説明

微動装置及び走査形プローブ顕微鏡

【課題】 本発明が解決しようとする問題点は、走査形プローブ顕微鏡等でのヒートサイクルにおいて、チューブ型圧電素子の破損が発生するという点である。
【解決手段】 円筒状に形成され、一方の端部に切欠部が形成された圧電素子体と、前記圧電素子体の前記一方の端部を固定し、前記圧電素子体と温度変化による変形率が異なる固定台と、前記圧電素子体に設けられた電極と、を備えた前記圧電素子体の他方の端部を微動させる微動装置であって、前記圧電素子体と前記固定台との温度変化による変形量の違いを前記切欠部を形成することにより生ずる前記圧電素子体の弾性変形で吸収することを特徴とする微動装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は圧電素子を用いた微動素子に関するものである。また、本発明は走査形トンネル顕微鏡、原子間力顕微鏡、磁気力顕微鏡、摩擦力顕微鏡、マイクロ粘弾性顕微鏡、表面電位差顕微鏡、走査形近接場顕微鏡及びその類似装置の総称である走査形プローブ顕微鏡に関するものである。
【背景技術】
【0002】
近年、探針付きカンチレバーと試料を対向配置し、探針と試料の距離を数ナノメートル以下の距離にして、探針と試料表面を相対的に走査することにより、探針と試料間に働く原子間力,磁気力,或いは静電気力等の物理量を測定し、測定に基づいて試料表面の凹凸像・磁気像・分光画像等を得るように成した走査形プローブ顕微鏡が注目されている。
【0003】
探針と試料表面を相対的に走査するために、図1に示すような、微動装置であるスキャナを用いる。図1において、図示しない装置に設置された固定台6には円筒形状のチューブ型圧電素子1の一端が固定されており、他端である自由端にはプローブ2が設置されている。図2は図1の断面図である。図2において、固定台6とチューブ型圧電素子1は固定部8で固定されている。固定の方法はネジ止めの場合もあるが、原子分解能が要求される走査形プローブ顕微鏡においては、僅かなガタも許されないために接着剤による固定方法が主に用いられる。
【0004】
チューブ型圧電素子1は電極3、4に電圧を印加することにより電極3、4下の圧電素子が伸長又は収縮する作用を利用して、歪みによる変形により自由端を変位させる。このため、固定部8のストレスは大きい。
また、超高真空試料室を備えた走査形プローブ顕微鏡の場合、スキャナが設置されている試料室の超高真空環境を得るために、試料室内に付着した気体等を除去する焼き出しであるベークを行う。つまり、室温から150°C程度のベーク温度に加熱し、ベーク温度から室温に戻すというヒートサイクルが発生する。チューブ型圧電素子1は熱膨張係数が小さく、堅くてもろい。固定台6の材料である金属は熱膨張係数が圧電素子より大きい。よって、ヒートサイクルの際、固定台6は圧電素子1より大きく変化する。また、ガス等の発生が少ない超高真空下で使用可能な接着剤も硬化後は熱膨張係数が小さくほとんど変形しない。このため、チューブ型圧電素子1と接着剤、金属等で構成された固定台6との間に相対的な熱膨張差が発生し、チューブ型圧電素子1が破損するか、固定部8の接着剤が剥がれるという結果に至る。
【0005】
さらに、超高真空低温観察を行う場合は、ベーク後冷媒により低温(液体窒素温度、液体ヘリウム温度)になるため、相対的熱収縮差がさらに大きく発生する。このため、室温〜ベーク温度〜室温〜低温〜室温のヒートサイクルを行うと、固定部8で破損が生じることがさらに多い。
【0006】
これを解決するため、チューブ型圧電素子と金属製固定台の間にセラミックの緩衝パーツを入れるという従来技術があるが、セラミックスの緩衝パーツは熱膨張係数がチューブ型圧電素子のものに近いため、緩衝パーツと金属製固定台の間で接着剤が剥がれてしまうとうい問題が発生する。
【0007】
なお、従来技術としては、電磁誘導ノイズや電流の干渉を防止するため、円筒状圧電性セラミックスに切り欠きを設けた顕微鏡用探針微動装置がある(例えば、特許文献1)。
【0008】
【特許文献1】特開平7−287022
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明が解決しようとする問題点は、走査形プローブ顕微鏡等でのヒートサイクルにおいて、チューブ型圧電素子と固定台との熱変形の違いによりチューブ型圧電素子の破損が発生するという点である。
【課題を解決するための手段】
【0010】
請求項1の発明は、円筒状に形成され、一方の端部に切欠部が形成された圧電素子体と、前記圧電素子体の前記一方の端部を固定し、前記圧電素子体と温度変化による変形率が異なる固定台と、前記圧電素子体に設けられた電極と、を備えた前記圧電素子体の他方の端部を微動させる微動装置であって、前記圧電素子体と前記固定台との温度変化による変形量の違いを前記切欠部を形成することにより生ずる前記圧電素子体の弾性変形で吸収することを特徴とする微動装置である。
【0011】
請求項2の発明は、前記切欠部の先端が曲面で構成されたことを特徴とする請求項1に記載の微動装置である。
【0012】
請求項3の発明は、前記切欠部がU字形状で構成されたことを特徴とする請求項1に記載の微動装置である。
【0013】
請求項4の発明は、前記切欠部が少なくとも2カ所に形成されたことを特徴とする請求項1乃至3のいずれかに記載の微動装置である。
【0014】
請求項5の発明は、前記切欠部が等間隔に、4カ所に、形成されたことを特徴とする請求項1乃至3のいずれかに記載の微動装置である。
【0015】
請求項6の発明は、前記圧電体素子が前記固定台に接着により固定されたことを特徴とする請求項1乃至5のいずれかに記載の微動装置である。
【0016】
請求項7の発明は、探針と試料を接近させて対向配置し、前記探針と前記試料との相対位置を変化させ、前記探針と前記試料間に作用する物理量により検出される信号に基づいて前記試料表面の像情報を得る走査形プローブ顕微鏡において、前記試料が配置された試料室の温度を変化させ、請求項1乃至6のいずれかに記載の微動装置により前記探針と前記試料の相対位置を変化させることを特徴とした走査形プローブ顕微鏡である。
【発明の効果】
【0017】
本発明によりチューブ型圧電素子の固定端に切欠部を設け、チューブ型圧電素子の固定部が固定台の熱膨張又は収縮に追従しやすくすることにより、チューブ型圧電素子の破損を防止することができる。
【発明を実施するための最良の形態】
【0018】
(実施例1)
本発明の構成を図4を用いて説明する。図示しない装置に設置されたステンレス等の金属で構成された固定台6には円筒状のチューブ型圧電素子1の一端が固定されている。原子分解能が要求される走査形プローブ顕微鏡においては、僅かなガタも許されないために接着剤による固定方法が用いられる。また、チューブ型圧電素子1は、薄いPbZrTiO等の圧電セラミックから構成され、半径方向に分極されており、長手方向は非分極となっている。チューブ型圧電素子1の外側表面には、2個のX駆動電極3と2個のY駆動電極4が交互に等間隔でメタライズされている。またその自由端側には、Z駆動電極5がメタライズされている。各電極3、4、5に図示しない電線が接続されており、電圧が印加される構成になっている。また、チューブ型圧電素子1の内側にも図示しない電極がメタライズされており、接地電極となっている。
【0019】
X駆動電極3とY駆動電極4の間の固定部6には4個の先端部が曲面であるU字形状の切欠部7が等間隔に形成されている。チューブ型圧電素子1の他端である自由端にはプローブ2が設置されている。図5は図4の断面図である。図6は図4のチューブ型圧電素子1の展開図である。
【0020】
以上、図4における各部の構成について説明したが、次に動作について説明する。チューブ型圧電素子1は電極3、4、5に電圧を印加することにより電極下の圧電素子が伸長又は収縮する作用を利用して、歪みによる変形によりプローブ2が設置されている自由端をXYZ方向に変位させる。このため、固定部8のストレスは大きい。
【0021】
また、超高真空試料室を備えた走査形プローブ顕微鏡の場合、スキャナが設置されている試料室の超高真空環境を得るために、試料室内に付着した気体等を除去する焼き出しであるベークを行う。つまり、室温から150°C程度のベーク温度に加熱し、ベーク温度から室温に戻すというヒートサイクルが発生する。チューブ型圧電素子1は熱膨張係数が小さく、堅くてもろい。固定台6の材料である金属は熱膨張係数が圧電素子より大きい。よって、ヒートサイクルの際、固定台6は圧電素子1より大きく変化する。また、ガス等の発生が少ない超高真空下で使用可能な接着剤も硬化後は熱膨張係数が小さくほとんど変形しない。このため、チューブ型圧電素子1と接着剤、金属等で構成された固定台6との間に相対的な熱膨張差が発生する。
【0022】
さらに、超高真空低温観察を行う場合は、ベーク後冷媒により低温(液体窒素温度、液体ヘリウム温度)になるため、相対的熱収縮差がさらに大きく発生する。このため、室温〜ベーク温度〜室温〜低温〜室温のヒートサイクルを行うと、さらに大きな相対的な熱変形差が発生する。
【0023】
しかし、チューブ型圧電素子固定部8にはU字形状の切欠部7が構成されているため、金属製の固定台が熱膨張・熱収縮で変形した場合にチューブ型圧電素子1が弾性変形して追従し易い。このため、チューブ型圧電素子1の破損、あるいは、接着部の剥がれが発生し難い。特に、超高真空温度可変走査形プローブ顕微鏡では、室温〜ベーク温度〜室温〜低温〜室温のヒートサイクルがあり、固定台6の変形が激しいが、チューブ型圧電素子1の固定部8が追従し易いため破損が起き難く特に有効である。
【0024】
切欠部7が多すぎるとチューブ型圧電素子1の強度が低下するが、4個のU字形状の切欠部7が形成されている場合は十分な強度が保持される。チューブ型圧電素子1に電圧を印加すると電極3、4の下の圧電素子1が変形するが、電極3、4間に切欠部7を配置することにより歪みの影響を最小限に抑えることが出来る。
【0025】
もちろん、切欠部はU字形状に限らないが、チューブ型圧電素子が熱により変形した場合に応力集中が起こりに難いよう、先端は曲面が好ましい。図8において、U字形状9や先端が曲面10の場合、V字11やコの字12の切欠部に比べて亀裂が入り難い。
また、切欠部の数は4個に限らず、1個以上あればよい。切欠部が2個以上の場合はチューブ型圧電素子固定部が2ピース以上に分割されるので固定台の変化により追従し易いくなり、効果がより高まる。しかし、余り数が多すぎるとチューブ型圧電素子の強度が低下するため好ましくはない。
【0026】
以上、動作について説明したが、温度が変化したとき、本発明によりチューブ型圧電素子の切欠部周辺の部分が固定台の熱膨張・収縮に追従しやすくなる。このため、チューブ型圧電素子の破損が起こり難いという効果が得られる。特に、2個以上切欠部を設けると効果的である。また、切欠部の形状は、先端がU字形状等の曲面の場合、V字やコの字の切欠部に比べて亀裂が入り難い。
【0027】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、図9のように電極の下に切り欠きを配置してもよい。
【0028】
(実施例2)
走査形トンネル顕微鏡は、試料と金属製探針との距離をlnm以下に保ち、これらの間に数V程度のバイアス電圧をかけると、探針と試料間の真空間隙を通って電子が移動しトンネル電流が流れるという、いわゆるトンネル効果の原理を利用する。トンネル電流は試料と探針との距離に敏感であり、距離に対して指数関数的に変化する。そこで、圧電素子を用いた微動装置によりこのトンネル電流が一定となるように探針又は試料をZ方向に制御して試料表面上を二次元的に走査する。この時Z方向を制御するために印加した電圧を距離換算したデータに基づいて凹凸情報として画像化することにより、試料表面の凹凸を原子レベルで観察することができる。
【0029】
図7は本発明を用いた微動装置であるスキャナを備えた走査形トンネル顕微鏡である。走査形トンネル顕微鏡の試料観察部分は図示しない真空ポンプを備えた超高真空試料室19に収納されている。超高真空試料室19は図示しないヒーター及び液体窒素冷却装置等からなる温度調整装置により温度可変である。試料台14には試料13が載置されており、探針2が試料13に対向かつ接近して配置されている。探針2はチューブ型圧電素子1の自由端に設置されている。チューブ型圧電素1子の固定端は固定台6を介して試料室19に固定されている。チューブ型圧電素子1表面にはX、Y、Z軸用の電極3、4、5がメタライズされており、各電極に電圧を印加することにより圧電効果を利用してXYZ方向に自由端が変位する。
【0030】
チューブ型圧電素子1のX駆動電極3、Y駆動電極4には駆動制御手段であるXYドライバ15が接続されており、Z駆動電極5にも駆動制御手段であるZドライバ16が接続されている。XYドライバ15及びZドライバ16はコンピュータ17に接続されており、コンピュータ17は図示しない演算部、メモリ部、表示装置から構成されており各ドライバを制御する。
【0031】
また、コンピュータ17は試料2と探針13間に所定のバイアス電圧を印加するバイアス回路18と、探針2と試料13間に流れるトンネル電流を検出するトンネル電流検出手段を制御する。
【0032】
チューブ型圧電素子1を用いた微動装置によりこのトンネル電流が一定となるように探針2をZ方向に制御して試料13表面上を二次元的に走査する。この時Z方向を制御するために印加した電圧をコンピュータ17において距離換算したデータに基づいて凹凸情報として画像化する
このような構成の走査形プローブ顕微鏡において、実施例1で述べたように、室温〜ベーク温度〜室温〜低温〜室温のヒートサイクルが生じた場合、金属製固定台6の変形が激しいが、切欠部7を備えたチューブ型圧電素子1の固定部は追従し易いため破損が起き難く有効である。
【0033】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、試料側を走査させてもよい。また、原子間力顕微鏡、磁気力顕微鏡、摩擦力顕微鏡、マイクロ粘弾性顕微鏡、表面電位差顕微鏡、走査形近接場顕微鏡及びその類似装置の総称である走査形プローブ顕微鏡に適用してもよい。
【図面の簡単な説明】
【0034】
【図1】従来技術における微動装置。
【図2】図1の断面図。
【図3】図1の圧電素子の展開図。
【図4】本発明を用いた微動装置。
【図5】図4の断面図。
【図6】図5の圧電素子の展開図。
【図7】本発明を用いた走査形プローブ顕微鏡。
【図8】本発明における切欠部の図である。
【図9】本発明における圧電素子の展開図。
【符号の説明】
【0035】
1 チューブ型圧電素子
2 プローブ
3 X駆動電極
4 Y駆動電極
5 Z駆動電極
6 固定台
7 切欠部
8 固定部
9 U字形状切欠部
10 先端部曲面形状切欠部
11 V字形状切欠部
12 コの字形状切欠部
13 試料
14 試料台
15 XYドライバー
16 Zドライバー
17 コンピュータ
18 バイアス回路
19 超高真空試料室

【特許請求の範囲】
【請求項1】
円筒状に形成され、一方の端部に切欠部が形成された圧電素子体と、
前記圧電素子体の前記一方の端部を固定し、前記圧電素子体と温度変化による変形率が異なる固定台と、
前記圧電素子体に設けられた電極と、を備えた前記圧電素子体の他方の端部を微動させる微動装置であって、
前記圧電素子体と前記固定台との温度変化による変形量の違いを前記切欠部を形成することにより生ずる前記圧電素子体の弾性変形で吸収することを特徴とする微動装置。
【請求項2】
前記切欠部の先端が曲面で構成されたことを特徴とする請求項1に記載の微動装置。
【請求項3】
前記切欠部がU字形状で構成されたことを特徴とする請求項1に記載の微動装置。
【請求項4】
前記切欠部が少なくとも2カ所に形成されたことを特徴とする請求項1乃至3のいずれかに記載の微動装置。
【請求項5】
前記切欠部が等間隔に、4カ所に、形成されたことを特徴とする請求項1乃至3のいずれかに記載の微動装置。
【請求項6】
前記圧電体素子が前記固定台に接着により固定されたことを特徴とする請求項1乃至5のいずれかに記載の微動装置。
【請求項7】
探針と試料を接近させて対向配置し、前記探針と前記試料との相対位置を変化させ、前記探針と前記試料間に作用する物理量により検出される信号に基づいて前記試料表面の像情報を得る走査形プローブ顕微鏡において、
前記試料が配置された試料室の温度を変化させ、請求項1乃至6のいずれかに記載の微動装置により前記探針と前記試料の相対位置を変化させることを特徴とした走査形プローブ顕微鏡。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate