説明

投写型映像表示装置、およびフォーカス制御回路

【課題】コントラスト検出法を用いたオートフォーカス処理にて、処理時間を短縮する。
【解決手段】投写部10は、投影面200にレンズ13を介して画像を投写する。レンズ駆動部20は、レンズ13の位置を移動させる。撮像部30は、投影面200に投影された画像を撮像する。制御部40は、複数のレンズ位置にて撮像部30によりそれぞれ撮像された複数の画像の鮮明度をもとに、レンズ13の位置を決定する。制御部40は、一フレーム周期内に、レンズ駆動部20にレンズを複数回移動させ、一枚のフレーム画像内から、それぞれのレンズ位置で露光された複数の部分画像の鮮明度を取得する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、オートフォーカス機能を搭載した投写型映像表示装置、およびフォーカス制御回路に関する。
【背景技術】
【0002】
近年、オートフォーカス機能を搭載した投写型映像表示装置(以下適宜、プロジェクタと表記する)が実用化されている。たとえば、プロジェクタ本体に測距センサ(たとえば、一対のラインセンサで構成される)を搭載し、プロジェクタ本体とスクリーンとの距離を測定することにより、ピントを合わせる手法が実用化されている(たとえば、特許文献1参照)。
【0003】
また、プロジェクタ本体にカメラを搭載し、複数のレンズ位置でそれぞれ撮像された画像のコントラストを算出し、コントラストが最大となるレンズ位置を検出することにより、ピントを合わせる手法も提案されている(たとえば、特許文献2参照)。この手法は、プロジェクタ本体とスクリーンとの距離が大きく離れていても、対応することができる。上記測距センサを用いる手法では、プロジェクタ本体とスクリーンとの距離が、所定の範囲を超えて離れてしまうと対応できなくなる。その場合、ユーザの目視により手動でフォーカスを調整する必要がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−271760号公報
【特許文献2】特開2006−285016号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述したカメラを用いる手法では、複数のレンズ位置でそれぞれ撮像された画像のコントラストを算出する必要があるため、合焦位置を決定するまでに、ある程度の時間が必要となる。一般的に、デジタルカメラでは、オートフォーカス調整を開始してから、合焦位置を決定するまでの時間が1秒以内であることが要求される。プロジェクタにおいても、この時間は短いほど好ましい。
【0006】
本発明はこうした状況に鑑みなされたものであり、その目的は、コントラスト検出法を用いたオートフォーカス処理にて、処理時間を短縮する技術を提供することにある。
【課題を解決するための手段】
【0007】
本発明のある態様の投写型映像表示装置は、投影面にレンズを介して画像を投写する投写部と、レンズの位置を移動させるレンズ駆動部と、投影面に投影された画像を撮像する撮像部と、複数のレンズ位置にて撮像部によりそれぞれ撮像された複数の画像の鮮明度をもとに、レンズの位置を決定する制御部と、を備える。制御部は、一フレーム周期内に、レンズ駆動部にレンズを複数回移動させ、一枚のフレーム画像内から、それぞれのレンズ位置で露光された複数の部分画像の鮮明度を取得する。
【0008】
本発明の別の態様は、フォーカス制御回路である。このフォーカス制御回路は、撮像素子と、レンズと、当該レンズを移動させるための駆動素子と、を備える装置に搭載されるべきフォーカス制御回路であって、複数のレンズ位置にて撮像素子によりそれぞれ撮像された複数の画像の鮮明度を算出する画像処理部と、画像処理部により算出された複数の画像の鮮明度をもとに、レンズの位置を決定するフォーカス調整部と、を備える。フォーカス調整部は、一フレーム周期内に、駆動素子にレンズを複数回移動させ、画像処理部にそれぞれのレンズ位置で露光された複数の部分画像の鮮明度を算出させる。
【発明の効果】
【0009】
本発明によれば、コントラスト検出法を用いたオートフォーカス処理にて、処理時間を短縮することができる。
【図面の簡単な説明】
【0010】
【図1】本発明の実施の形態に係る投写型映像表示装置の構成を示す図である。
【図2】フォーカスレンズの合焦位置の決定処理について説明するための図である。
【図3】CMOSイメージセンサで撮像されるフレーム画像を用いる、コントラスト検出法を説明するためのタイミングチャートである。
【図4】図3に示したコントラスト検出法を用いたオートフォーカス処理の、デジタルカメラへの適用例1を説明するためのタイミングチャートである。
【図5】図3に示したコントラスト検出法を用いたオートフォーカス処理の、デジタルカメラへの適用例2を説明するためのタイミングチャートである。
【図6】投影面に投影されるパターン画像の一例を示す図である。
【図7】パターン画像に含まれる複数の部分画像の一例を示す図である。
【図8】本発明の実施の形態に係る投写型映像表示装置の動作例1を説明するための図である。
【図9】本発明の実施の形態に係る投写型映像表示装置の動作例2を説明するための図である。
【発明を実施するための形態】
【0011】
図1は、本発明の実施の形態に係る投写型映像表示装置100の構成を示す図である。投写型映像表示装置100は、投写部10、レンズ駆動部20、撮像部30および制御部40を備える。
【0012】
投写部10は、スクリーンなどの投影面200に画像を投写する。オートフォーカス時には、所定のパターン画像を投写する。投写部10は、光源11、光変調部12およびフォーカスレンズ13を含む。光源11には、フィラメント型の電極構造を有するハロゲンランプ、アーク放電を発生させる電極構造を有するメタルハライドランプ、キセノンショートアークランプ、高圧型の水銀ランプ、LEDランプなどを採用することができる。
【0013】
光変調部12は、制御部40(より具体的には、後述する画像信号設定部46)から設定される画像信号に応じて、光源11から入射される光を変調する。たとえば、光変調部12にはDMD(Digital Micromirror Device)を採用することができる。DMDは、画素数に対応した複数のマイクロミラーを備え、各マイクロミラーの向きが各画素信号に応じて制御されることにより、所望の画像を形成する。
【0014】
フォーカスレンズ13は、光変調部12から入射される光の焦点位置を調整する。フォーカスレンズ13は、レンズ駆動部20によりそのレンズ位置が光軸上で移動される。
【0015】
レンズ駆動部20は、制御部40(より具体的には、後述する駆動信号設定部48)から設定される駆動信号に応じて、フォーカスレンズ13の位置を移動させる。レンズ駆動部20には、ステッピングモータ、ボイスコイルモータ(VCM)、ピエゾ素子などを採用することができる。
【0016】
撮像部30は、投影面200に投影された画像を撮像する。オートフォーカス時には上記パターン画像を撮像する。撮像部30は、固体撮像素子31および信号処理回路32を含む。固体撮像素子31には、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを採用することができる。グローバルシャッタ方式など、走査ライン単位でシャッタタイミングを制御可能な撮像素子であれば、採用することができる。なお、グローバルシャッタ方式のCCD(Charge Coupled Devices)は採用することがきない。信号処理回路32は、固体撮像素子31から出力される信号に対して、A/D変換などの各種信号処理を施し、制御部40に出力する。
【0017】
制御部40は、複数のレンズ位置にて撮像部30によりそれぞれ撮像された複数のパターン画像の鮮明度をもとに、フォーカスレンズ13の位置を決定する。本実施の形態では、制御部40は、一フレーム周期内に、レンズ駆動部20にレンズを複数回移動させ、一枚のフレーム画像内から、それぞれのレンズ位置で露光された複数の部分画像の鮮明度を取得する。
【0018】
以下、より具体的に説明する。制御部40は、画像処理部41、画像メモリ45、画像信号設定部46、フォーカス調整部47および駆動信号設定部48を備える。画像処理部41は、エリア設定部42、HPF43および積算部44を含む。
【0019】
制御部40の構成は、ハードウェア的には、任意のプロセッサ、メモリ、その他のLSIで実現でき、ソフトウェア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組み合わせによっていろいろな形で実現できることは、当業者には理解されるところである。
【0020】
画像処理部41は、撮像部30から供給される画像信号を処理する。以下、より具体的に説明する。エリア設定部42は、投影面200を写した画像のうち、上記パターン画像が写っているエリアの画像信号を抽出して、その抽出した画像信号をHPF43に渡す。HPF43は、上記エリアの画像信号の高周波成分を抽出して、その抽出した高周波成分を積算部44に渡す。積算部44は、上記エリアのフレーム画像に含まれる上記部分画像ごとに、高周波成分を積算して、その積算値をフォーカス調整部47に渡す。
【0021】
画像メモリ45は、投影面200に投写すべき画像データを保持する。当該画像データは、図示しない外部インタフェースを介して、PCなどから供給される。本実施の形態では、オートフォーカス時に投写されるパターン画像も保持する。画像信号設定部46は、画像メモリ45に保持される画像データにもとづく画像信号を光変調部12に設定する。
【0022】
フォーカス調整部47は、オートフォーカス時に、画像信号設定部46にパターン画像の信号を光変調部12に設定させることにより、投影面200に当該パターン画像を投影させる。それとともに、フォーカス調整部47は、フォーカスレンズ13を所定のステップ幅で順次、移動させるための制御信号を駆動信号設定部48に供給する。なお、この一ステップの移動ごとに、画像処理部41により上記積算値が算出される。フォーカス調整部47は、積算部44から渡される複数の積算値のうち、最大値をとるフォーカスレンズ13の位置を、合焦位置に決定する。
【0023】
図2は、フォーカスレンズ13の合焦位置の決定処理について説明するための図である。オートフォーカス機能が有効化されると、フォーカス調整部47は、画像信号設定部46にパターン画像の投写を指示するとともに、フォーカスレンズ13をニア側からファー側へまたはファー側からニア側へ、所定のステップ幅で順次、移動させるための制御信号を駆動信号設定部48に設定する。画像信号設定部46は、パターン画像の信号を光変調部12に設定し、駆動信号設定部48は、上記制御信号に応じた駆動信号をレンズ駆動部20に設定する。
【0024】
画像処理部41は、フォーカスレンズ13の各レンズ位置において撮像されたパターン画像に含まれる部分画像のシャープネス(上記積算値を用いることができる)を算出する。このシャープネスは、フォーカスレンズ13が合焦位置に近づくにつれ、上昇する。その上昇がピークをうち、下降に転換したとき、フォーカス調整部47は、その一つ前のレンズ位置を合焦位置に決定する。
【0025】
なお、上述したオートフォーカス機能が有効化される条件としては、投写型映像表示装置100の電源投入、ユーザ操作、定期的な自動発動などが該当する。
【0026】
まず、本実施の形態に係る投写型映像表示装置100で実行される、コントラスト検出法を用いたオートフォーカス処理の説明に先立ち、コンパクトデジタルカメラや携帯電話機に搭載されるカメラ(以下、まとめてデジタルカメラと記載する)で実行されるオートフォーカス処理について説明する。
【0027】
図3は、CMOSイメージセンサで撮像されるフレーム画像を用いる、コントラスト検出法を説明するためのタイミングチャートである。CMOSイメージセンサでは、ローリングシャッタ方式が採用されるため、各走査ラインの露光開始タイミングが順次、ずれていく。図3では、一フレームにm(mは自然数)行の走査ラインが含まれる例を描いている。
【0028】
一フレーム周期の開始を示す垂直同期信号(VSYNC)が設定されると、CMOSイメージセンサの一行目の走査ラインからm行目の走査ラインへ向けて、露光を順次開始する。全行の走査ラインの露光期間は等しいため、一行目の走査ラインからm行目の走査ラインへ向けて、順次、露光が終了する。各走査ラインの画素データは、露光が終了すると、CMOSイメージセンサから信号処理回路32を経て画像処理部41に出力され、各画素データの高周波成分が順次、算出される。
【0029】
m行目の走査ラインの露光、およびその画素データの高周波成分の算出が終了すると、その時点で、当該フレーム画像全体の鮮明度を示す評価値(たとえば、上述したシャープネス)の算出が可能となる。
【0030】
図4は、図3に示したコントラスト検出法を用いたオートフォーカス処理の、デジタルカメラへの適用例1を説明するためのタイミングチャートである。適用例1では、二フレームに一回、フォーカスレンズ13を移動させる。より具体的には、奇数フレーム(または偶数フレーム)の評価値算出の終了後にフォーカスレンズ13を移動させる。図4では、フォーカスレンズ13の移動を、レンズ駆動部20に搭載されるモータへの駆動信号で表現している。
【0031】
上述したように、ローリングシャッタ方式を採用したCMOSイメージセンサでは、各走査ラインの露光開始タイミングが一律ではない。したがって、露光期間中にフォーカスレンズ13が移動してしまう走査ラインも発生する。図4では、二番目のフレームに含まれる走査ラインが、露光期間の途中でレンズが移動してしまう。この場合、一つの露光期間で撮像された一走査ラインの画素データ内に、フォーカスレンズ13の移動前の成分と移動後の成分が混在することになる。
【0032】
この点、適用例1のように一フレーム飛ばしでフレーム画像の評価値を採用することにより、フォーカスレンズ13の移動前の成分と移動後の成分が混在する走査ラインを含むフレーム画像を対象外とすることができる。図4では、一番目のフレームおよび三番目のフレームに含まれる走査ラインの露光期間の途中で、フォーカスレンズ13が移動することはない。
【0033】
図5は、図3に示したコントラスト検出法を用いたオートフォーカス処理の、デジタルカメラへの適用例2を説明するためのタイミングチャートである。適用例2では、一フレームごとにフォーカスレンズ13を移動させる。より具体的には、各フレームの評価値算出の終了後にフォーカスレンズ13を移動させる。
【0034】
一フレームごとにフォーカスレンズ13を移動させると、各フレームに含まれるいくつかの走査ラインでは、その露光期間の途中でフォーカスレンズ13が移動する。図5では、各露光期間のうち、フォーカスレンズ13の移動前のレンズ位置で露光される期間を実線で、移動後のレンズ位置で露光される期間を点線で描いている。一行目に近い走査ラインほど移動前のレンズ位置で露光される期間の割合が大きく、反対に、m行目に近い走査ラインほど移動後のレンズ位置で露光される期間の割合が大きくなる。
【0035】
適用例2では、制御部40は、ある走査ラインの露光期間に占める、移動前のレンズ位置で露光された第1期間と移動後のレンズ位置で露光された第2期間との比率から、当該走査ラインの当該露光期間に対応する一つのレンズ位置を擬制する。たとえば、第1期間と第2期間との比率が1:1の場合、擬製されるべきレンズ位置は、移動前のレンズ位置と移動後のレンズ位置との間のちょうど中間地点となる。また、第1期間と第2期間との比率が1:3の場合、擬製されるべきレンズ位置は、移動前のレンズ位置と移動後のレンズ位置との間の3/4地点となる。
【0036】
このように、適用例2ではフォーカスレンズ13の移動前の成分と移動後の成分が混在する走査ラインを含むフレーム画像も、上記評価値算出の対象とすることができ、適用例1より、合焦位置を決定するまでの時間を短縮することができる。
【0037】
図6は、投影面に投影されるパターン画像の一例を示す図である。投影面200に投影されるパターン画像PIは、模様、文字列などで形成される。図6では縦縞模様で形成される例を描いている。
【0038】
図7は、パターン画像に含まれる複数の部分画像の一例を示す図である。図7では、一枚のパターン画像PIから、四つの部分画像(第1部分画像Ip1、第2部分画像Ip2、第3部分画像Ip3および第4部分画像Ip4)が抽出される。これらの部分画像のそれぞれは、固体撮像素子31のn(nは自然数)行の主走査ラインで撮像される画像である。たとえば、四行の主走査ラインで撮像される画像であってもよいし、一行の主走査ラインで撮像される画像であってもよい。
【0039】
一枚のパターン画像PIから抽出される複数の部分画像は、それぞれ同じ内容である必要がある。図7では、縦縞模様のパターン画像PIから、水平方向の幅が揃った四つの部分画像が抽出されるため、その四つの部分画像の模様は同じになる。なお、この条件を満たしていれば、一枚のパターン画像PIから抽出される部分画像の数、形状、位置は、任意に設定可能である。抽出される部分画像の間にスペースを設けるか、設けないかも任意に設定可能である。単純に、パターン画像PIを上下に二分割して、その上半分を第1部分画像、その下半分を第2部分画像としてもよい。
【0040】
以下、図7に示したパターン画像PIから、第1部分画像Ip1、第2部分画像Ip2、第3部分画像Ip3および第4部分画像Ip4が抽出される例を用いて、本実施の形態に係る投写型映像表示装置100の動作例について説明する。
【0041】
図8は、本発明の実施の形態に係る投写型映像表示装置100の動作例1を説明するための図である。動作例1は、一枚のパターン画像PIから抽出された、複数の部分画像のそれぞれの露光期間が互いに重複しないよう、固体撮像素子31のそれぞれ対応する部分領域の露光タイミングが設定される例である。この例では、制御部40は、露光タイミングに同期して、レンズ駆動部20にフォーカスレンズ13を移動させる。
【0042】
図8では、第1部分画像Ip1、第2部分画像Ip2、第3部分画像Ip3および第4部分画像Ip4のそれぞれの露光期間を短くすることにより、それらの露光期間を重複させずに、それらの露光期間を一フレーム周期内に収めている。より具体的には、第1部分画像Ip1の露光期間の終了とともに、第2部分画像Ip2の露光期間を開始し、第2部分画像Ip2の露光期間の終了とともに、第3部分画像Ip3の露光期間を開始し、第3部分画像Ip3の露光期間の終了とともに、第4部分画像Ip4の露光期間を開始する。
【0043】
フォーカス調整部47は、各露光期間の終了に同期してフォーカスレンズ13を移動させるよう、駆動信号設定部48に指示する。駆動信号設定部48は、フォーカス調整部47の指示にしたがい、レンズ駆動部20に、各露光期間の終了に同期した駆動信号を設定する。画像処理部41は、第1部分画像Ip1、第2部分画像Ip2、第3部分画像Ip3および第4部分画像Ip4のそれぞれについて、上記評価値を算出し、フォーカス調整部47に渡す。フォーカス調整部47は、上記評価値が最も高い部分画像を選択し、その部分画像のレンズ位置を合焦位置に決定する。
【0044】
図9は、本発明の実施の形態に係る投写型映像表示装置100の動作例2を説明するための図である。動作例2は、動作例1と異なり、フォーカスレンズ13のレンズ位置が切り換わる間の期間より、上記部分画像の露光期間が長く設定される例である。
【0045】
動作例1で説明したように、各部分画像の露光期間を短くすれば、当該レンズ位置の更新間隔を短くしても、各露光期間の途中でフォーカスレンズ13が移動してしまうケースを回避することができる。ただし、当該露光期間を短くすると、上記評価値を算出するために必要十分な情報(すなわち、必要十分な光量)を取得できない場合がある。たとえば、投影面200と固体撮像素子31との距離が大きく離れている場合や、投影面200に投影されたパターン画像PIの輝度が低い場合などである。
【0046】
動作例2は、各露光期間の長さを確保しつつ、当該レンズ位置の更新間隔を短くすることができる手法を提供する。制御部40は、当該部分画像の露光期間に占める、フォーカスレンズ13の移動前のレンズ位置で露光された第1期間と、移動後のレンズ位置で露光された第2期間との比率から、当該部分画像の露光期間に対応する一つのレンズ位置を擬制する。
【0047】
図9では、各露光期間の半分の地点で、フォーカスレンズ13を移動させる例を示している。したがって、各露光期間の第1期間と第2期間との比率は、1:1であり、擬製されるべきレンズ位置は、移動前のレンズ位置と移動後のレンズ位置との間のちょうど中間地点となる。図9でも、図5と同様に、各露光期間のうちフォーカスレンズ13の移動前のレンズ位置で露光される期間を実線で、移動後のレンズ位置で露光される期間を点線で描いている。
【0048】
フレーム周期間にはブランク期間が挿入されるため、フォーカスレンズ13のレンズ位置を等間隔で更新していくと、ブランク期間を跨いで最初に露光される第1部分画像Ip1の露光期間では、その中間地点で当該レンズ位置が更新されないことになる。
【0049】
これに対し、動作例2では、第1期間と第2期間との比率を常に一定にするため、あるフレーム周期の最後のレンズ位置の移動タイミングと、その次のフレーム周期の、最初のレンズ位置の移動タイミングとの間の期間を、それ以外の移動タイミング間の期間に上記ブランク期間を加えた期間に設定している。これにより、上記次のフレーム周期の第1部分画像Ip1の露光期間の中間地点で当該レンズ位置が更新されることになる。
【0050】
フォーカス調整部47は、各露光期間の特定の地点でフォーカスレンズ13を移動させるよう、駆動信号設定部48に指示する。駆動信号設定部48は、フォーカス調整部47の指示にしたがい、レンズ駆動部20に、各露光期間の特定の地点でフォーカスレンズ13を移動させる駆動信号を設定する。画像処理部41は、第1部分画像Ip1、第2部分画像Ip2、第3部分画像Ip3および第4部分画像Ip4のそれぞれについて、上記評価値を算出し、フォーカス調整部47に渡す。フォーカス調整部47は、上記評価値が最も高い部分画像を選択し、その部分画像の擬製されたレンズ位置を合焦位置に決定する。
【0051】
以上説明したように実施の形態によれば、フォーカスレンズ13のレンズ位置の更新間隔を短くし、一フレーム画像に含まれる複数の部分画像のそれぞれから上記評価値を取得することにより、コントラスト検出法を用いたオートフォーカス処理にて、処理時間を短縮することができる。すなわち、当該レンズ位置の更新間隔を短くすることは、合焦判定に必要な情報を早く取得することにつながり、合焦位置決定までの処理時間を短縮することにつながる。
【0052】
動作例1では、各部分画像の露光期間を短くすることにより、上記レンズ位置の更新間隔を短くしても、各露光期間の途中でレンズ位置が変化することがない。したがって、各部分画像の評価値が一つのレンズ位置での評価値を単的に表現していることになり、動作例2で必要な比率計算が不要となり、動作例2より演算量を低減することができる。
【0053】
動作例2では、一つの露光期間の途中でレンズ位置が変化しても、その露光期間に占める上記第1期間と上記第2期間との比率から、当該露光期間に対応する一つのレンズ位置を演算により擬制することにより、露光期間の長さを確保しつつ、当該レンズ位置の更新間隔を短くすることができる。露光時間の長さを確保することにより、固体撮像素子31が各部分画像の光量を十分に取得することができ、上記評価値の算出精度の低下を抑制することができる。
【0054】
動作例1および動作例2で説明した手法は、プロジェクタへの適用に好適である。プロジェクタのオートフォーカスでは、被写体深度が撮像領域全体で実質的に一定であるという特質、および上記評価値の基礎とすべき画像を、設計者がパターン画像として指定できるという特質がある。
【0055】
したがって、一つのフレーム画像に含まれる複数の部分画像の被写体深度が実質的に一定となる。自然画像の場合、フレーム画像の領域によって、被写体深度が異なってしまうケースが発生する。たとえば、メインの被写体が写っている深度と、背景が写っている領域の深度とが異なってしまうケースなどである。
【0056】
また、規則的な模様のパターン画像を投影させることにより、フレーム画像内のどの領域を抽出しても、同じパターンの部分画像とすることができる。したがって、一つのフレーム画像から、同じパターンの複数の部分画像を抽出することができる。
【0057】
このように、動作例1および動作例2で説明した手法は、上記特質を備えるプロジェクタへの適用に好適である。しかしながら、当該手法は、プロジェクタへの適用に限るものではなく、カメラ全般に適用することが可能である。とくに、上記特質の一部を備えている場合に有効である。たとえば、スタジオ撮影では、メインの被写体および背景までのそれぞれの距離が略固定であり、その構図も略固定である。撮影ボックス内での自動撮影も同様である。
【0058】
また、デジタルカメラで自然画像を撮影する場合でも、フレーム画像を左右に二分割して二つの部分画像を抽出する場合、左右の部分画像で被写体深度が、ある程度共通する可能性が高い。
【0059】
なお、動作例1および動作例2をカメラに適用する場合、フォーカスレンズは、カメラの撮像部に搭載される固体撮像素子の前段に設けられる。
【0060】
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
【0061】
たとえば、フォーカス調整部47は、上記部分画像のサイズを、固体撮像素子31で露光される光量に応じて、適応的に変化させてもよい。たとえば、当該光量が所定の閾値を下回ったとき、上記部分画像のサイズをより大きなサイズに切り換えてもよい。これにより、オートフォーカス精度を向上させることができる。
【符号の説明】
【0062】
10 投写部、 11 光源、 12 光変調部、 13 フォーカスレンズ、 20 レンズ駆動部、 30 撮像部、 31 固体撮像素子、 32 信号処理回路、 40 制御部、 41 画像処理部、 42 エリア設定部、 43 HPF、 44 積算部、 45 画像メモリ、 46 画像信号設定部、 47 フォーカス調整部、 48 駆動信号設定部、 100 投写型映像表示装置、 200 投影面。

【特許請求の範囲】
【請求項1】
投影面にレンズを介して画像を投写する投写部と、
前記レンズの位置を移動させるレンズ駆動部と、
前記投影面に投影された前記画像を撮像する撮像部と、
複数のレンズ位置にて前記撮像部によりそれぞれ撮像された複数の画像の鮮明度をもとに、前記レンズの位置を決定する制御部と、を備え、
前記制御部は、一フレーム周期内に、前記レンズ駆動部に前記レンズを複数回移動させ、一枚のフレーム画像内から、それぞれのレンズ位置で露光された複数の部分画像の鮮明度を取得することを特徴とする投写型映像表示装置。
【請求項2】
前記複数の部分画像のそれぞれの露光期間が互いに重複しないよう、前記撮像部に搭載される固体撮像素子のそれぞれ対応する部分領域の露光タイミングが設定され、
前記制御部は、前記露光タイミングに同期して、前記レンズ駆動部に前記レンズを移動させることを特徴とする請求項1に記載の投写型映像表示装置。
【請求項3】
前記レンズ位置が切り換わる間の期間より、前記部分画像の露光期間が長く設定される場合、
前記制御部は、前記露光期間に占める、移動前のレンズ位置で露光された期間と移動後のレンズ位置で露光された期間との比率から、当該部分画像の当該露光期間に対応する一つのレンズ位置を擬制することを特徴とする請求項1に記載の投写型映像表示装置。
【請求項4】
前記部分画像は、前記撮像部に搭載される固体撮像素子のn(nは自然数)行の主走査ラインで撮像される画像であることを特徴とする請求項1から3のいずれかに記載の投写型映像表示装置。
【請求項5】
撮像素子と、レンズと、当該レンズを移動させるための駆動素子と、を備える装置に搭載されるべきフォーカス制御回路であって、
複数のレンズ位置にて前記撮像素子によりそれぞれ撮像された複数の画像の鮮明度を算出する画像処理部と、
前記画像処理部により算出された複数の画像の鮮明度をもとに、前記レンズの位置を決定するフォーカス調整部と、を備え、
前記フォーカス調整部は、一フレーム周期内に、前記駆動素子に前記レンズを複数回移動させ、前記画像処理部にそれぞれのレンズ位置で露光された複数の部分画像の鮮明度を算出させることを特徴とするフォーカス制御回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−64859(P2011−64859A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−214225(P2009−214225)
【出願日】平成21年9月16日(2009.9.16)
【出願人】(000001889)三洋電機株式会社 (18,308)
【Fターム(参考)】