説明

成分分析装置及び生体情報測定装置

【課題】高感度の分析を行うことができる低価格の成分分析装置を提供する。また、無侵襲に成分分析を行うことにより健康状態をチェックすることができる生体情報測定装置を提供する。
【解決手段】キャビティ部32は、シングルモールドファイバ50、シングルモールドファイバ50よりもコアの直径が大きいグレーデッドインデックス型光ファイバ52、及び最表面にTiO2の光反射膜56が形成されたファイバ型平凹面レンズ54により構成される光ファイバ30Aの凹面と光ファイバ30Bの凹面とが対向するように離間して配置されている。生体情報測定装置10は、対応関係記憶部42に記憶している特定成分の濃度と生体情報との対応関係と、成分分析装置10が分析した便器1内の人体から排泄された物質から揮発した被測定物質であるガス中の特定成分の濃度と、に基づいて生体情報を取得し、生体情報記憶部46に記憶したり、入出力部48に表示したりする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、成分分析装置及び生体情報測定装置、特にキャビティ・リングダウン分光法を用いた成分分析装置及び生体情報測定装置に関する。
【背景技術】
【0002】
近年、飽食や運動不足等の影響により、脂質の取りすぎや野菜不足となり、糖尿病や血管疾患等を患う人が増加している。過剰な脂質はコレステロールの増加を招き、これが血管に蓄積されて、心筋梗塞や脳梗塞の原因となっている。
【0003】
病気の早期発見及び早期治療のためには日々の健康状態をチェックすることが有効である。健康状態をチェックするために生体情報を測定する方法としては、血液を採取する方法が最も有効である。しかしこの方法は、生命維持に必要な血液を採取することから、測定回数に制約があり、罹患していない人から日常的に採取することは実質困難である。そこで、無侵襲に生体情報を測定する方法として、生体から排出されるものを用いた分析法があり、排泄物を用いた検査が行われている。
【0004】
排泄物を用いた検査として、便器内の排泄物の形状、色、及びにおいに関する性状情報をCCDカメラやにおいセンサ等で検出し、便器使用者の健康状態をチェックする技術が知られている(例えば、特許文献1参照)。
【0005】
このような検査に用いるための分析装置として、例えば、ガス分析装置が挙げられるが、大気分析等で使用されているガス分析装置は1台あたり数百万円から数千万円と高価である。毎日、健康状態をチェックするためには家庭用のトイレに装備することが効果的であるが、家庭用としては高価すぎるため、低価格な分析装置が必要とされる。
【0006】
このような小型で低価格な成分分析装置として、光ファイバと方向性結合器とを組み合わせて被測定物質の成分分析を行うキャビティ・リングダウン分光式を用いた分析装置が知られている(例えば、特許文献2参照)。
【特許文献1】特開平4−225161号公報
【特許文献2】特開2004−333337号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記従来の分析装置では、光ファイバ端面が平行面をしているため、光ファイバの端面から空間に放出された光が広がることにより、対向する光ファイバの端面に結合できなくなる光が生じることを防止するため、光ファイバの端面同士の空間的な距離を広げられないという制約が生じ、そのため、測定被測定物質を導入する部分が狭く、実質的な光学長が短いので、高感度の分析を行うことが困難である。
【0008】
本発明は、高感度の分析を行うことができる低価格の成分分析装置を提供することを目的とする。また、無侵襲に成分分析を行うことにより健康状態をチェックすることができる生体情報測定装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、請求項1に記載の成分分析装置は、測定用の光を出射する測定用光源と、前記測定用光源からの光が入射される第1の光ファイバと、前記第1の光ファイバよりも光を導入するコアの直径が大きい第2の光ファイバと、第1の光反射膜が形成された凹面を有する第1の平凹面レンズと、がこの順で接合された第1の光導波手段と、前記第1の光導波手段からの光が入射され、且つ、第2の光反射膜が形成された凹面を有する第2の平凹面レンズと、第3の光ファイバと、前記第3の光ファイバよりも光を導入するコアの直径が小さい第4の光ファイバと、がこの順で接合された第2の光導波手段と、前記第1の平凹面レンズの凹面と、前記第2の平凹面レンズの凹面と、が対向するように離間して配置し、気体又は液体から成る被測定物質を封入するための空間部及び前記空間部に前記被測定物質を導入するための導入部を備えたキャビティ部と、前記測定用光源から出射された測定用の光が前記第1の光導波手段を導波して出射され、前記被測定物質に照射され、当該照射された光が前記第2の光導波手段を導波した光を検出する検出手段と、前記検出手段の検出結果に基づいて前記被測定物質中の特定成分の濃度を測定する測定手段と、を備える。
【0010】
測定用光源は、測定用の光を出射する。測定用の光は、予め被測定物質中の特定成分毎に予め定められた波長の光である。第1の光導波手段は、第1の光ファイバと、第1の光ファイバよりも光を導入するコアの直径が大きい第2の光ファイバと、第1の光反射膜が形成された凹面を有する第1の平凹面レンズと、がこの順で接合されており、測定用の光が、第1の光ファイバに入射され、導波した光は、第1の平凹面レンズから照射される。第2の光導波手段は、第2の光反射膜が形成された凹面を有する第2の平凹面レンズと、第3の光ファイバと、第3の光ファイバよりも光を導入するコアの直径が小さい第4の光ファイバと、がこの順で接合されており、第1の光導波手段からの光が、第3の光ファイバに入射される。
【0011】
キャビティ部には、第1の平凹面レンズの凹面と、第2の平凹面レンズの凹面と、が対向するように離間して配置してあり、空間部及び導入部を備えており、導入部から導入された気体又は液体から成る被測定物質は、空間部に封入される。
【0012】
検出手段は、測定用の光が第1の光導波手段を導波して出射され、前記被測定物質に照射され、当該照射された光が第2の光導波手段を導波した光を検出する。測定手段は、検出手段の検出結果に基づいて被測定物質中の特定成分の濃度を測定する。
【0013】
これにより、光ファイバにより形成される第1の光導波手段の第1の平凹面レンズの凹面からキャビティ部内の空間部に放出された光の全光が対向する第2の光導波手段の第2の平凹面レンズの凹面に結合できるようになるため、凹面同士の距離を拡げられ、空間部を大きくすることができるので、高感度の分析を行うことができる。また、比較的低価格な光ファイバにより第1の光導波手段及び第2の光導波手段を形成しているので、低価格に提供することができる。
【0014】
請求項2に記載の成分分析装置は、請求項1に記載の成分分析装置において、前記測定用光源が、前記被測定物質中の特定成分毎に定められた波長のパルス光を出射する波長可変光源である。
【0015】
測定用光源を波長可変光源とすることにより、被測定物質中の特定成分毎に定められた波長のパルス光を出射する。これにより、被測定物質中に含まれる複数の特定成分について成分分析を行うことができる。
【0016】
請求項3に記載の成分分析装置は、請求項1または請求項2に記載の成分分析装置において、前記第1の光反射膜及び前記第2の光反射膜の少なくとも一部が、酸化チタン膜であり、紫外光を出射する紫外光光源と、前記測定用光源及び前記紫外光光源と接続され、前記測定用光源及び前記紫外光光源の何れかから出射された光を入力して前記第1の光導波手段に出力する光結合手段と、を備える。
【0017】
第1の平凹面レンズ及び第2の平凹面レンズの凹面に形成されている第1の光反射膜及び第2の光反射膜の最表面膜を酸化チタン膜とし、紫外光光源を備え光結合手段により紫外光光源を第1の光導波手段に出力することにより、紫外光が第1の平凹面レンズ及び第2の平凹面レンズの凹面に照射される。これにより、酸化チタンの光触媒作用で第1の平凹面レンズ及び第2の平凹面レンズの凹面を洗浄することができるため、高感度の測定を行うことができる。
【0018】
請求項4に記載の成分分析装置は、請求項1から請求項3の何れか1項に記載の成分分析装置において、前記導入部は、便器本体の水溜まり部の内面に接続され、前記便器本体の水溜まり部の内面の被測定物質を導入する 。
【0019】
便器本体の水溜まり部の内面から導入した被測定物質中の特定成分の濃度を測定することにより、人体に対して無侵襲に成分分析を行うことができる。
【0020】
請求項5に記載の成分分析装置は、請求項4に記載の成分分析装置において、前記便器本体の水溜まり部の内面の被測定物質の有無を検知する検知手段をさらに備え、前記測定手段は、前記便器本体の水溜まり部の内面に被測定物質が存在することを検知した場合に、前記被測定物質中の特定成分の濃度を測定する。
【0021】
検知手段が便器本体の水溜まり部の内面の被測定物質の存在を検知した場合に、測定手段は、被測定物質中の特定成分の濃度を測定するようにすることができるので、便器本体の水溜まり部の内面に被測定物質が存在しない場合は測定を行わないようにすることができる。
【0022】
請求項6に記載の生体情報測定装置は、請求項4または請求項5に記載の成分分析装置と、予め定めた便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度と生体情報との対応関係を記憶する対応関係記憶手段と、前記請求項4または請求項5に記載の成分分析装置で測定した前記便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度と、前記対応関係記憶手段に記憶された前記対応関係と、に基づいて生体情報を取得する生体情報取得手段と、を備える。
【0023】
対応関係記憶手段は、予め定めた便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度と生体情報との対応関係を記憶する。生体情報取得手段は、請求項4または請求項5に記載の成分分析装置で測定した便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度と、対応関係と、に基づいて生体情報を取得する。これにより、人体に対して無侵襲に成分分析を行った結果に基づいて生体情報を取得することができるので、無侵襲に成分分析を行うことにより健康状態をチェックすることができる。
【0024】
請求項7に記載の生体情報測定装置は、請求項6に記載の生体情報測定装置において、 前記生体情報取得手段により取得された生体情報に関する情報を表示する表示手段を備える。
【0025】
表示手段は、生体情報に関する情報を表示する。これにより、利用者は生体情報に関する情報を知ることができる。
【0026】
請求項8に記載の生体情報測定装置は、請求項6または請求項7に記載の生体情報記憶装置において、前記生体情報取得手段により取得された生体情報に関する情報を記憶する生体情報記憶手段を備える。
【0027】
生体情報記憶手段は生体情報に関する情報を記憶する。これにより、生体情報に関する情報の変化等を容易に知ることができる。
【発明の効果】
【0028】
以上説明したように、請求項1から請求項5に記載の本発明によれば、光ファイバを用いたキャビティ・リングダウン分光法において光ファイバ端面からキャビティ内の空間部に放出された光の全光が対向する光ファイバの端面に結合できるようになるため、光ファイバ端面同士の距離を拡げられ、空間部を大きくすることができるので、高感度の分析を行うことができる低価格の成分分析装置を提供することができる、という効果が得られる。
【0029】
請求項6から請求項8に記載の本発明によれば、便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度を測定し、生体情報を取得するので、無侵襲に成分分析を行うことにより健康状態をチェックすることができる、という効果が得られる。
【発明を実施するための最良の形態】
【0030】
[第1の実施の形態]
以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本実施の形態では、被測定物質が気体(ガス)であり、排泄物(主に排便)から揮発したガス中の特定成分の濃度を測定することにより成分分析装置で分析し、これに基づいて生体情報を測定するものである。
【0031】
本実施の形態に係る成分分析装置を含む生体情報測定装置を備えた便器の概略構成の一例の断面図を図1に示す。
【0032】
本実施の形態では、洋式便器1の背面側に成分分析装置(詳細後述)を含む生体情報測定装置10が設置されており、便器1の内部から被測定物質を吸引し、成分分析装置のキャビティ部の空間部(詳細後述)に被測定物質を導入するための導入管34が便器1内の液面よりも高い位置に接続されている。
【0033】
また、本実施の形態では、センサ38(検知手段)が便器1の正面側に接続されている。本実施の形態では、センサ38は、便器1を利用者が使用していることを検知するための人体検知センサであり、利用者が使用している場合に被測定物質が便器1内にあるものとして検知する。センサ38の具体的一例としては、例えば、赤外線センサや、便器1の便座(図示省略)に設けられたタッチセンサや便器1内の液面の上昇を検知する液面センサ等が挙げられる。なお、本実施の形態で便器1の正面側とは、人体が立つ(座る)側であり、背面側とは通常、便器1の蓋(図示省略)が接続されている側のことをいう。
【0034】
図2を参照して、本実施の形態の生体情報測定装置10について詳細に説明する。図2は、本実施の形態の生体情報測定装置10の概略構成の一例を示す概略構成図である。
【0035】
本実施の形態の生体情報測定装置10は、成分分析装置20、制御部40、対応関係記憶部42、生体情報取得部44、生体情報記憶部46、及び入出力部(表示部)48を備えて構成されている。
【0036】
成分分析装置20について詳細に説明する。本実施の形態の成分分析装置20は、光ファイバ型キャビティ・リングダウン分光方式により被測定物質中の特定成分の濃度を分析するものである。なお、キャビティ・リングダウン分光方式(Caviy Ring Down Spectoroscopy、以下、CRDSという)とは、被測定物質が導入されたキャビティ部内にパルス光を入射し、このパルス光がキャビティ部内を多重反射しながらキャビティ部外に放射された光量の時間変化を解析することで光の吸収特性を測定し、測定結果から被測定物質中に含まれる成分を特定し、その量を測定する方式のことである。
【0037】
本実施の形態の成分分析装置20は、測定部22、波長可変レーザ(波長可変光源)24、紫外光レーザ(紫外光光源)26、カプラ28、光ファイバ(光導波部、第1の光導波手段)30A及び光ファイバ(光導波部、第2の光導波手段)30B、キャビティ部32、導入管34、光検出器36、及びセンサ38を含んで構成されている。
【0038】
測定用光源として用いられる波長可変レーザ24は、近赤外領域の波長可変レーザであり、被測定物質中の特定成分毎に定められた波長のレーザ光(パルス光25)を出射するものである。本実施の形態では、具体的一例として、中心波長が1.55μmで帯域幅が40nmの波長可変レーザ24を用いているがこれに限らず、他の波長帯の波長可変レーザ24を用いてもよい。
【0039】
紫外光光源として用いられる紫外光レーザ26は、紫外域の半導体レーザであり、共振器ミラーを洗浄するために紫外光を出射するものである(詳細後述)。本実施の形態では、具体的一例として、波長が385nmの紫外光レーザ26を用いている。
【0040】
波長可変レーザ24及び紫外光レーザ26は、カプラ28を通して光ファイバ(光導波部)30Aを通じてキャビティ部32にレーザ光を放射する。なお、本実施の形態では、カプラ28を用いているが、これに限らず、他の方法を用いて、2種の光源の何れかから入力されたレーザ光をファイバ30Aに出力するようにしてもよい。
【0041】
図3を用いて、本実施の形態の光ファイバ型CRDSのキャビティ部32及び一対の光ファイバ30(光ファイバ30A、30B)について詳細に説明する。
【0042】
図3(A)に示すように、本実施の形態の光ファイバ30は、シングルモールドファイバ50(第1の光ファイバ50A、第4の光ファイバ50B)、グレーデッドインデックス型光ファイバ52(第2の光ファイバ52A、第3の光ファイバ52B)、及び光反射膜56が形成されたファイバ型平凹面レンズ54(第1の平凹面レンズ54A、第2の平凹面レンズ54B)により構成される。本実施の形態では、具体的一例として、シングルモールドファイバ50、グレーデッドインデックス型光ファイバ52、及びファイバ型平凹面レンズ54の外径は全て250μmのものを用いている。
【0043】
本実施の形態のシングルモールドファイバ50は、具体的一例として、光を導入するコアの直径が約6μmのステップインデックス型光ファイバを用いている。
【0044】
グレーデッドインデックス型光ファイバ52Aは、シングルモードファイバ50Aから導波された光密度を広げ平行光としてキャビティ部32内の空間部57に放射し、逆にグレーデッドインデックス型光ファイバ52Bは、キャビティ部32内の空間部57から放出された光を再び集光してシングルモードファイバ50Bに結合させるためのものである。本実施の形態では、具体的一例として、長さ3mm、コアの直径が50μm、中央付近に近付くにつれて屈折率が高くなるものを用いている。
【0045】
ファイバ型平凹面レンズ54は、キャビティ部32内の空間部57に放射した光を集光させるための共振器ミラーである。光ファイバ30の端面が平行面である場合、光ファイバ端面からキャビティ部32内の空間部57に放射した光が拡がって対向する光ファイバ30に結合できなくなる光が生じるので、これを防止するためのものである。
【0046】
ファイバ型平凹面レンズ54の凹面には光反射膜56が形成されている。光反射膜56の反射率を高めることでキャビティ部32内の空間部57に光を長く閉じ込めることができ、実効的な光学長を長く取ることができるため、高感度な検出を行うことが可能となる。本実施の形態では、反射率が約99.9%の最表面が酸化チタン膜の誘電体多層膜が形成されたものを用いている。具体的一例として、ファイバ型平凹面レンズ54の凹面にTiO2とSiO2とによる多層膜を形成し、最後(最表面)にTiO2のλ/2膜が形成されたものを用いている。
【0047】
光反射膜56の最も露出する最表面部を酸化チタン膜とし、紫外光レーザ26から出射された紫外光を光ファイバ30から照射することにより、共振器ミラー部(ファイバ型平凹面レンズ54の凹面部)を洗浄することができる。CRDSを使用すると、共振器ミラー部(ファイバ型平凹面レンズ54の凹面部)に被測定物質等の様々な物質が吸着する。これにより光が散乱し、透明度を悪化させ、フォトデクスタのS/N比を低下させることとなるため、測定を阻害する要因となる。本実施の形態では、光触媒作用が強い酸化チタンを用いることにより、吸着した物質を強制的に分解して洗浄することができる。これにより、高い測定信頼性を継続的に長期間、確保することができる。なお、本実施の形態では、酸化チタン膜を用いているがこれに限らず、その他の光触媒作用が強い反射膜を用いても良い。
【0048】
なお、シングルモールドファイバ50及びグレーデッドインデックス型光ファイバ52のコアの直径やファイバ型平凹面レンズ54の反射率等の種々のパラメータは上記に示した値に限定されるものではなく、ある程度の大きさにビームが拡大された後に、平行光にさせる、または集光させるようにして、対向する共振器ミラーに全光が届くようなものであればよい。
【0049】
シングルモールドファイバ50、グレーデッドインデックス型光ファイバ52、及び光反射膜56が形成されたファイバ型平凹面レンズ54を図3(B)に示すように融着し、光ファイバ30を形成する。
【0050】
キャビティ部32内には、図3(C)に示すように、一対の光ファイバ30(光ファイバ30A及び光ファイバ30B)が対向するよう配置されており、本実施の形態では、具体的一例として、共振器ミラーの間隔を約10mm開けて配置し、当該間隔部分を空間部57としている。導入管34により便器1内から導入された被測定物質(ガス)が空間部57に充満される。なお、導入されたガスは特定成分の濃度の測定後に、排出部(図示省略)または導入管34により生体情報測定装置10の外部に排出される。
【0051】
本実施の形態における、光ファイバ30A及び光ファイバ30Bが対向するよう離間した位置に配置するための構造の一例を図4に示す。対向する位置にV字状の溝58A、58Bが形成された基板56上の溝58A、B上に光ファイバ30A及び光ファイバ30Bをそれぞれ配置して固定した。なお、これに限らず、例えば、V字状の溝58A、58Bに代わり、円筒形状をしたガイド、円筒形スリーブ等を使用してもよく、基板56の材質も石英ガラスやセラミックス等、種々のものを用いることができる。光ファイバ30A及び光ファイバ30Bが対向するよう離間した位置に配置し、固定できるものであれば特に限定されない。
【0052】
なお、本実施の形態では、第1の光ファイバ50A及び第4の光ファイバ50Bをシングルモールドファイバとし、第2の光ファイバ52A及び第3の光ファイバ52Bをグレーデッドインデックス型光ファイバ52としているがこれに限らず、何れの光ファイバがシングルモールドファイバであっても、グレーデッドインデックス型光ファイバであってもよいし、また、全て同一型の光ファイバであってもよい。
【0053】
また、本実施の形態では、光ファイバ30A及び光ファイバ30Bは一対の光ファイバ30として構成しているため略同同一のものであるがこれに限らず、コアの直径が異なる等、光ファイバ30Aと光ファイバ30Bとが異なるものであってもよい。
【0054】
光検出器36は、キャビティ部32内を多重反射して放出され、検出側の光ファイバ30Bに集光したレーザ光が光ファイバ30Bを導波してきた光を検出する。本実施の形態では、具体的一例として、InGaAs製フォトディテクタを用いている。
【0055】
測定部22は、光検出器36で検出した光の強度が時間と共に減衰していく過程(減衰波37)を測定することでガス中の特定成分の物質量(濃度)を定量的に測定する。なお、複数種類の特定成分に対して測定を行うことができるが、特定成分毎に異なった分子量・原子配列をしていることから、光の周波数に対して各々固有の相互作用を示す。即ち、特定成分毎に吸収特性が異なる。そのため、本実施の形態では、測定を行う特定成分毎に予め定められた波長の測定用の光を波長可変レーザ24から出力し、測定部22で測定を行う。
【0056】
これにより、本実施の形態の成分分析装置20では、ガス中に含まれる複数の特定成分の各々に対し、正確に同定を行うことができる。
【0057】
制御部40は、生体情報測定装置10の全体の制御を司るものであり、CPU、ROM、及びRAM(何れも図示省略)等を含んで構成される。
【0058】
対応関係記憶部42は成分分析装置20で測定した特定成分の濃度と、生体情報との対応関係を予め記憶しておくためのものである。生体情報とは、人体に関する情報であり、健康状態をチェックするために必要とされる情報である。生体情報取得部44は、対応関係記憶部42に記憶されている対応関係と、成分分析装置20で測定した特定成分の濃度と、に基づいて生体情報に関する情報を取得するためのものである。生体情報に関する情報とは、例えば、健康状態を示す情報である。生体情報記憶部46は、生体情報取得部44で取得した生体情報に関する情報を記憶しておくためのものである。
【0059】
入出力部(表示部)48は、生体情報の測定に関する情報を利用者が入力したり、生体情報に関する情報を利用者に対して出力(表示)したりするためのものである。本実施の形態では、現在の測定結果や生体情報記憶部46に記憶されている生体情報に関する情報等が出力(表示)される構成としている。具体的一例としては、タッチパネルや液晶ディスプレイ等が挙げられる。なお、無線回線を使用してコンピュータ等に生体情報に関する情報等を出力するようにしてもよいし、通信回線を使用して外部(病院等)に送るようにしてもよい。また、本実施の形態では、入出力部48から利用者が利用者個人を特定するための個人情報を入力し、取得した生体情報に関する情報を個人情報と関連づけて生体情報記憶部46に記憶するようにすることにより、測定結果を例えば、グラフ化させて出力すること等により、利用者の健康状態の変化をチェックすることができる。
【0060】
次に生体情報の測定処理について図5を参照して詳細に説明する。図5は、本実施の形態の生体情報の測定処理の一例を示すフローチャートであり、例えば、生体情報測定装置10に電源が投入された場合に、制御部40により実行される。
【0061】
まず、ステップ100では、共振器ミラー(平凹面レンズ54)の洗浄を行うか否か判断する。例えば、生体情報測定装置10に電源が投入された場合、所定の回数の測定を行った場合、所定時間経過後、及び測定の終了後等、予め洗浄を行うことが定められたタイミングである場合や利用者による洗浄処理を実行する旨の指示入力があった場合は肯定されて、ステップ102へ進む。
【0062】
ステップ102では、紫外光レーザ26から紫外光を出射させ、洗浄処理を行った後、ステップ112へ進む。
【0063】
一方、洗浄を行うタイミングでない場合等、洗浄を行わない場合は否定されて、ステップ104へ進む。ステップ104ではセンサ38が便器1内に被測定物質が有ることを検知したか否か(本実施の形態では、人体が便器1に近づいたか否か)を判断する。検知していない場合は否定されて、ステップ100に戻り、本処理を繰返す。一方、検知した場合は肯定されて、ステップ106へ進み、ガス中の特定成分の分析(濃度の測定)を行う。なお、本ステップでは、センサ38が検知した場合にステップ106へ進むようにしているが、これに加えて、利用者が入出力部48により測定の指示を入力した場合にステップ106へ進むようにしてもよい。
【0064】
ステップ106では、成分分析装置10に被測定物質中の特定成分の濃度を測定するよう指示する。当該指示により成分分析装置10では、導入管34により便器1内から被測定物質(ガス)を導入し、キャビティ部32内の空間部57に封入する。波長可変レーザ24は所定の波長の測定用の光を出射し、光ファイバ30Aを導波した光はキャビティ部32内の被測定物質に照射され、光ファイバ30Bに入射される。光ファイバ30Bを導波した光を光検出器36で検出し、測定部22は、光検出器36で検出したレーザ光の減衰時間を測定する。測定後、空間部57に封入されているガスを排出部により生体情報測定装置10の外部に排出する。なお、ガス中に含まれる複数の特定成分の濃度を測定する場合は、特定成分毎に予め定められた波長に波長可変レーザ24の波長を切り替えてレーザ光を出射し、同様に特定成分の濃度を測定する処理を繰返す。例えば、プログラミングしておくことにより、測定部22や制御部40が指示したり、成分分析装置20に制御部を設けて当該制御部が指示したりすることにより波長の切り替えを行うようにすればよい。
【0065】
次のステップ108では、生体情報取得部44がステップ106で測定した特定成分の濃度と、対応関係記憶部42に記憶されている対応関係と、に基づいて生体情報に関する情報を取得する。
【0066】
次のステップ110では、取得した生体情報に関する情報を生体情報記憶部46に記憶し、また、入出力部(表示部)48に表示する。これにより、利用者は例えば、消化不良を起こしている等の自己の健康状態やその変化をチェックすることができる。
【0067】
次のステップ112では、本処理を終了するか否か判断する。終了しない場合は否定されて、ステップ100に戻り、本処理を繰返す。一方、生体情報測定装置10の電源がオフされた場合等は肯定されて、本処理を終了する。
【0068】
以上説明したように、本実施の形態のCRDSを用いた成分分析装置20のキャビティ部32は、シングルモールドファイバ50(第1の光ファイバ50A、第4の光ファイバ50B)、シングルモールドファイバ50よりも光を導入するコアの直径が大きいグレーデッドインデックス型光ファイバ52(第2の光ファイバ52A、第3の光ファイバ52B)、及び最表面にTiO2の光反射膜56が形成されたファイバ型平凹面レンズ54(第1の平凹面レンズ54A、第2の平凹面レンズ54B)により構成される光ファイバ30Aの凹面と光ファイバ30Bの凹面とが対向するように離間して配置されている。
【0069】
これにより、第1の平凹面レンズ54Aの凹面及び第2の平凹面レンズ54Bの凹面を共振器ミラーとすることができ、第1の平凹面レンズ54Aの凹面から空間部57に放出された光が集光されるので対向する第2の平凹面レンズ54Bに全光が届くため、共振器ミラーの距離を拡げられる。空間部57を大きくすることができるので、光の吸収を高くすることができ、従って、高感度の分析を行うことができる。また、比較的低価格な光ファイバを用いているため、低価格の成分分析装置を提供することができる。
【0070】
また、本実施の形態の生体情報測定装置10は、予め特定成分の濃度と生体情報との対応関係を対応関係記憶部42に記憶しており、当該対応関係と、成分分析装置10が分析した便器1内の人体から排泄された物質から揮発した被測定物質であるガス中の特定成分の濃度と、に基づいて生体情報を取得し、生体情報記憶部46に記憶したり、入出力部(表示部)48に表示したりするので、利用者は、無侵襲に成分分析を行った結果に基づいて健康状態をチェックすることができる。
【0071】
[第2の実施の形態]
以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本実施の形態は、被測定物質が液体であり、液体(排尿)中の特定成分の濃度を成分分析装置で測定し、これに基づいて生体情報を測定するものである以外は、第1の実施の形態と略同様の構成及び動作を行うものであるため、同一部分に関する詳細な説明は省略する。
【0072】
本実施の形態に係る、成分分析装置20を含む生体情報測定装置10を備えた便器の概略構成の一例の断面図を図6に示す。
【0073】
便器1の内部に溜まった排尿を含む液体をパーティクルフィルタ(図示省略)を通して、採取し、導入管34によりキャビティ部32の空間部57に導入するようになっている。なお、測定後の被測定物質は排出管35により便器1の排水路に排出されるようになっている。
【0074】
本実施の形態では、被測定物質が液体であるため、測定用光源(波長可変レーザ24)には水に対し吸収係数の小さい、赤色の波長可変レーザ24を、フォトディテクタにはシリコン製フォトディテクタを用いている。また、共振器ミラーの間隔は、5mmとして、CRDSを構成している。このように構成することで、被測定物質が液体の場合でも被測定物質中の特定成分の濃度の測定を行うことが出き、成分分析を行うことができる。
【0075】
生体情報の測定処理については、第1の実施の形態と同様の処理(図5のフローチャート参照)を行えばよい。
【0076】
以上説明したように、本実施の形態では、対応関係記憶部42に記憶されている特定成分の濃度と生体情報との対応関係と、成分分析装置10が分析した排尿中の特定成分の濃度と、に基づいて生体情報を取得し、生体情報記憶部46に記憶したり、入出力部(表示部)48に表示したりするので、利用者は、無侵襲に成分分析を行った結果に基づいて健康状態をチェックすることができる。
【0077】
なお、上述の第1の実施の形態及び第2の実施の形態では、便器1が洋式便器である場合について図示し、詳細に説明しているがこれに限らず、和式便器に適用した場合でも同様にすることができる。
【0078】
また、上述の第1の実施の形態及び第2の実施の形態では、便器1内部の被測定物を測定する場合について詳細に説明したがこれに限らず、呼気や唾液を成分分析装置20で分析することにより生体情報を取得する生体情報測定装置10とすることが可能である。また、糖尿病患者が血糖値を検査する際に抽出した血液を分析し、生体情報を取得する生体情報測定装置10としてもよい。
【0079】
さらに、本実施の形態では、成分分析装置20を生体情報測定装置10で生体情報を取得するために用いる場合について詳細に説明しているが、これに限らず、例えば、空気中の飛散花粉量の検出、排気ガス濃度検査、自動車内アルコール濃度検出器、ガス精製後の不純物残留濃度検査、反応過程の途中モニタリング、及び農産物の残量農薬検査等、様々な分野に使用することが可能である。
【0080】
いずれの場合においても、本実施の形態の成分分析装置20では、光ファイバを用いたCRDSにおいて光ファイバ端面からキャビティ内の空間部に放出された光の全光が対向する光ファイバの端面に結合できるようになるため、光ファイバ端面同士の距離を拡げられ、空間部を大きくすることができるので、高感度の分析を行うことができる成分分析装置を低価格で提供することができる。
【図面の簡単な説明】
【0081】
【図1】本発明の第1の実施の形態に係る成分分析装置を含む生体情報測定装置を備えた便器の概略構成の一例の断面図を示す概略構成図である。
【図2】本発明の第1の実施の形態に係る生体情報測定装置の概略構成の一例を示す概略構成図である。
【図3】本発明の第1の実施の形態に係るキャビティ部及び光ファイバ(光導波手段)の一例について詳細に説明するための説明図である。
【図4】本発明の第1の実施の形態に係る光ファイバの端面同士を対向するよう離間した位置に配置するためのキャビティ部の構造の一例を説明するための説明図である。
【図5】本発明の第1の実施の形態に係る生体情報測定処理のフローの一例を示すフローチャートである。
【図6】本発明の第2の実施の形態に係る成分分析装置を含む生体情報測定装置を備えた便器の概略構成の一例の断面図を示す概略構成図である。
【符号の説明】
【0082】
1 便器
10 生体情報測定装置
20 成分分析装置
22 測定部
24 波長可変レーザ(波長可変光源)
26 紫外光レーザ(紫外光光源)
28 カプラ(光結合手段)
30 光導波部(30A 第1の光導波手段、30B 第2の光導波手段)
32 キャビティ部
34 導入管
36 光検出器
38 センサ(検知手段)
42 対応関係記憶部
44 生体情報取得部
46 生体情報記憶部
48 入出力部(表示手段)

【特許請求の範囲】
【請求項1】
測定用の光を出射する測定用光源と、
前記測定用光源からの光が入射される第1の光ファイバと、前記第1の光ファイバよりも光を導入するコアの直径が大きい第2の光ファイバと、第1の光反射膜が形成された凹面を有する第1の平凹面レンズと、がこの順で接合された第1の光導波手段と、
前記第1の光導波手段からの光が入射され、且つ、第2の光反射膜が形成された凹面を有する第2の平凹面レンズと、第3の光ファイバと、前記第3の光ファイバよりも光を導入するコアの直径が小さい第4の光ファイバと、がこの順で接合された第2の光導波手段と、
前記第1の平凹面レンズの凹面と、前記第2の平凹面レンズの凹面と、が対向するように離間して配置し、気体又は液体から成る被測定物質を封入するための空間部及び前記空間部に前記被測定物質を導入するための導入部を備えたキャビティ部と、
前記測定用光源から出射された測定用の光が前記第1の光導波手段を導波して出射され、前記被測定物質に照射され、当該照射された光が前記第2の光導波手段を導波した光を検出する検出手段と、
前記検出手段の検出結果に基づいて前記被測定物質中の特定成分の濃度を測定する測定手段と、
を備えた成分分析装置。
【請求項2】
前記測定用光源が、前記被測定物質中の特定成分毎に定められた波長のパルス光を出射する波長可変光源である、
請求項1に記載の成分分析装置。
【請求項3】
前記第1の光反射膜及び前記第2の光反射膜の少なくとも一部が、酸化チタン膜であり、
紫外光を出射する紫外光光源と、
前記測定用光源及び前記紫外光光源と接続され、前記測定用光源及び前記紫外光光源の何れかから出射された光を入力して前記第1の光導波手段に出力する光結合手段と、
を備えた請求項1または請求項2に記載の成分分析装置。
【請求項4】
前記導入部は、便器本体の水溜まり部の内面に接続され、前記便器本体の水溜まり部の内面の被測定物質を導入する、
請求項1から請求項3の何れか1項に記載の成分分析装置。
【請求項5】
前記便器本体の水溜まり部の内面の被測定物質の有無を検知する検知手段をさらに備え、
前記測定手段は、前記便器本体の水溜まり部の内面に被測定物質が存在することを検知した場合に、前記被測定物質中の特定成分の濃度を測定する、
請求項4に記載の成分分析装置。
【請求項6】
請求項4または請求項5に記載の成分分析装置と、
予め定めた便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度と生体情報との対応関係を記憶する対応関係記憶手段と、
前記請求項4または請求項5に記載の成分分析装置で測定した前記便器本体の水溜まり部の内面の被測定物質中の特定成分の濃度と、前記対応関係記憶手段に記憶された前記対応関係と、に基づいて生体情報を取得する生体情報取得手段と、
を備えた生体情報測定装置。
【請求項7】
前記生体情報取得手段により取得された生体情報に関する情報を表示する表示手段を備えた、
請求項6に記載の生体情報測定装置。
【請求項8】
前記生体情報取得手段により取得された生体情報に関する情報を記憶する生体情報記憶手段を備えた、請求項6または請求項7に記載の生体情報記憶装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−281807(P2009−281807A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2008−133032(P2008−133032)
【出願日】平成20年5月21日(2008.5.21)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】