説明

抗炎症剤を内包した水分散可能なナノ粒子

【課題】保存安定性に優れ、安全、且つ、粒子径が小さいことにより透明性が高い生分解性高分子からなるナノ粒子を提供すること。
【解決手段】抗炎症剤、及び生分解性高分子から構成される水分散可能なナノ粒子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水分散可能なナノ粒子に関する。より詳細には、本発明は、分散安定性に優れた抗炎症剤を内包した水分散可能なナノ粒子に関する。
【背景技術】
【0002】
微粒子材料は、バイオテクノロジーにおいて幅広い利用が期待されている。特に近年、ナノテクノロジーの進展によって生み出されたナノ微粒子材料を食品、化粧品、医薬部外品、医薬品等に応用することが活発に検討され、研究成果も数多く報告されるようになってきている。
【0003】
例えば、化粧品においては、近年、より明確な肌効果が求められるようになってきており、ナノテクノロジーをはじめ様々な新しい技術を取り入れることにより、機能性・使用性の向上、他社品との差別化が計られている。肌は一般的に、角質層がバリアーとして存在するために薬物の皮膚への浸透性が低い。肌効果を十分に発揮させるためには、有効成分の皮膚透過性の改善が不可欠である。また、皮膚に対して高い有効性を持っていても、保存安定性が悪かったり、皮膚に刺激を起こしやすかったりするために製剤化が困難な成分も多い。これらを解決すべく、経皮吸収性の改善および保存安定性の向上、皮膚刺激性の低減など目的とした、様々な微粒子材料の開発が進められている。現在、超微細乳化やリポソームなど各種微粒子材料が研究されている(たとえば、非特許文献1)。
【0004】
従来から、水性化粧品に油性成分を添加することは行われてきたが、油性成分は水に対して不溶性または難溶性のため、何らかの乳化手段を用いることで、油性成分をいわゆる乳化物として水性媒体中に混合することが一般的であった。乳化物は、その粒子径に依存して光を散乱するため、乳化物およびそれを添加した食品や化粧品に濁りを生じ、外観上好ましくない場合が有り、光散乱が非常に小さくなるまで乳化物の粒径を微細化する事が望まれていた。また、乳化物は一般に準安定状態であり、保存中に粒子径が大きくなり、長期保存をすると分離する事も大きな問題であった。飲料における油滴凝集物の器壁付着やネックリングは、こうした乳化物中の油滴分離現象の一つである。
【0005】
前述のように、食品や化粧品などに用いられる微粒子材料は乳化物に関するものが多い。これに対し、近年、医薬品では高分子ミセルへの注目が高まっている。高分子ミセルの特徴として、大きな薬物容量、高い水溶性、高い構造安定性、非蓄積性、機能分離性などが挙げられる。両親媒性高分子を用いてそのミセル構造に薬物を封入して血液中に投与する研究が行われており、臨床試験も行われている(例えば、非特許文献2)。
【0006】
乳化物は界面活性剤による静電相互作用を利用しているため、油滴分離現象のような安定性の問題がつきまとうのに対し、高分子ミセルは共有結合で構造形成していて安定性の点で有利である。また、通常用いられる合成界面活性剤に比べ、生分解性高分子、中でもタンパク質などの天然高分子を用いれば安全性が高い。さらに、高分子ミセルを微細化(ナノ粒子化)できれば、水分散時の充分な透明性が得られる。
【0007】
一方、豆科植物・甘草の根茎および走根から得られるグリチルリチン酸およびその塩(以下、グリチルリチンという)は抗炎症作用を有するので、肌荒れ、皮膚の炎症、紫外線紅斑等防止用の成分として、ローション、クリーム、乳液等の化粧品、医薬部外品もしくは外用医薬品に広く添加されている。
【0008】
しかしながら、グリチルリチンはグルクロン酸2分子からなる糖鎖を有するので親水性が強く、吸収が悪いため用途によっては十分な使用効果が得られない場合がある。また、ローション等、液体製品に添加すると、pH5.5以下の酸性領域では粘度上昇やゲル化を招く欠点があり、さらには起泡性が強く、それにより生じた泡は長時間消えないという問題点がある。
【0009】
グリチルリチンのゲニン体であるグリチルレチンは、抗炎症作用においてグリチルリチンよりも優れているが、一般的な化粧品や医薬部外品に使われる溶剤に溶けにくいため、処方決定が困難であるという問題点がある。
【0010】
抗炎症作用を示す物質としては、グリチルリチンやグリチルレチン以外にもアズレン、アラントイン、インドメタシン、各種植物抽出物、タンパク質、多糖類、動物抽出物等が知られているが、上述の吸収の問題や、溶解性の問題などがある。
【0011】
【非特許文献1】西田 光広、フレグランスジャーナル、11月、17(2005)
【非特許文献2】Y.Mizumura et al., Jap.J.Cancer Res., 93, 1237(2002)
【発明の開示】
【発明が解決しようとする課題】
【0012】
本発明は、上記した従来技術の問題点を解消することを解決すべき課題とした。即ち、本発明は、分散安定性に優れ、安全、且つ、粒子径が小さいことにより透明性が高く、吸収のよい、生分解性高分子からなるナノ粒子を提供することを提供することを解決すべき課題とした。
【課題を解決するための手段】
【0013】
本発明者らは上記の課題を解決すべく鋭意研究を行った結果、抗炎症剤と生分解性高分子とを混合することによって、水分散可能なナノ粒子を調製できることを見出した。本発明はこれらの知見に基づいて完成したものである。
【0014】
即ち、本発明によれば、抗炎症剤、及び生分解性高分子から構成される水分散可能なナノ粒子が提供される。
【0015】
好ましくは、本発明のナノ粒子は、生分解性高分子の重量に対して、0.1〜100重量%の抗炎症剤を含有する。
好ましくは、平均粒子サイズは10〜1000nmである。
【0016】
好ましくは、抗炎症剤はイオン性物質または脂溶性物質である。
好ましくは、抗炎症剤は、水に不溶又は水に難溶性の化粧品用成分、機能性食品用成分、医薬部外品成分、又は医薬品成分である。
好ましくは、抗炎症剤は、グリチルレチン酸である。
【0017】
好ましくは、生分解性高分子はタンパク質である。
好ましくは、タンパク質はコラーゲン、ゼラチン、酸処理ゼラチン、アルブミン、オバルブミン、オバルブミン、カゼイン、トランスフェリン、グロブリン、フィブロイン、フィブリン、ラミニン、フィブロネクチン、又はビトロネクチンからなる群より選ばれる少なくとも一種である。
【0018】
好ましくは、ナノ粒子の形成中および/又は形成後にタンパク質が架橋処理されている。
好ましくは、トランスグルタミナーゼを用いて架橋処理を行う。
【0019】
本発明の別の側面によれば、下記の工程(a)から(c)によって作製されるカゼインナノ粒子が提供される。
(a)カゼインをpH8以上11未満の塩基性水性媒体に混合させる工程;
(b)工程(a)で得た溶液に少なくとも1種の抗炎症剤を添加する工程;及び
(c)工程(b)で得た溶液を pH3.5〜7.5の酸性水性媒体に注入する工程:
【0020】
本発明のさらに別の側面によれば、下記の工程(a)から(c)によって作製されるカゼインナノ粒子が提供される。
(a)カゼインをpH8以上11未満の塩基性水性媒体に混合させる工程;
(b)工程(a)で得た溶液に少なくとも1種の抗炎症剤を添加する工程;及び
(c)工程(b)で得た溶液を攪拌しながら、該溶液のpH を等電点からpH1以上離れたpHまで下降させる工程:
【0021】
本発明のさらに別の側面によれば、上記した本発明のナノ粒子を含む薬物送達剤が提供される。
好ましくは、本発明の薬物送達剤は、経皮吸収剤、局所治療剤、経口治療剤、皮内注射、皮下注射、筋肉内注射、静脈内注射、化粧品、医薬部外品、機能性食品、又はサプリメントとして使用される。
【発明の効果】
【0022】
本発明の抗炎症剤を内包した粒子はナノ粒子であるため、吸収性が良く、透明性が高い。本発明のナノ粒子は、タンパク質などの生分解性高分子から構成されるナノ粒子であり、構造安定性が高く、化学架橋剤や合成界面活性剤を用いることなく製造できるため、安全性が高い。また、疎水性の抗炎症剤をナノ粒子分散できるため、多量のエタノールを添加する必要がなく、皮膚へのエタノールによる刺激が少ない。
【発明を実施するための最良の形態】
【0023】
以下、本発明の実施の形態についてさらに具体的に説明する。
本発明の水分散可能なナノ粒子は、抗炎症剤、及び生分解性高分子から構成されることを特徴とする。
【0024】
本発明で用いる抗炎症剤は、イオン性物質または脂溶性物質であることが好ましい。本発明で用いることができる抗炎症剤の具体例としては、アズレン、グアイアズレン、塩酸ジフェンヒドラミン、酢酸ヒドロコルチゾン、プレドニゾロン、グリチルリチン酸、グリチルレチン酸、メフェナム酸、フェニルブタゾン、インドメタシン、イブプロフェン及びケトプロフェンから選ばれる化合物並びにそれらの誘導体並びにそれらの塩、オウゴンエキス、カワラヨモギエキス、キキョウエキス、キョウニンエキス、クチナシエキス、クマザサ抽出液、ゲンチアナエキス、コンフリーエキス、シラカバエキス、ゼニアオイエキス、トウニンエキス、桃葉エキス並びにビワ葉エキスから選ばれる植物抽出物、タンパク質、多糖類、動物抽出物等などが挙げられるが、最も好ましいのはグリチルレチン酸である。本発明のナノ粒子には、生分解性高分子の重量に対して、0.1〜100重量%の抗炎症剤が含有されることが好ましい。
【0025】
本発明においては、上記した抗炎症剤として、化粧品用成分、医薬部外品成分、機能性食品用成分、又は医薬品成分から選択することができる。
【0026】
本発明に用いられる抗炎症剤は、単独で使用してもよいし、2種以上を組み合わせて用いることもできる。
【0027】
本発明において、抗炎症剤は、生分解性高分子のナノ粒子の形成時に添加してもよいし、ナノ粒子の作成後に添加してもよい。
【0028】
本発明においては、抗炎症剤とカゼイン疎水性部分の相互作用を利用して、カゼインナノ粒子内に抗炎症剤を内包できることが見出された。さらに、これらの粒子は水溶液中で安定に存在することが見出された。抗炎症剤としては、好ましくはClogPが0より大きく、より好ましくはClogPが1以上である。
【0029】
本発明のナノ粒子は、タンパク質の重量に対して、0.1〜100重量%の抗炎症剤を含有することが好ましく、タンパク質の重量に対して、0.1〜50重量%の抗炎症剤を含有することがさらに好ましい。
【0030】
本発明のナノ粒子の平均粒子サイズは、通常は1〜1000nmであり、好ましくは10〜1000nmであり、より好ましくは30〜500nmであり、特に好ましくは50〜400nmである。
【0031】
本発明で用いる生分解性高分子は、タンパク質でもよいし、又は生分解性の合成高分子でもよい。
【0032】
本発明で用いるタンパク質の種類は特に限定されないが、リジン残基およびグルタミン残基を有するタンパクが好ましく、分子量1万から100万程度のタンパク質を用いることが好ましい。タンパク質の由来は特に限定されないが、ヒト由来のタンパク質を用いることが好ましい。タンパク質として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。コラーゲン、ゼラチン、酸処理ゼラチン、アルブミン、オバルブミン、カゼイン、トランスフェリン、グロブリン、フィブロイン、フィブリン、ラミニン、フィブロネクチン、又はビトロネクチンからなる群より選ばれる少なくとも一種を使用することができる。また、タンパク質の由来は特に限定するものではなく、牛、豚、魚、および遺伝子組み換え体のいずれも用いることができる。遺伝子組み換えゼラチンとしては、例えばEU1014176A2号、米国特許6,992,172号に記載のものを用いることができるがこれらに限定されるものではない。その中で好ましいものは、カゼイン、酸処理ゼラチン、コラーゲン、又はアルブミンであり、最も好ましいものはカゼイン、又は酸処理ゼラチンである。本発明でカゼインを用いる場合、カゼインの由来は特に限定されず、乳由来であっても、豆由来であってもよく、α−カゼイン、β−カゼイン、γ−カゼイン、κ−カゼインおよびそれらの混合物を使用することができる。カゼインは、単独で、または2種以上を組み合わせて用いることができる。
【0033】
本発明に用いられるタンパク質は、単独で使用してもよいし、2種以上を組み合わせて用いることもできる。また、生分解性の合成高分子としては、ポリ乳酸、乳酸・グリコール酸共重合体(PLGA)などを挙げることができる。
【0034】
本発明では、ナノ粒子の形成中および/又は形成後にタンパク質を架橋処理することができる。上記した架橋処理は、酵素を用いて行うことができる。架橋処理のため用いられる酵素は、タンパクの架橋作用が知られているものであれば特に制限されず、その中で好ましいものはトランスグルタミナーゼである。
【0035】
トランスグルタミナーゼは、哺乳類由来のものであっても、微生物由来のものであってもよく、遺伝子組み換え体を用いることができる。具体的には、味の素(株)製アクティバシリーズ、試薬として発売されている哺乳類由来のトランスグルタミナーゼ、例えば、オリエンタル酵母工業(株)製、Upstate USA Inc.製、Biodesign International製などのモルモット肝臓由来トランスグルタミナーゼ、ヤギ由来トランスグルタミナーゼ、ウサギ由来トランスグルタミナーゼ、ヒト由来リコンビナントトランスグルタミナーゼなどが挙げられる。
【0036】
本発明において架橋処理のために用いられる酵素の量は、タンパク質の種類に応じて適宜設定することが出来るが、標準的には、タンパク質の重量に対して、0.1〜100重量%程度を添加することができ、好ましくは、1〜50重量%程度を添加することができる。
【0037】
酵素による架橋反応の時間は、タンパク質の種類、ナノ粒子サイズに応じて適宜設定することができるが、標準的には、1時間から72時間反応することができ、好ましくは、2時間から24時間反応することができる。
【0038】
酵素による架橋反応の温度は、タンパク質の種類、ナノ粒子サイズに応じて適宜設定することができるが、標準的には、0℃から80℃で反応することができ、好ましくは、25℃から60℃で反応することができる。
本発明に用いられる酵素を単独で、または2種以上を組み合わせて用いることができる。
【0039】
本発明のナノ粒子は、特許文献特開平6−79168号公報、又はC.Coester著、ジャーナル・ミクロカプスレーション、2000年、17巻、p.187−193に記載の方法に準じて作製することができるが、架橋方法としてグルタルアルデヒドの代わりに酵素を用いることが好ましい。
【0040】
また、本発明においては、酵素架橋処理を有機溶媒中で行うことが好ましい。ここで用いる有機溶媒としては、エタノール、イソプロパノール、アセトン、THFなどの水溶性有機溶媒が好ましい。
【0041】
本発明の水分散可能なナノ粒子には、脂質(リン脂質など)、アニオン性多糖、カチオン性多糖、アニオン性タンパク質、カチオンタンパク質、又はシクロデキストリンから選択される1種以上の成分を添加することもできる。脂質(リン脂質など)、アニオン性多糖、カチオン性多糖、アニオン性タンパク質、カチオンタンパク質、及びシクロデキストリンの添加量は特に限定されないが、一般的にはタンパク質の重量に対して0.1〜100重量%の量で添加することができる。本発明の薬物送達剤においては、上記成分とタンパク質の比を変えることよって、徐放速度を調整することができる。
【0042】
本発明に用いることができるリン脂質として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。ホスファチジルコリン(レシチン)、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、ジホスファチジルグリセロール、スフィンゴミエリンなどが挙げられる。
【0043】
本発明に用いることができるアニオン性多糖とはカルボキシル基、硫酸基又はリン酸基等の酸性極性基を有する多糖類である。以下に具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。コンドロイチン硫酸、デキストラン硫酸、カルボキシメチルセルロース、カルボキシメチルデキストラン、アルギン酸、ペクチン、カラギーナン、フコイダン、アガロペクチン、ポルフィラン、カラヤガム、ジェランガム、キサンタンガム、ヒアルロン酸類等が挙げられる。
【0044】
本発明に用いることができるカチオン性多糖とは、アミノ基等の塩基性極性基を有する多糖類である。以下に具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。キチン、キトサンなどのグルコサミンやガラクトサミンを構成単糖として含むものなどが挙げられる。
【0045】
本発明に用いることができるアニオン性タンパク質とは等電点が生理的pHよりも塩基性側にあるタンパク質およびリポタンパク質である。具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。ポリグルタミン酸、ポリアスパラギン酸、リゾチーム、チトクロムC、リボヌクレアーゼ、トリプシノーゲン、キモトリプシノーゲン、α−キモトリプシンなどが挙げられる。
【0046】
本発明に用いられるカチオンタンパク質とは等電点が生理的pHよりも酸性側にあるタンパク質およびリポタンパク質である。具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。ポリリジン、ポリアルギニン、ヒストン、プロタミン、オバルブミンなどが挙げられる。
【0047】
本発明においては、下記の工程(a)から(c)によって作製されるカゼインナノ粒子を用いることができる。
(a)カゼインをpH8以上11未満の塩基性水性媒体に混合させる工程;
(b)工程(a)で得た溶液に少なくとも1種の抗炎症剤を添加する工程;及び
(c)工程(b)で得た溶液を pH3.5〜7.5の酸性水性媒体に注入する工程:
【0048】
さらに本発明においては、下記の工程(a)から(c)によって作製されるカゼインナノ粒子を用いることができる。
(a)カゼインをpH8以上11未満の塩基性水性媒体に混合させる工程;
(b)工程(a)で得た溶液に少なくとも1種の抗炎症剤を添加する工程;及び
(c)工程(b)で得た溶液を攪拌しながら、該溶液のpH を等電点からpH1以上離れたpHまで下降させる工程:
【0049】
本発明においては、所望のサイズのカゼインナノ粒子を作製できる。また、抗炎症剤とカゼイン疎水性部分の相互作用を利用して、カゼインナノ粒子内に抗炎症剤を内包できる。さらに、これらの粒子は水溶液中で安定に存在することが見出された。
また、カゼインとイオン性多糖または別種のイオン性タンパク質との混合粒子により、抗炎症剤を内包することも見出された。
【0050】
本発明のカゼインナノ粒子の作製方法は、カゼインを塩基性水性媒体液に混合し、塩基性水性媒体中に注入する方法と、カゼインを塩基性水性媒体液に混合し、攪拌しながら、pHを下降させる方法が挙げられる。
【0051】
カゼインを塩基性水性媒体液に混合し、酸性水性媒体中に注入する方法としては、シリンジによるのが簡便で好ましいが、注入速度、溶解性、温度、撹拌状態を満足する方法であれば特に限定しない。一般的には、注入速度は、1mL/minから100mL/minで注入することができる。塩基性水性媒体の温度は、適宜設定することができるが、標準的には、0℃から80℃にすることができ、好ましくは、25℃から70℃にすることができる。水性媒体の温度は、適宜設定することができるが、標準的には、0℃から80℃にすることができ、好ましくは、25℃から60℃ですることができる。攪拌速度は、適宜設定することができるが、標準的には、100rpmから3000rpmにすることができ、好ましくは、200rpmから2000rpmである。
【0052】
カゼインを塩基性水性媒体液に混合し、攪拌しながら、pHを下降させる方法としては、酸を滴下するのが簡便で好ましいが、溶解性、温度、撹拌状態を満足する方法であれば特に限定しない。塩基性水性媒体の温度は、適宜設定することができるが、標準的には、0℃から80℃にすることができ、好ましくは、25℃から70℃にすることができる。攪拌速度は、適宜設定することができるが、標準的には、100rpmから3000rpmにすることができ、好ましくは、200rpmから2000rpmである。
【0053】
本発明に用いる水性媒体は、有機酸または塩基、無機酸または無機塩基の水溶液、又は緩衝液を用いることができる。
【0054】
具体的には、クエン酸、アスコルビン酸、グルコン酸、カルボン酸、酒石酸、コハク酸、酢酸またはフタル酸、トリフルオロ酢酸、モルホリノエタンスルホン酸、2-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕エタンスルホン酸のような有機酸;トリス(ヒドロキシメチル)、アミノメタン、アンモニアのような有機塩基;塩酸、過塩素酸、炭酸のような無機酸;燐酸ナトリウム、燐酸カリウム、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウムのような無機塩基を用いた水溶液が挙げられるが、これらに限定されるものではない。
【0055】
本発明に用いる水性媒体の濃度は、約10mMから約1Mが好ましい。より好ましくは、約20mMから約200mMである。
【0056】
本発明に用いる塩基性水性媒体のpHは、8以上が好ましく、8から12が好ましい。より好ましくはpH10〜12である。pHが高すぎると加水分解の懸念や取り扱い上の危険性があるため、上述の範囲が好ましい。
【0057】
本発明において、カゼインをpH8以上の塩基性水性媒体に混合させる温度は、0〜90℃が好ましく、10〜80℃が好ましい。より好ましくは、20〜70℃である。
【0058】
本発明に用いる酸性水性媒体のpHは、好ましいpHは3.5〜7.5である。より好ましくはpHは5から6である。前述の範囲外では、粒子サイズが大きくなる傾向が見られる。
【0059】
本発明のナノ粒子は、抗炎症剤を含むが、抗炎症剤が活性成分である場合は、そのような活性成分を含む本発明のナノ粒子は、疾患部位に投与して用いることができる。即ち、本発明のナノ粒子は、薬物送達剤として有用である。
【0060】
本発明のナノ粒子の投与方法として好ましいものは、経皮・経粘膜吸収、血管・体腔内・リンパへの注射が挙げられる。より好ましくは経皮・経粘膜吸収が挙げられる。
【0061】
本発明においては、薬物送達剤の使用は特に限定することはないが、経皮吸収剤、局所治療剤、経口治療剤、皮内注射、皮下注射、筋肉内注射、静脈内注射、化粧品、医薬部外品、機能性食品、又はサプリメントなどが挙げられる。
【0062】
本発明においては、薬物送達剤には添加物を含むことができる。添加物としては特に限定することはないが、保湿剤、柔軟剤、経皮吸収促進剤、無痛化剤、防腐剤、酸化防止剤、色素剤、増粘剤、香料、又はpH調整剤などが挙げられる。
【0063】
本発明で用いることができる保湿剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。カンテン、ジグリセリン、ジステアリルジモニウムヘクトライト、ブチレングリコール、ポリエチレングリコール、プロピレングリコール、へキシレングリコール、ヨクイニンエキス、ワセリン、尿素、ヒアルロン酸、セラミド、リピジュア、イソフラボン、アミノ酸、コラーゲン、ムコ多糖、フコダイン、ラクトフェリン、ソルビトール、キチン・キトサン、リンゴ酸、グルクロン酸、プラセンタエキス、海藻エキス、ボタンピエキス、アマチャエキス、オトギリソウエキス、コレウスエキス、マサキ抽出物、コウカエキス、マイカイ花エキス、チョレイエキス、サンザシエキス、ローズマリーエキス、デュークエキス、カミツレエキス、オドリコソウエキス、レイシエキス、セイヨウノコギリソウエキス、アロエエキス、マロニエエキス、アスナロエキズ、ヒバマタエキス、オスモインエキス、オーツ麦エキス、チューベロースポリサッカライド、冬虫夏草エキス、大麦エキス、オレンジ抽出物、ジオウエキス、サンショウエキス、ヨクイニンエキスなどが挙げられる。
【0064】
本発明で用いることができる柔軟剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。グリセリン、ミネラルオイル、エモリエント成分(例えば、イソステアリン酸イソプロピル、イソステアリン酸ポリグリセリル、イソノナン酸イソトリデシル、イソノナン酸オクチル、オレイン酸、オレイン酸グリセリル、カカオ脂、コレステロール、混合脂肪酸トリグリセリド、コハク酸ジオクチル、酢酸ステアリン酸スクロース、シクロペンタシロキサン、ジステアリン酸スクロース、パルミチン酸オクチル、ヒドロキシステアリン酸オクチル、ベヘン酸アラキル、ポリベヘン酸スクロース、ポリメチルシルセスキオキサン、ミリスチルアルコール、ミリスチン酸セチル、ミリスチン酸ミリスチル、ラウリン酸ヘキシルなど)が挙げられる。
【0065】
本発明で用いることができる経皮吸収促進剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。エタノール、ミリスチン酸イソプロピル、クエン酸、スクワラン、オレイン酸、メントール、N-メチル-2-ピロリドン、アジピン酸ジエチル、アジピン酸ジイソプロピル、セバシン酸ジエチル、セバシン酸ジイソプロピル、パルミチン酸イソプロピル、オレイン酸イソプロピル、オレイン酸オクチルドデシル、イソステアリルアルコール、2-オクチルドデカノール、尿素、植物油、動物油が挙げられる。
【0066】
本発明で用いることができる無痛化剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。ベンジルアルコール、塩酸プロカイン、塩酸キシロカイン、 クロロブタノールなどが挙げられる。
【0067】
本発明で用いることができる防腐剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。安息香酸、安息香酸ナトリウム、パラベン、エチルパラベン、メチルパラベン、プロピルパラベン、ブチルパラベン、ソルビン酸カリウム、ソルビン酸ナトリウム、ソルビン酸、デヒドロ酢酸ナトリウム、過酸化水素、ギ酸、ギ酸エチル、ジ亜塩素酸ナトリウム、プロピオン酸、プロピオン酸ナトリウム、プロピオン酸カルシウム、ペクチン分解物、ポリリジン、フェノール、イソプロピルメチルフェノール、オルトフェニルフェノール、フェノキシエタノール、レゾルシン、チモール、チラム、ティートリー油が挙げられる。
【0068】
本発明で用いることができる酸化防止剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。ビタミンA、レチノイン酸、レチノール、酢酸レチノール、パルミチン酸レチノール、レチニルアセテート、レチニルパルミテート、レチノイン酸トコフェリル、ビタミンCおよびその誘導体、カイネチン、β−カロテン、アスタキサンチン、ルテイン、リコピン、トレチノイン、ビタミンE、α−リポ酸、コエンザイムQ10、ポリフェノール、SOD、フィチン酸などが挙げられる。
【0069】
本発明で用いることができる色素剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。オキアミ色素、オレンジ色素、カカオ色素、カオリン、カルミン類、グンジョウ、コチニール色素、酸化クロム、酸化鉄、二酸化チタン、タール色素、クロロフィルなどが挙げられる。
【0070】
本発明で用いることができる増粘剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。クインスシード、カラギーナン、アラビアガム、カラヤガム、キサンタンガム、ジェランガム、タマリンドガム、ローカストビーンガム、トラガントガム、ペクチン、デンプン、シクロデキストリン、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、ポリアクリル酸ナトリウムなどが挙げられる。
【0071】
本発明で用いることができる香料として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。ジャコウ、アカシア油、アニス油、イランイラン油、シナモン油、ジャスミン油、スウィートオレンジ油、スペアミント油、ゼラニウム油、タイム油、ネロリ油、ハッカ油、ヒノキ油、フェンネル油、ペパーミント油、ベルガモット油、ライム油、ラベンダー油、レモン油、レモングラス油、ローズ油、ローズウッド油、アニスアルデヒド、ゲラニオール、シトラール、シベトン、ムスコン、リモネン、バニリンなどが挙げられる。
【0072】
本発明で用いることができるpH調整剤として具体例を列挙するが、本発明においてはこれらの化合物に限定されるものではない。クエン酸ナトリウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、リン酸、コハク酸が挙げられる。
【0073】
本発明のナノ粒子の投与量は、活性成分の種類及び使用量、患者の体重、疾患の状態などに応じて適宜設定することができるが、一般的には、1回の投与につき、10μg〜100mg/kg程度を投与することができ、好ましくは、20μg〜50mg/kg程度を投与することができる。また、経皮・経粘膜で使用する場合は、1μg〜50mg/cm2程度を投与することができ、好ましくは2.5μg〜10mg/cm2程度を投与することができる。
以下の実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【実施例】
【0074】
実施例1:
カゼインNa(乳由来・和光純薬製)10mgをpH9、50mMリン酸バッファー1mLに混合させる。グリチルレチン酸(和光純薬製)1.7mgをエタノール0.25mLに溶解させる。カゼイン溶液に攪拌下、グリチルレチン酸溶液を滴下し、この混合液を、外設40℃、800rpmの攪拌条件で、1mLをマイクロシリンジを用いて、pH5、200mMのリン酸バッファー水10mL中に注入したところ、グリチルレチン酸を内包したカゼインナノ粒子の水分散液が得られた。上記粒子の平均粒経は、光散乱光度計、ニッキソー(株)製マイクロトラックを用い測定したところ、83nmであった。
【0075】
実施例2:
カゼイン(乳由来・和光純薬製)100mgを、pH10、50mMリン酸バッファー10mLに混合させる。グリチルレチン酸(和光純薬製)1mgをエタノール0.1mLに溶解させる。この2種の溶液を混合し、塩酸を加えpHを7に調整したところ、カゼインナノ粒子が得られた。
上記粒子の平均粒経は、光散乱光度計、ニッキソー(株)製ナノトラックを用い測定したところ、23nmであった。
【0076】
実施例3:
酸処理ゼラチン10mg、TG-S(味の素製)5mgを水1mLに溶解させる。外設40℃、800rpmの攪拌条件で、ゼラチン溶液1mLをマイクロシリンジを用いて、グリチルレチン酸1.7mgを溶解したエタノール10mL中に注入したところ、ゼラチンナノ粒子が得られた。外設55℃で5時間静置し、ゼラチンナノ粒子を酵素架橋する。上記粒子の平均粒経は、光散乱光度計、ニッキソー(株)製マイクロトラックを用い測定したところ、80nmであった。
【0077】
得られたゼラチンナノ粒子分散液に水5mLを加え、ロータリーエバポレーターにて、エタノールを除去し、グリチルレチン酸を内包したゼラチンナノ粒子の水分散液が得られた。上記粒子の平均粒経は、光散乱光度計、ニッキソー(株)製マイクロトラックを用い測定したところ、201nmであった。
【0078】
試験例1:
実施例1から3に記載の抗炎症剤内包ナノ粒子分散液を室温にて1ヶ月保存後、ニッキソー(株)製マイクロトラックを用い平均粒経を測定した。
比較例1として、合成ポリマー(PLGA)のナノ粒子分散液であるナノインパクト(ホソカワミクロン製)を用いた。
試験例1の測定結果を表1に示す。
【0079】
【表1】


【特許請求の範囲】
【請求項1】
抗炎症剤、及び生分解性高分子から構成される水分散可能なナノ粒子。
【請求項2】
生分解性高分子の重量に対して、0.1〜100重量%の抗炎症剤を含有する、請求項1に記載のナノ粒子。
【請求項3】
平均粒子サイズが10〜1000nmである、請求項1又は2の何れかに記載のナノ粒子。
【請求項4】
抗炎症剤がイオン性物質または脂溶性物質である、請求項1から3の何れかに記載のナノ粒子。
【請求項5】
抗炎症剤が、化粧品用成分、機能性食品用成分、医薬部外品成分、又は医薬品成分である、請求項4に記載のナノ粒子。
【請求項6】
抗炎症剤が、グリチルレチン酸である、請求項1から5の何れかに記載のナノ粒子。
【請求項7】
生分解性高分子がタンパク質である、請求項1から6の何れかに記載のナノ粒子。
【請求項8】
タンパク質がコラーゲン、ゼラチン、酸処理ゼラチン、アルブミン、オバルブミン、オバルブミン、カゼイン、トランスフェリン、グロブリン、フィブロイン、フィブリン、ラミニン、フィブロネクチン、又はビトロネクチンからなる群より選ばれる少なくとも一種である、請求項7に記載のナノ粒子。
【請求項9】
ナノ粒子の形成中および/又は形成後にタンパク質が架橋処理されている、請求項7又は8に記載のナノ粒子。
【請求項10】
トランスグルタミナーゼを用いて架橋処理を行う、請求項9に記載のナノ粒子。
【請求項11】
下記の工程(a)から(c)によって作製されるカゼインナノ粒子。
(a)カゼインをpH8以上11未満の塩基性水性媒体に混合させる工程;
(b)工程(a)で得た溶液に少なくとも1種の抗炎症剤を添加する工程;及び
(c)工程(b)で得た溶液を pH3.5〜7.5の酸性水性媒体に注入する工程:
【請求項12】
下記の工程(a)から(c)によって作製されるカゼインナノ粒子。
(a)カゼインをpH8以上11未満の塩基性水性媒体に混合させる工程;
(b)工程(a)で得た溶液に少なくとも1種の抗炎症剤を添加する工程;及び
(c)工程(b)で得た溶液を攪拌しながら、該溶液のpH を等電点からpH1以上離れたpHまで下降させる工程:
【請求項13】
請求項1から12の何れかに記載のナノ粒子を含む、薬物送達剤。
【請求項14】
経皮吸収剤、局所治療剤、経口治療剤、皮内注射、皮下注射、筋肉内注射、静脈内注射、化粧品、医薬部外品、機能性食品又はサプリメントとして使用される、請求項13に記載の薬物送達剤。

【公開番号】特開2009−62283(P2009−62283A)
【公開日】平成21年3月26日(2009.3.26)
【国際特許分類】
【出願番号】特願2007−228690(P2007−228690)
【出願日】平成19年9月4日(2007.9.4)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】