傾斜したトラック溝14a、16aおよびトラック溝14b、16bの交差角を小さくして摺動ストロークを稼ぐことができ、この場合にも、折り曲げ時に引っ掛かりの少ない優れた折り曲げ特性を有し、また、等速性やトルクの伝達効率に優れたものとなる。なお、クロスグルーブ型等速自在継手3はボール11の個数を10個としたものを示したが、ボールの個数を8個のものでも、トラック溝が浅くなり、内側継手部材のスプライン底までの肉厚が稼げるため、スプラインのピッチ円直径を大きくすることができるので、同様に適用することができる。
【0042】
上記のように、本実施形態の後輪用ドライブシャフト1は、中空シャフト2を鋼管に絞り加工を施さないで形成するという新たな着想に加えて、さらに、強度アップのために中空シャフト2の両端に連結される摺動式等速自在継手3、4の内側継手部材10のスプライン径をサイズアップするという新たな着想によって、軽量で高効率、かつ低コストな後輪用ドライブシャフトを実現することができた。
【0043】
本実施形態のドライブシャフト1は、中空シャフト2に段差が不要で、要求強度が低い4輪駆動車の後輪用ドライブシャフトに好適であるが、スプライン径をサイズアップした場合は、2輪駆動の後輪用ドライブシャフトのように高い強度レベルが要求される場合にも適用することができ、鋼管をスウェージ加工やプレス加工などで縮径して肉厚を増加させることなく、鋼管の肉厚のままで適用することが可能となる。
【0044】
次に、第1の実施形態に適用する中空シャフトの変形例を図5に示す。中空シャフト2の両端部の内径面に封止栓36を設けたものである。この封止栓36は、継手内部のグリースが中空シャフト2の内部に流入することを防止するためのものである。封止栓36としては、金属製、ゴム製、エラストマー製などを用いることができる。その他の構成については、前述した第1の実施形態に適用する中空シャフト2と同様であるので、同じ機能を有する部位には同一の符号を付与して重複説明を省略する。以下の変形例においても同様とする。
【0045】
第1の実施形態に適用する中空シャフトの第2の変形例を図6に示す。この中空シャフト2では、継手内部のグリースが中空シャフト2の内部に流入することを防止するために、中空シャフト2の内周面のほぼ全域に発砲樹脂37を充填したものである。この変形例では、発砲樹脂37を中空シャフト2の内周面のほぼ全域に充填したものを示したが、内周面の軸方向中間部を一部除いた領域に発砲樹脂37を充填することもできる。
【0046】
中空シャフト2の薄肉化により、腐食による軸方向中間部の強度低下が懸念されるため、軸方向中間部には防錆処理を行う必要がある。防錆処理としては、リン酸マンガン皮膜処理、粉体塗装、カチオン電着塗装などがある。防錆処理範囲は、少なくとも大気にさらされる部位、すなわち、ブーツ、等速自在継手以外の部位に行う。
【0047】
本発明の第2の実施形態のドライブシャフトを図7〜図9に基づいて説明する。この実施形態は、第1の実施形態にドライブシャフトに対して、アウトボード側の等速自在継手を固定式等速自在継手にしたことが異なる。その他の構成については、前述した第1の実施形態と同様であるので、同じ機能を有する部位には同一の符号を付与して重複説明を省略する。
【0048】
図7に示すように、アウトボード側の固定式等速自在継手4は、8個のボールを用いたツェッパ型等速自在継手で、外側継手部材9、内側継手部材10、ボール11および保持器12とからなる。外側継手部材9は球面状内周面40に8本のトラック溝44が形成されている。このトラック溝44は、軸方向に曲線状に形成されている。内側継手部材10の球面状外周面45には、外側継手部材8のトラック溝44に対向して8本のトラック溝46が形成されている。トラック溝46も軸方向に曲線状に形成されている。外側継手部材9のトラック溝44と内側継手部材10のトラック溝46の間にボール11が配置される。保持器12は、その球状外周面47が外側継手部材9の球面状内周面40に案内され、球面状内周面48が内側継手部材10の球面状外周面45に案内されている。保持器12のポケットにボール11が収容されている。外側継手部材9の曲線状トラック溝44の曲率中心O1と内側継手部材10の曲線状トラック溝46の曲率中心O2は、継手中心Oに対して、互いに反対側にオフセットされている。これにより、継手に角度変位が生じたときでも常に作動角の二等分面内にボール11が維持され、等速でトルクが伝達される。
【0049】
外側継手部材9の開口端部外周面に、ブーツ7の大径側端部がブーツバンド39により締め付け固定され、ブーツ7の小径側端部は中空シャフト2の外径にブーツバンド38により締め付け固定されている。アウトボード側の固定式等速自在継手4には樹脂製ブーツ7が使用されている。両等速自在継手8、9の内側継手部材10、10は、中空シャフト2の両軸端にスプライン結合26、27され、止め輪28、29により軸方向に固定されている。アウトボード側の固定式等速自在継手9は、外側継手部材8がカップ部23とその底部にステム部24とが一体に形成されている。ステム部24の軸スプライン25が図示しない車輪を取り付けたハブ輪に連結される。
【0050】
図8は、中空シャフト2の一部縦断面図である。第1の実施形態のドライブシャフト1に適用した中空シャフト2と同様、本実施形態のドライブシャフト1に適用する中空シャフト2も、軸方向の全長にわたって、外径5および肉厚Tがほぼ同一で、ほとんど段差のない形状になっている。第1の実施形態のドライブシャフト1に適用した中空シャフト2と異なるところは、中空シャフト2のアウトボード側に形成したブーツ溝35の形状と止め輪溝33の形状である。本実施形態に適用する中空シャフト2のブーツ溝35は樹脂ブーツ7を取り付けるため円弧状の倣い形状となっている。また、止め輪溝33ついては、スプライン嵌合作業時に止め輪29が縮径して内側継手部材10のスプライン小径部を通過できるように、止め輪溝33は深く形成されている。この中空シャフト2においても、軸方向全長にわたって外径5および肉厚Tがほぼ同一で、ほとんど段差のない形状になっているので、中実シャフトに比較して大幅な軽量化が見込める。また、段差がほとんど無いため、スウェージ加工やプレス加工などのシャフトの縮径加工を廃止し、鋼管(パイプ材)に直接スプラインやブーツ溝を加工することで、コスト低減を図ることができる。
【0051】
前述した第1の実施形態と同様に、本実施形態に適用される等速自在継手3、4の内側継手部材10、10のスプライン径はサイズアップされている。この寸法設定を可能にした新たな設計思想を以下に説明する。
【0052】
図10に従来の固定式等速自在継手を示す。この固定式等速自在継手104も、8個のボールを用いたツェッパ型等速自在継手である。この等速自在継手104は、外側継手部材112、内側継手部材113、ボール114および保持器115からなる。この固定式等速自在継手104は、前輪用ドライブシャフトに使用可能なもので最大作動角47°を取れるように設計されている。外側継手部材112は、球面状内周面118に8本のトラック溝116が軸方向に曲線状に形成されている。内側継手部材113の球面状外周面119には、外側継手部材112のトラック溝116に対向して8本のトラック溝117が軸方向に曲線状に形成されている。外側継手部材112のトラック溝116と内側継手部材113のトラック溝119の間にボール114が配置される。保持器115は、その球状外周面120が外側継手部材112の球面状内周面118に案内され、球面状内周面121が内側継手部材113の球面状外周面119に案内されている。保持器115のポケットにボール114が収容されている。外側継手部材112の曲線状トラック溝116の曲率中心O1と内側継手部材113の曲線状トラック溝117の曲率中心O2は、継手中心Oに対して、互いに反対側にオフセットされている。
【0053】
この等速自在継手104では、最大作動角47°時に、ボール114が外側継手部材112のトラック溝116と内側継手部材113のトラック溝117に接触していなければならないので、それに対応したトラック溝116、117の軸方向の長さが必要であった。そのため、図10に示すように、内側継手部材113では必要な軸方向の幅をW1としていた。そのため、内側継手部材113のスプライン127bと曲線状のトラック溝117との間の肉厚が薄くなる両端部の肉厚を確保すると、スプラインのピッチ円直径Ds1が小さくならざるを得なかった。
【0054】
これに対して、図9に示す本実施形態のドライブシャフトに適用するツェッパ型等速自在継手4は、後輪用ドライブシャフトのために専用設計したものである。後輪用ドライブシャフトでは、最大作動角は25°程度であり、高作動角を必要としないため、内側継手部材10のトラック溝46を高作動角域まで確保する必要がなくなり、内側継手部材10の軸方向の幅W2を小さくすることができる。これにより、内側継手部材10のスプライン径を大きくすることができ、嵌合する中空シャフト2のスプライン径を大きくすることができる。すなわち、スプライン径をサイズアップすることができる。このようにすれば、ボール11のピッチ円直径Db2とスプラインのピッチ円直径Ds2との比Db2/Ds2≦2.16となるまでスプライン径を上げることができる。スプライン径が上がれば、シャフト側の強度に余裕ができるため、中空シャフト2の薄肉化が図られ、軽量化が見込める。
【0055】
上記のように、本実施形態の後輪用ドライブシャフト1においても、中空シャフト2を鋼管に縮径加工を施さないで形成するという新たな着想に加えて、さらに、強度アップのために中空シャフト2の両端に連結される等速自在継手3、4の内側継手部材10のスプライン径をサイズアップするという新たな着想によって、軽量で高効率、かつ低コストな後輪用ドライブシャフトを実現することができた。
【0056】
8個のボールを有するツェッパ型等速自在継手4は、ボールの直径が小さく、かつ、トラック溝の曲率中心のオフセット量が小さいので、トルクの伝達損失が小さく高効率であり、また、軽量コンパクトである。しかし、6個ボールを有するツェッパ型等速自在継手でも、後輪用ドライブシャフトにおいては、内側継手部材の軸方向の幅を小さくすることができる。これにより、内側継手部材のスプライン径を大きくすることができ、嵌合する中空シャフトのスプライン径を大きくすることができる。したがって、ボール個数が6個のツェッパ型等速自在継手でも本発明のドライブシャフトに適用することができる。また、ツェッパ型等速自在継手に限らず、トラック溝が軸方向に曲線状部と直線状部とからなるアンダーカットフリー型等速自在継手も本発明のドライブシャフトに適用することができる。
【0057】
本実施形態のインボード側の摺動式等速自在継手3は、第1の実施形態のものと同じであるので、重複説明を省略する。また、中空シャフト2は、第1の実施形態に適用された中空シャフトの各変形例を同様に適用することができる。
【0058】
各実施形態では、スプライン径をサイズアップしたものを示したが、これに限らず、前述したように従来と同じスプライン径のものも適用することができる。その場合は、等速自在継手は内側継手部材の軸方向の幅は小さくする必要がなく、従来からある標準的なものを適用することができ、また、摺動式等速自在継手としてトリポード型等速自在継手も適用することができる。
【符号の説明】
【0059】
1 後輪用ドライブシャフト
2 中空シャフト
3 インボード側等速自在継手
4 アウトボード側等速自在継手
5 シャフトの外径
6 ブーツ
7 ブーツ
8 外側継手部材
9 外側継手部材
10 内側継手部材
11 ボール
12 保持器
36 封止栓
Db ボールのピッチ円直径
Ds スプラインのピッチ円直径
O 継手中心
O1 曲率中心
O2 曲率中心
T 中空シャフトの肉厚

【特許請求の範囲】
【請求項1】
中空シャフトの両端に等速自在継手を取り付けた後輪用ドライブシャフトにおいて、
前記中空シャフトが、軸方向の全長にわたって外径および肉厚がほぼ同一であることを特徴とする後輪用ドライブシャフト。
【請求項2】
前記中空シャフトが嵌合する等速自在継手の内側継手部材のスプライン径がサイズアップされていることを特徴とする請求項1に記載の後輪用ドライブシャフト。
【請求項3】
前記中空シャフトが、鋼管からなり縮径加工を行わずに仕上げられていることを特徴とする請求項1又は請求項2に記載の後輪用ドライブシャフト。
【請求項4】
前記鋼管をシームレス管としたしたことを特徴とする請求項3に記載の後輪用ドライブシャフト。
【請求項5】
前記中空シャフトは、その半径方向の肉厚全域に高周波焼入れによる硬化層が形成されていることを特徴とする請求項1〜4のいずれか1項に記載の後輪用ドライブシャフト。
【請求項6】
前記中空シャフトは、その軸端のスプライン部にショットピーニングによる圧縮残留応力が付与されていることを特徴とする請求項1〜5のいずれか1項に記載の後輪用ドライブシャフト。
【請求項7】
前記中空シャフトの内径部に封止部材を入れたことを特徴とする請求項1〜6のいずれか1項に記載の後輪用ドライブシャフト。
【請求項8】
前記中空シャフトの両端に取り付けられた等速自在継手が、一端が固定式等速自在継手であり、他端が摺動式等速自在継手であることを特徴とする請求項1〜7のいずれか1項に記載の後輪用ドライブシャフト。
【請求項9】
前記中空シャフトの両端に取り付けられた等速自在継手が、いずれも摺動式等速自在継手であることを特徴とする請求項1〜8のいずれか1項に記載の後輪用ドライブシャフト。
【請求項10】
前記中空シャフトに防錆処理が施されていることを特徴とする請求項1〜9のいずれか1項に記載の後輪用ドライブシャフト。
【請求項11】
前記固定式等速自在継手の内側継手部材の軸方向長さを短縮し、トルクを伝達するボールのピッチ円直径をDb、内側継手部材の内径スプラインのピッチ円直径をDsとしたとき、Db/Dsの比を2.16以下にしたことを特徴とする請求項8に記載の後輪用ドライブシャフト。
【請求項12】
前記摺動式等速自在継手のトルクを伝達するボールのピッチ円直径をDb、内側継手部材の内径スプラインのピッチ円直径をDsとしたとき、Db/Dsの比を2.28以下にしたことを特徴とする請求項8又は請求項9に記載の後輪用ドライブシャフト。
【請求項13】
前記摺動式等速自在継手がクロスグルーブ型等速自在継手であり、トルクを伝達するボールの個数を8個以上とし、ボールのピッチ円直径をDb、内側継手部材の内径スプラインのピッチ円直径をDsとしたとき、Db/Dsの比を2.0以下にしたことを特徴とする請求項7又は請求項12に記載の後輪用ドライブシャフト。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−97797(P2012−97797A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2010−245017(P2010−245017)
【出願日】平成22年11月1日(2010.11.1)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 刊行物名 日本ベアリング新聞 平成22年5月15日付 発行日 平成22年5月15日 発行所 有限会社日本ベアリング新聞社 刊行物名 日刊工業新聞 平成22年5月18日付 発行日 平成22年5月18日 発行所 株式会社日刊工業新聞社 刊行物名 日刊自動車新聞 平成22年5月20日付 発行日 平成22年5月20日 発行所 株式会社日刊自動車新聞社 刊行物名 日経産業新聞 平成22年5月24日付 発行日 平成22年5月24日 発行所 株式会社日本経済新聞社 刊行物名 日本ベアリング新聞 平成22年6月1日付 発行日 平成22年6月1日 発行所 有限会社日本ベアリング新聞社 刊行物名 日刊産業新聞 平成22年6月7日付 発行日 平成22年6月7日 発行所 株式会社産業新聞社 刊行物名 「自動車工学」2010−8 Vol.59 No.8 発行日 平成22年6月26日 発行所 株式会社鉄道日本社 刊行物名 「機械設計」2010年8月号 第54巻第8号 発行日 平成22年7月10日 発行所 株式会社日刊工業新聞社 刊行物名 日刊自動車新聞 平成22年8月16日付 発行日 平成22年8月16日 発行所 株式会社日刊自動車新聞社 ホームページのアドレス http://www.ntn.co.jp/japan/index.html http://www.ntn.co.jp/japan/news/news_files//index.html http://www.ntn.co.jp/japan/news/news_files/new_products/news201000033.html 掲載日 平成22年 5月18日 公開者 NTN株式会社 ホームページのアドレス http://www.ntn.co.jp/japan/index.html http://www.ntn.co.jp/japan/investors/index.html http://www.ntn.co.jp/japan/investors/annual/pdf/2010/15.pdf 掲載日 平成22年 8月10日 公開者 NTN株式会社 博覧会名 自動車技術展:人とくるまのテクノロジー展2010年 主催者名 社団法人自動車技術会 開設日 平成22年5月19日から5月21日
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】