説明

校正機能を備えた反射率及び反射濃度の計測方法及びそれを実施するシステム

【課題】本発明の課題は、フィードバック制御による照射出力の安定化を行わずに短時間で計測の高精度化を図り、照射出力の安定化によるコ-ストアップと計測装置の大型化をもたらすことのない反射率計、反射濃度計の反射率校正方法を提示することにある。
【解決手段】本発明の校正機能を備えた反射率及び反射濃度を計測する方法は、反射率が既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量に対応する反射光量センサ出力との特性を測定し、その関係式と変動因子との関係を把握してその特性をメモリに記憶しておき、校正時にはその際の照射光量を検出し、その値と記憶した因果関係から2種類の校正用反射率基準板に基づく校正時の正確関係式を確立し、次に被測定物の反射光量センサ出力値Sを測定し、反射率及び反射濃度を算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、印刷機や排煙濃度測定装置等に組み込まれ、連続して反射率、反射濃度を計測する反射率計、反射濃度計における反射率校正に関する技術である。
【背景技術】
【0002】
本発明に関する従来例について説明する。反射濃度(記号をDとする)の測定は被測定物に光を照射しその反射光を光センサで検出し反射率(記号をRとする)を求め、その反射率Rから反射濃度Dの定義に従って
D=−log10R ‥‥‥‥‥‥‥ (式1)
として反射濃度を求める。この反射率測定の際の照射光と反射光との関係は米国ANSI PH2.17やISO 5-4、JISZ8722、JISB9623等の規準書で示される45°/0°(又は0°/45°)光学系で行うことが定められている。45°/0°光学系は被測定物に垂直方向に対し45°の角度の円周上から光を照射し、その反射光量を被測定物の照射点の垂直方向から検出するものであるが、垂直上方から照射し、垂直に対し45°の角度の円周上から検出するものでもよく、これを0°/45°光学系と呼ぶ。
同一被測定物に対する測定においては、照射光量が過剰でない場合は照射光量及び照射光量に対応する反射光量と反射光量センサ出力とはリニアな関係にあり、また上記照射光量を一定にし、異なる反射率の被測定物を測定した場合、反射率は被測定物への照射光量と反射光量の比であるために反射率と反射光量センサ出力との間にもリニアな関係がある。
いま照射光量をIとするとき照射光量Iが一定値I0の場合、被測定物の反射率をR、反射光量センサ出力値をSとしa,bを定数とした場合、このリニアな関係を式
S=aR+b ‥‥‥‥‥‥‥ (式2)
a:被測定物の反射光の検出に関する定数 b:被測定物検出時のノイズ成分で表すことが出来る。
【0003】
ここで定数a,bは45°/0°(又は0°/45°)光学系で反射率がR1,R2(R1> R2)である既知の2種類の校正用反射率基準板の反射光量センサ出力値S1、S2を測定することにより、計算式
a=(S1−S2)/(R1−R2)、 b=(R1S2−R2S1)/(R1−R2) ‥‥ (式3)
から求めることが出来る。a、bが決定された後は、不明な反射率Rのサンプルを上記照射光量I0のもとで反射光量センサ出力値Sを測定し、(式2)からの計算式
R=S/a−b/a ‥‥‥‥‥‥‥ (式4)
で算出することにより反射率Rを求めることが出来る。この機能が反射率計、反射濃度計である。しかしa、bの確定後に(式2)のS=aR+bの関係式が常に成立するためには照射光量及び温度等の測定環境がa,bを求めた時と同一であり変化してないことが条件であり、照射光量値又は環境条件が変化した場合は新しい条件の下で再度定数a,bを求め直す必要がある。反射率測定の校正作業とはこの定数a,bの値を再確定することである。但し環境条件の変化に対しては反射光量センサ回路を注意深く設計することにより温度等の環境変動に対しては殆ど無視することが出来る。例えば本発明の実施形態で使用した反射率計の反射光量センサ回路では温度が5℃〜35℃の30度の変化に対し25℃での値を基準にして+0.25%、−0.14%の変化となっている。
校正法における第1の従来例として、市販の反射濃度計測器では上述したように既知の大きく異なる反射率の基準板である校正用反射率基準板を2枚用意し、照射光量を変化させずに、この2枚の校正用反射率基準板で反射光量センサ出力値を求めa、bの値を確定する方法を採用している。
また校正方法の第2の従来例では、既知の反射率の1枚の校正用基準板を用いた時の反射光量センサ出力と、照射光を消した時の反射光量センサ出力とから反射率と反射光量センサ出力との関係式の(式2) S=aR+b に於けるa,bを求める方法がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006-222346号公報 「露光装置、基準反射板、反射率計測センサの校正方法及びマイクロデバイスの製造方法」平成18年8月24日公開
【非特許文献】
【0005】
【非特許文献1】伊原電子工業(株)発行 白黒反射濃度計 R700 取扱説明書 13頁〜14頁
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記第1の従来例における校正方法では2枚の校正用反射率基準板を使用するので校正が正確であるが、校正手順が煩わしくなり少し時間を要すること、装置に組み込んで連続で使用する場合は頻繁に校正することが難しくなるので図8に示すように照射光量を安定化する必要がある。これは照射光量を安定化させるために照射光の一部をフィードバックして、照射出力を制御して常に照射光量を一定にするものである。この方法により大幅な照射出力変動はなくなるが、この方法ではフィードバック系を安定にするためには設定値に対しヒステリシス幅を通常±1.0%程度以上持たせる必要があり、また照射出力変動はヒステリシス幅以下には出来ないため、フィードバック制御による反射率測定誤差がヒステリシス幅分だけ生じる。以上のようにフィードバック制御のヒステリシス幅が照射出力の高安定化、即ち測定の高精度化の阻害要因となっている。またこのフィードバック方式を採用することによりコストアップと計測装置の大型化の要因となっている。
【0007】
次に第2の従来例における校正方法では、照射光を消した時のセンサ出力と反射率R=0の理想的な純黒の校正用基準板を使用した時のセンサ出力とが同じであるという前提で校正を行っているが、光量センサを含めた計測光学系が純黒に出来ないためにこの計測光学系に照射された光を全ては吸収することが出来ず迷光となって光量センサに入射するために、純黒に近い基準板を測定した時のセンサ出力は、たとえ基準板からの反射光がなくても迷光に因るノイズ成分であるオフセット電圧が発生する。この光のノイズ成分と光量センサ回路の電気的なノイズ成分との和が光量センサ出力のノイズ成分であり(式2)でのbの値になる。
b=(反射光計測環境に関し照射及び反射光量により発生する迷光による光ノイズ成分)+(センサ回路の電気ノイズ成分)
一方、照射光を消した時のセンサ出力は上記の迷光成分はなく光量センサ回路の電気ノイズ成分のみとなり、大きな差異が生ずる。そのために関係式のS=aR+bが不正確となり、校正が不十分なため精度の高くない反射率計となる。
【0008】
本発明の課題は、上記従来例の問題を解決するもの、すなわち、正確な校正が短時間で簡単にできること、及びフィードバック制御による照射出力の安定化を行わずに計測の高精度化を図り、照射出力の安定化によるコストアップと計測装置の大型化をもたらすことのない反射率計、反射濃度計の反射率校正方法を提示することにある。
【課題を解決するための手段】
【0009】
本発明の校正機能を備えた反射率及び反射濃度を計測する方法は、反射率がR1、R2 (R1> R2)である既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量Iに対応する反射光量センサ出力SとのI−S特性を測定し、関係式 S=aR+bのa,b値と変動因子との関係を把握してその因果関係であるI−a,b特性、S−a,b特性をメモリに記憶しておき、校正時にはその際の照射光量I0を検出し、その値と記憶した因果関係から2種類の校正用反射率基準板に基づく校正時の正確なa,b値を特定して関係式S=aR+b を確立し、次に被測定物の反射光量センサ出力値Sを測定し、反射率Rの式 R=S/a−b/a より、反射率を、そして、上記関係式 S=aR+bより 濃度 D=−log10R を算出するものである。なお、aは被測定物の反射光の検出に関する定数を、bは被測定物検出時のノイズ成分を表す。
校正時の照射光量I0検出は、前記2種類の校正用反射率基準板のいずれかを用い、その際の反射光の検出量測定、または既知の反射率の被測定物の台紙または白色バッキング材を常用反射率基準板として用い、その際の反射光の検出量測定、または照射光量モニタによってなされるものとした。
また、本発明の校正機能を備えた反射率及び反射濃度を計測する方法は、定められた温度T0での被測定物の反射光量センサ出力値S(T0)をSとし、温度Tでの温度補正前の値S(T)をSncとし、温度を変化させSncの温度特性を測定し、S/Snc=f(T)なる温度補正式のグラフを作成しグラフから補正式を求め、次にグラフ及び式から補正テーブルを作成し、温度補正後の反射光量センサ出力値Sを求めるようにした。
【0010】
本発明の校正機能を備えた反射率及び反射濃度を計測するシステムは、測定対象への照射とその反射光量を検出すると共に照射光量を検出する手段を備えた45/0光学系もしくは0/45光学系で構成された反射光量計と、該反射光量計に装着または外部からアクセスできる不揮発性メモリと、前記反射光量計からの信号を入力し、前記不揮発性メモリに入出力し演算制御を行うマイクロプロセッサとを具備し、前記不揮発性メモリには反射率がR1、R2(R1> R2)である既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量Iに対応する反射光量センサ出力SとのI−S特性を測定し、関係式 S=aR+bのa,b値と変動因子との関係を把握してその因果関係であるI−a,b特性、S−a,b特性が記憶されており、前記マイクロプロセッサは検出した照射光量値I0と前記メモリに記憶した因果関係から前記2種類の校正用反射率基準板に基づくその時点のa,b値を特定して関係式S=aR+b を確立し、次に被測定物の反射光量センサ出力値Sを測定し、反射率Rの式 R=S/a−b/a より、反射率Rを、また前記反射率R値を用い濃度 D=−log10R を算出するものである校正機能を備えるものとした。
また、本発明の校正機能を備えた反射率及び反射濃度を計測するシステムは、異なる形態として測定対象への照射とその反射光量を検出すると共に照射光量を検出する手段を備えた45/0光学系もしくは0/45光学系で構成された反射光量計と、該反射光量計に装着または外部からアクセスできる不揮発性メモリと、前記反射光量計からの信号を入力し、前記反射光量計からの校正時の前記光量計信号を記憶しかつその信号を前記不揮発性メモリーに出力するとともに計測時の反射光量計の信号を前記不揮発性メモリに出力するコントローラとを具備し、前記不揮発性メモリには反射率がR1、R2(R1> R2)である既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量Iに対応する反射光量センサ出力SとのI−S特性を測定し、関係式 S=aR+bのa,b値と変動因子との関係を把握してその因果関係であるI−a,b特性、S−a,b特性のテーブル及び反射率Rの式 R=S/a−b/a、濃度 D=−log10R に基づく反射率Rと濃度Dの計算テーブルが記憶されており、該不揮発性メモリーは校正時に記憶された信号と測定時に前記反射光量計からの反射光量センサ出力値Sを前記コントローラを通して前記不揮発性メモリに入力し、その入力に従ってテーブル出力信号の反射率R、濃度Dを不揮発性メモリから出力する機能を備えるものとした。
そして、前記不揮発性メモリは1形態として外部から情報を自由に入力しまた変更できるメモリーカードを採用するものとした。
また、本発明の校正機能を備えた反射率及び反射濃度を計測するシステムは、温度センサと前記不揮発性メモリには反射光量の温度特性情報を備え、計測時の環境温度による反射光量変動を補償する機能を備えるものとした。
【発明の効果】
【0011】
本発明の校正機能を備えた反射率及び反射濃度を計測する方法は、計測時の校正作業が簡便でありながら、従来の2つの校正用反射率基準板を用いた高精度な校正に等しい精度を担保する機能を備えた測定器を提供出来る。校正時には1枚の校正用反射率基準板もしくは、濾紙のような既知の反射率の被測定物の台紙、白色バッキング材等の反射率の大きいものを常用反射率基準板に選定して校正を行なうことが出来、特に常用反射率基準板として被測定物の台紙や白色バッキング材を用いる場合、反射率測定直前に常用反射率基準板の光量センサ出力を測定し校正できるため、常に高精度を維持できる。被測定物の反射光量センサ出力Sの測定前又は後に常用反射率基準板を測定してa,b値を求めその値と被測定物の反射光量センサ出力Sから反射率Rを算出することにより、手操作による校正操作が不要となり、且つ校正から測定までの時間が短いので光量及び環境変化が少ないので精度の高い測定が可能である。また、照射光量をモニタする方法によれば、前もっての校正作業が不要であり、反射率測定時にリアルタイムでその時の照射光量に対応したa,b値を確定することが出来るために測定環境に左右されない高精度の反射率計及び反射濃度計の校正方法を提供することが出来る。
本発明の校正機能を備えた反射率及び反射濃度を計測する方法は、予め用いる装置の反射光量の温度特性を把握していることにより、計測時の環境温度を計測して温度による反射光量変動を補償して高精度の反射率及び反射濃度の計測が可能となる。
本発明の校正機能を備えた反射率及び反射濃度を計測するシステムは、前述した構成を採用したことにより上記のような効果を計測時に実現することが出来る。
【図面の簡単な説明】
【0012】
【図1】本発明の第1の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図2】本発明の第2の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図3】本発明の第1の実施形態における反射率計又は反射濃度計の照射用リングライトガイド光源の機能ブロック図である。
【図4】本発明の第1の実施形態における環状光源使用の反射光量測定部断面図である。
【図5】本発明の第1の実施形態における反射率計又は反射濃度計の校正機能を示す特性図である。
【図6】本発明の第1の実施形態における反射率計又は反射濃度計の校正機能を示す特性図である。
【図7】本発明の第1の実施形態における反射率計又は反射濃度計の校正機能を示す特性図である。
【図8】従来例における反射率計又は反射濃度計の照射用光量制御型リングライトガイド光源のブロック図である。
【図9】本発明の実施形態における排煙濃度測定装置のブロック図である。
【図10】本発明の第3の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図11】本発明の第4の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図12】本発明の第5の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図13】本発明の第6の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図14】本発明の第7の実施形態における反射率計又は反射濃度計の照射用光量モニター機能を付加したリングライトガイド光源のブロック図である。
【図15】本発明の第7の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図16】本発明の第8の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図17】本発明の第7の実施形態における反射率計又は反射濃度計の校正機能を示す特性図である。
【図18】本発明の第9の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図19】本発明の第10の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図20】本発明の第11の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図21】本発明の第12の実施形態における反射率計又は反射濃度計の電気系統の機能ブロック図である。
【図22】0/45光学系により反射計機構部を具現化した構成例を示した図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について、詳細に説明する。
本発明の第1の実施形態について説明する。本実施形態は図9に示すような航空エンジン用排煙濃度測定装置に組み込んだもので、その排煙の濃度測定を反射率計、又は反射濃度計93によって行うものである。図中一点鎖線で囲われた部分は加熱保温状態に置かれている。この航空エンジン用排煙濃度測定装置は航空エンジンより排出された排ガスをプローブ(非表示)を使用して取得し、プローブから配管を通った排ガスをロール型濾紙91を挟んだフィルタホルダー92に一定量通過させ濾紙上に排煙固形物であるスモークを堆積させる。次にフィルタホルダー92及び反射濃度計保持部を開いてフィルタホルダー92で採取したスモーク部分の濾紙を反射濃度計93まで移動させ、反射濃度計93ではスモーク堆積部分を挟み込んで保持し、そのスモークの反射率を測定した後、航空エンジン用排煙濃度計の規準書に定められたSN(スモークナンバー)値に換算し表示するものである。この装置に用いられている反射率計、及び反射濃度計93は、本装置特有のものでなく一般的に使用されている反射率計、及び反射濃度計と同じ原理、構造のものを使用している。そして一般的な反射率計、又は反射濃度計と同様に照射光と反射光との関係が米国ANSIPH2.17やISO 5-4、JISZ8722、等の規準書に示されている45°/0°光学系を採用している。
【0014】
規準書では光を1方向以上から照射することになっているが、本発明では照射光として図3に示されるようなリングライトガイドが用いられる。これは図に示されるように細いファイバー線を多数束ねたフレキシブルチューブ32の一端からハロゲンランプ等の光を赤外線を遮断して投入し、他端の中空円筒部33に前記細いファイバーを環状に配置し、中空円筒部内側下部にリング状に照射口34を設け、この照射口34は垂直方向に対し45°の方向に出射されるようにテーパリングされている。このリングライトガイドを用いた反射率計の反射光量測定部の断面図を図4に示す。図4において中空円筒部33はリングライトヘッド部でありこの中でガラスファイバーの他端がリング状に配置されている。40は45°の方向に出射されるようにテーパリングされた照射口、41は被測定物台紙である濾紙、42は被測定物台紙41でフィルタリングされた被測定物のスモーク微粒子であり、被測定物42の中心付近にはリング状の照射口40から集められた光に対し測定ポイントだけを通すためのアパーチャー43が設けられており、このアパーチャー43の中心部分の被測定物にはリング状に配置された照射口40からの光が集められるため最も光が強くなるように設計されている。アパーチャー43の中心の垂直上方にはアパーチャー43を通して照射された測定物からの反射光量を検出するための反射光量センサ44が設けられている。ANSIPH2.17等の規準書に従いアパーチャー43の中心から反射光量センサ44までの距離はアパーチャー43の中心から反射光量センサ44の受光面45の端部を結ぶ角度が±5°以内になるように配置されている。また反射率計の規準書に従い反射光量センサ44は無彩色のグレイスケールを検出するために内部の受光面45の前部に3刺激値緑フィルタ46が設置されている。このフィルタ46は反射光量センサ44の外部に設置してもよい。さらに図4に示すようにアパーチャー以外からの反射光はできるだけ阻止するように堤防を設ける構成にし、照射、反射部の壁面はつや消しの黒色塗装しているが、理想的な黒でないために照射光による壁面からの反射は防止できず、その光は図中に示すように迷光となり反射光量センサ44に到達し光ノイズ成分となる。
本実施形態では照射光としてリングライトを用いたが、リングライトでなく複数個の光源をリング状に配置し下方45度の角度に照射するものでもよく、また図22に示すように0°/45°光学系にして光センサと光源の位置を逆にし円筒中心上方部に光源を置き直下に照射し、被測定物からの反射光を垂直上方45度方向に光センサを置き受光するものでもよい。
【0015】
背景技術の項で述べたように 反射率Rの被測定物に光を照射した時、その反射光を検出する反射光量センサ出力値Sと反射率Rとはリニアな関係にあるので、a,bを定数とした場合、(式2) S=aR+b で表すことが出来る。したがって照射光量を固定値とした場合、定数a,bの確定後に、反射率Rの不明な被測定物の、反射光量センサ出力値Sを測定することによってその反射率Rは (式4) R=S/a−b/a により、反射濃度Dは(式1) D=−log10R を計算することにより判明する。
反射率計、反射濃度計はこのような方法で計測を行っている。このa,b値を確定するため1つの方法として反射率がR1、R2 (R1> R2)である既知の2種類の校正用反射率基準板を、照射光量一定値のもとで夫々反射光量センサ出力値S1、S2を測定し(R1,S1)、(R2,S2)を得た後、S1=aR1+b、S2=aR2+b を計算することにより、a,bは(式3) a=(S1−S2)/(R1−R2)、 b=(R1S2−R2S1)/(R1−R2) により確定する。そして校正とはこのように2種類の校正用反射率基準板を計測してこのa,b値を更新することである。
【0016】
次に、照射光量をI、そのうちアパーチャー内の被測定物への照射割合をPとする時、被測定物への照射光量はIPとなり、被測定物以外への照射光量はI(1−P)となる。また、被測定物の反射率をR、照射光側から見た反射率計の光学経路中の壁、床等による反射率の総合平均値をr1とする時、被測定物からの1次反射光量はIPR、照射光量からの1次迷光量はI(1−P)r1、そのうち、1次迷光量が反射光量センサに入射す割合をQ1とすると反射光量センサに入射する1次反射光量はIPR、1次迷光量はI(1−P)r1Q1となる。被測定物に照射した光量IPのうち垂直方向つまり反射光量センサ方向への反射率が反射率の規準に基づいた反射率Rである。そこで反射光量センサ方向以外つまり垂直方向以外に反射した光の反射率を総合平均してRxとするとRxとRは比例関係にあり比例定数をmとする時Rx=mRと表すことができる。したがって被測定物に照射した光量IPのうちセンサ方向以外に反射した光量はIPRx=mIPRであり、その光が、反射率計内部の壁、床等により反射した反射率の総合平均をr2とする時、2次迷光量はmIPRr2、そのうち反射光量センサに入射す割合をQ2とすると反射光量センサに入射する2次迷光量は mIPRr2Q2となる。ここで反射率計の光学経路中の壁、床等による反射率の総合平均値r1、r2は小さいため、上記1次迷光量からの反射光量とそれ以降の反射光量、及び上記2次迷光量からの反射光量とそれ以降の反射光量については微量であるため無視する。次に反射光量センサの光電変換率をC、反射光量センサ回路の電気的ノイズ成分をNとする時、反射光量センサ出力値Sは S=CIPR+CI(1−P)r1Q1+CmIPRr2Q2+N として表すことが出来る。この式から
S=CIP(1+mr2Q2)R+CI(1−P)r1Q1+N ‥‥‥‥ (式5)
となる。照射光量Iが固定値の時 光量センサ出力値Sと被測定物の反射率Rとの間にはa,bを定数として(式2) S=aR+b なる関係が成立するので、a,bは
a=CIP(1+mr2Q2)=CP(1+mr2Q2)I‥‥‥‥ (式6)
b=CI(1−P)r1Q1+N=Cr1Q1(1−P)I+N‥‥‥‥‥ (式7)
と表される。ここでC、P、m、r1、r2、Q1、Q2、Nは固定値(定数)である。
今、照射光量Iを固定値としているのでa,bは定数であるが、照射光量Iを変化させた場合はa,bは照射光量Iに対してリニアな関係にあることが判る。
【0017】
一方、反射率が既知の2種類の校正用反射率基準板のうち反射率の高いR1の反射率基準板については照射光量が固定値I0の場合は(式5)からはS1=CI0P(1+mr2Q2)R1+CI0(1−P)r1Q1+N が成立する。照射光量Iが固定値でない場合はS1=CIP(1+mr2Q2)R1+CI(1−P)r1Q1+N が成立し、この式を照射光量Iについて整理すると、反射率R1の反射率基準板の場合の投射光量Iと反射光量センサ出力S1との関係式は
I=(S1−N)/C{P(1+mr2Q2)R1+(1−P)r1Q1} ‥‥‥‥ (式8)
となる。C、M、m、r1、r2、Q1、Q2、R1、Nは夫々定数であるから(式8)から照射光量Iは反射光量センサ出力値S1に対しリニアな関係であることがわかる。そして(式6)、(式7)、(式8)から
a= CP(1+mr2Q2)I
=P(1+mr2Q2)(S1-N)/{P(1+mr2Q2)R1+(1-P)r1Q1} ‥‥‥ (式9)
b=CCr1Q1(1−P)I+N
={r1Q1(1−P)S1+P(1+mr2Q2)R1N}/{P(1+m2Q2)R1+(1-P)r1Q1}
‥‥‥ (式10)
となり、a,bは反射率R1の反射率基準板の場合の反射光量センサ出力値S1に対し夫々リニアな関係にあることがわかる。このa,bのS1に対するリニアな関係式を a=g(S1)、b=h(S1) とする。
そして一般に既知の反射率R0に対し、(式9)、(式10)に於いてR1をR0とすることにより次式が成立する。
a=CP(1+mr2Q2)I
=P(1+r2Q2)(S0−)/{P(1+mr2Q2)R0+(1-P)r1Q1}‥‥‥ (式11)
b=Cr1Q1(1−P)I+N
= {r1Q1(1−P)S0+P(1+mr2Q2)R0N}/{P(1+mr2Q2)R0+(1−P)r1Q1}
‥‥‥‥ (式12)
ここで(式11)、(式12)を簡単に直線式 a=g(S0)、b=h(S0) で表す。
【0018】
以上より(式9)、(式10)は校正準備として前もって反射率がR1,R2(R1> R2)である既知の2種類の校正用反射率基準板を用いて照射光量Iを変化させ各照明光量毎にa,bを算出し、S1、又はS2とa,bとのリニアな関係式を把握しておくことにより、以後校正では一方の反射率基準板の反射光量センサ出力S1またはS2を検出するだけで2種類の校正用反射率基準板を用いて得られた高精度のa,b値を確定することができ精度の高い校正を実施できることを意味するものである。
更に(式11)、(式12)は反射率がR1,R2(R1> R2)である既知の2種類の校正用反射率基準板以外に被測定物の台紙や白色バッキングプレート等、既知の反射率R0を持ち、常時この反射率R0の基準板(これを常用反射率基準板と呼ぶ。)の反射光量センサ出力値S0を測定できる場合は、上記校正準備段階で照射光量Iを変化させて前記常用反射率基準板の反射光量センサ出力値S0とa,b値とのリニアな関係式a=g(S0)、b=h(S0) を把握しておくことにより、被測定物の反射光量センサ出力値Sを測定する前又は後に前記常用反射率基準板の反射光量センサ出力値S0を測定しa,b値を確定し、このa,b値と被測定物の反射光量センサ出力値Sから(式4) R=S/a−b/a に基づいて反射率Rを求めることができることを意味するものである。これにより照射光量変化及び環境変化に対しタイムラグの小さい校正ができ高精度な測定が行える。またこの場合は手作業による校正操作が不要であるため省力化にもなり、更に連続測定作業にも適している。
【0019】
図5、図6及び図7は本発明の第1の実施形態の反射率計で上記事項を確認した時の関係式のグラフである。ここで用いた基準板は、反射率RがR1,R2 (R1> R2)である既知の2枚の校正用反射率基準板として、高反射率基準板である「白基準板」(R1=0.90)と、低反射率基準板である「黒基準板」(R2=0.03)と、実際の校正時に用いる反射率R0の常用反射率基準板である被測定物の台紙として使用しているロールタイプの「濾紙」(R0=約0.78)である。この3種類の基準板を図4に示す反射率計を用い、照射用光源のリングライトガイド照明装置の光量設定電圧を変化させて反射光量センサ出力値Sを測定したものが図5に示す特性図である。図4からわかるように反射率計では光源から被測定物までの距離が短いため、距離が100ミクロン程度変化しても反射光量センサ出力値Sが大きく変化する。そこで、反射率測定ではバックプレートに一定の力を加え、常にこの距離が変化しないようにして測定してある。また図5では(式3)に基づいて算出したa,b特性も掲載している。また照射光の発光駆動部である照明装置の光量設定電圧Eと照射光量Iとはリニアな関係にあり、I/Ix=0.192E+0.04 (但しIx:最大設定電圧値E=5V時の光量) であることが装置のマニュアルに記載されている。従って図5の特性図における横軸は、示している数字は変わるが照射光量Iと考えられる。図5より前記3種類の基準板の反射光量は夫々反射率R1、R2、R0に基づき照射光量Iに対しリニアに変化している。そしてa,b特性についても照射光量Iに対しリニアに変化し、(式6)、(式7)と合致していることがわかる。図6は照射光量Iの代わりに白基準板(R1の高反射率基準板)の反射光量センサ出力値S1を横軸に取り、縦軸にa,bをとった時の特性図であり、図7は照射光量Iの代わりに濾紙(R0の常用反射率基準板)の反射光量センサ出力値S0を横軸に取り、縦軸にa,bをとった時の特性図である。図6においては照射光量IがR1の基準板の反射光量センサ出力値S1に比例するため、a,b特性はR1の基準板の反射光量センサ出力値S1に対しリニアに変化しており、(式9)、(式10)に示す特性に合致し、また図7においては照射光量IがR0の基準板の反射光量センサ出力値S0に比例するため、a,b特性はR0の基準板の反射光量センサ出力値S0に対しリニアに変化しており、(式11)、(式12)に示す特性に合致していることがわかる。従って校正時に、2枚の校正用基準板のうち高反射率R1の校正用反射率基準板、又は濾紙等の反射率がR0である常用反射率基準板の反射光量センサ出力値S1、又はS0を測定するだけで上記のグラフを用いてa,bを求めることができ、敏速で正確な校正を行える。
【0020】
以上から次のような手順で校正作業を行う。本実施形態では反射率基準板として排煙濃度計測装置の被測定物である「スモーク」の台紙のロールタイプ濾紙の常用反射率基準板を用いた例について詳しく説明する。ロールタイプの濾紙は常に反射率計に装着されているために任意の時間に反射光量センサ出力値S0を取得することができ、また反射率が比較的大きく、ほぼ一定しているので常用反射率基準板として適している。
先ず、校正前準備として次に示すような手順で、照射光量Iと反射率R1、R2、R0の反射率基準板との特性を取得し、次にS0に対する(式2)におけるa,bの特性を求め、この特性式、特性テーブルをメモリに書き込む。
1)校正用反射率基準板として高反射率R1の「白基準板」と低反射率R2の「黒基準板」及び反射率R0の「常用反射率基準板」として被測定物の台紙である「濾紙」を用意する。
2)投射光量Iを変化させ、各光量毎の「白基準板」、「黒基準板」の校正用反射率基準板、及び「濾紙」の「常用反射率基準板」の反射光量センサ出力値Sを測定、記録する。各光量毎の「白基準板」、「黒基準板」の反射光量センサ出力値S1、S2から、(式3)を用いてa,bを算出する。
3)投射光量設定電圧Eを横軸に取り、「白基準板」、「黒基準板」、a値、b値を縦軸にとり、夫々のグラフを作成し、各グラフが直線(リニア)となることを確認し、次に「常用反射率基準板」のセンサ出力値S0を横軸に取り、a値、b値を縦軸にとりグラフを作成し、a値、b値について直線式 a=g(S0)、 b=h(S0)を求める。
4)この直線式a=g(S0)、b=h(S0)又はこのグラフより、「常用反射率基準板」の光量センサ出力値S0とa値、b値のデータテーブルを作成する。
5)このa値、b値についての直線式及びテーブルをE-PROMやフラッシュメモリ等の書換え可能な不揮発性メモリに書き込む。
以上が校正前準備である。この1)〜5)の校正前準備は装置を起動する毎に行う必要は無く、基本的に反射率計の測定部内の光学系の形状及び位置変化や黒色塗装状態の大幅な変化が無ければ直線式や値は変化しないため、反射率計の改修時や装置のメンテナンス時等に上記「校正前準備」の操作を行う程度でよい。また校正前準備2)の段階での3種の基準板における反射光量センサ出力値の測定では基準板の反射光量センサ出力値は投射光量に対しリニアな関係にあるため2点以上の光量値について夫々測定すればよい。
【0021】
次に、機能構成図に従って校正時及び測定時の動作説明をする。
図1は本発明第1の実施形態における校正機能を有し、反射率R、反射濃度Dを算出する反射率計又は反射濃度計の機能ブロック図である。
図1において11は反射光量計であり、信号系としては図4に示すように反射光量センサ44と反射光量センサ回路47で構成されている。この反射光量計11は温度変動の少ない部品を選定し、また感温素子を組み込む等の注意深い設計により出力である反射光量センサ出力の温度変動を少なくするように設計されており、本実施形態では5℃から35℃までの温度変動に対し25℃を基準として0.4%以内の出力変動幅となっている。12はA/Dコンバータ及びマイクロコンピュータ等を内蔵した演算制御回路である。13はE-PROMやフラッシュメモリのようなリライタブル不揮発性メモリ(Re-writable & non volatile memory)であり、前記校正前準備で取得した反射率校正用データである常用反射率基準板の反射光量センサ出力値S0−a,b特性の直線特性式データ及び直線式 a=g(S0)、 b=h(S0)から得られるS0(入力)−a,b(出力)のデータテーブルが書き込まれている。このメモリー13は本装置内で書き換え動作をしてもよいが、E-PROMやメモリーカードのように装置外部でデータを書き込んだ後装置に挿入するものでもよい。以上のような構成で次に反射率計の動作を説明する。
【0022】
先ず、図9の排煙濃度測定装置のブロック図に示すようにロール型の濾紙91はフィルタホルダー92を通過後反射濃度計93を通り巻き取られるので常に汚れの無いクリーンな濾紙を供給することができる。そこでクリーンなロール型濾紙91をフィルタホルダー92及び反射濃度計93に供給しフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。このスモーク堆積開始とほぼ同時に反射濃度計93内にある図1の反射光量計11では校正用として用いる常用反射率基準板であるクリーンな濾紙の反射光量を測定し測定結果の反射光量センサ出力値S0のアナログ信号を演算制御回路12へ送出する。演算制御回路12では入力された反射光量センサ出力値S0をA/D変換しディジタル値のS0をマイクロプロセッサのアキュムレータ等のS0用メモリに格納しそのメモリ出力S0をリライタブル不揮発性メモリ13に出力する。S0(入力)−a,b(出力)のデータテーブルが書き込まれているメモリ13は入力されたS0値に対応するa値、b値を演算制御回路12に出力する。演算制御回路12はメモリ13より入力されたa値、b値を回路内のa値、b値用メモリに格納する。次に図9に於いてロール型濾紙91のフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させた時点でその堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動させ、そのときの反射光量を図1の反射光量計11で測定し、その反射光量センサ出力S(アナログ量)を演算回路12に送出する。演算制御回路12では入力された反射光量センサ出力値SをA/D変換しディジタル値のSをマイクロプロセッサのアキュムレータ等のS用メモリに格納し、先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を先に採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。
【0023】
連続でスモークを採取し、各計測毎に校正を行う場合は、図9に於ける反射濃度計93で上記の最初(1個目)のスモークサンプルの反射光量センサ出力値Sを計測し始めると同時にフィルタホルダー92内で次(2個目)のスモークサンプルを採取し始める。反射率Rの算出時間より排煙の堆積時間が長い。排煙堆積終了後そのスモークサンプルを反射濃度計93まで移動せずその半分程度まで移動し、反射濃度計93の反射率測定部分をクリーンな濾紙にし、そこで上記のように常用反射率基準板であるクリーンな濾紙の反射光量を測定し、測定結果を新たな次(2個目)の反射光量センサ出力値S0として演算制御回路12に出力する。次に更に濾紙を移動し2個目のスモークサンプルを反射濃度計93の反射率測定部分まで移動する。この移動期間中に演算制御回路12は入力された2個目のクリーンな濾紙のセンサ出力値S0をA/D変換した後、最初(1個目)のS0用メモリに格納されたS0と比較し予め定められた比率以内であれば2個目のS0を破棄し、従ってa値、b値はメモリに格納した1個目のS0の値を使用するが、2個目の濾紙のセンサ出力値S0が1個目のS0と比較し予め定められた比率以外であれば1個目のS0に変えて2個目のS0を定められたS0用メモリに再格納し、2個目のS0に対応したa値、b値をメモリ13より入力する。次に2個目のスモークサンプルが反射濃度計93の反射率測定部分まで移動した時点で2個目のスモークサンプルの反射光量センサ出力値Sを計測し始めると同時にフィルタホルダー92内で次(3個目)のスモークサンプルを採取し始める。2個目のスモークサンプルの反射光量の処理については上述したとおりである。つまり図1の反射光量計11で測定た反射光量センサ出力S(アナログ量)を演算回路12に送出し、演算制御回路12では入力された反射光量センサ出力値SをA/D変換しディジタル値のSをマイクロプロセッサのアキュムレータ等のメモリに格納し、先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を先に採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。そして連続でスモークを採取し、各計測毎に校正を行う場合は以上の動作の繰り返しとなる。連続でスモークを採取するが、複数回の計測毎に校正を行う場合は上述したように各回毎のスモーク採取位置から反射率測定位置への半分送りを複数回毎に行い、それ以外の送りではスモーク採取位置から反射率測定位置への全送りにすればよい。
【0024】
上記の動作ではリライタブル不揮発性メモリ13の内容が作成したテーブルである時の説明をしたが、メモリ13の内容がテーブルの元であるa値、b値のS0を変数とする特性式a=g(S0)、b=h(S0)の場合は
校正前準備の項目5)として
5)このa値、b値についての直線式a=g(S0)、 b=h(S0)をE−PROMやフラッシュメモリ等の書換え可能な不揮発性メモリに書き込む。
とし、図9において装置の電源が投入された初期状態で図1の演算制御回路12は特性式が格納されているリライタブル不揮発性メモリ13のアドレスを指定しa値、b値の特性式a=g(S0)、 b=h(S0) を取り込み、夫々の指定メモリに格納する。次に測定段階でS0が入力された時点で特性式a=g(S0)、b=h(S0)に代入してa値、b値を求め、予め定められたa値、b値のメモリーに夫々格納する。次にスモークサンプルの反射光量センサ出力値Sが入力された時はテーブル参照時の動作と同じように入力された反射光量センサ出力値SをA/D変換しディジタル値のSをマイクロプロセッサのアキュムレータ等のS用メモリに格納し、先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を先に採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。
【0025】
次に図2は本発明第2の実施形態における反射率計の校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。
図1、図2において反射光量計11と21は同じものであり、リライタブル不揮発性メモリ13と23は書き込まれた内容は異なるが同じ機能を持つものである。図2において図1と異なるのは図1の演算制御回路12の代わりに図2ではコントローラ22となっている点であり、このコントローラ22はA/D変換器とメモリは備わっているが演算機能を持たず、装置及び反射光量計の制御機能を持つものである。従って演算機能を持たない代わりにリライタブル不揮発性メモリ23に演算機能部分を代用させるものである。つまり入力として「常用反射率基準板」の光量センサ出力値S0と被測定物の反射光量センサ出力値Sであり、出力として反射率R又は反射濃度Dのテーブルがリライタブル不揮発性メモリ23の内容となる。それ故、前述した校正前準備の項目4)を次のように変更する。
4)校正兼反射率用テーブルまたは校正兼反射濃度用テーブルを作成する。
直線式 a=g(S0)、b=h(S0) と計算式 R=S/a−b/a =(S−b)/a、D=−log10R、より校正兼反射率用テーブルは、式 R=(S−b)/a ={S−h(S0)}/g(S0) 及びこのグラフより、S0とS(入力)−反射率R(出力) のデータテーブルを作成する。
校正兼反射濃度用テーブルは、式 D=−log10[{S−h(S0)}/g(S0)] 及びこのグラフよりS0とS(入力)−反射濃度D(出力) のデータテーブルを作成する。
【0026】
次に図2に従って簡単に動作説明をする。
先ず、図9の排煙濃度測定装置のブロック図に示すようにロール型の濾紙91はフィルタホルダー92を通過後反射濃度計93を通り巻き取られるので常に汚れの無いクリーンな濾紙を供給することができる。そこでクリーンなロール型濾紙91をフィルタホルダー92及び反射濃度計93に供給しフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。このスモーク堆積開始とほぼ同時に反射濃度計93内にある図2の反射光量計21では校正用として用いる常用反射率基準板であるクリーンな濾紙の反射光量を測定し測定結果の反射光量センサ出力値S0のアナログ信号をコントローラ22へ送出する。コントローラ22では入力された反射光量センサ出力値S0をA/D変換しディジタル値のS0をS0用メモリに格納しそのメモリ出力S0をリライタブル不揮発性メモリ23に出力する。次に図9に於いてフィルタホルダー92で挟んだ濾紙91に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。スモークの堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動させ、そのときの反射光量を図2の反射光量計21で測定し、その反射光量センサ出力S(アナログ量)をコントローラ22に送出する。コントローラ22では入力された反射光量センサ出力値SをA/D変換しディジタル値のSをS用メモリに格納し、そのメモリ出力Sをリライタブル不揮発性メモリ23に出力する。S0及びS(入力)−R(出力)、又はS0及びS(入力)−D(出力)のデータテーブルが書き込まれているメモリ23は入力されたS0値及びS値に対応するR値又はD値を先に採取したスモークの反射率R、又は反射濃度Dとして出力する。連続でスモークを採取する場合は、実施形態1と同様な操作法を用いればよいので説明は省略する。
【0027】
第1の実施形態、第2の実施形態では反射光量センサ及び反射光量センサ回路は周囲温度変動による影響が無視できるようにハード面で対応しているため、反射光量計として変動要因を照射光量のみにし、周囲温度を要因に入れていない構成にしている。しかしハード面で対応されていない反射光量センサ及び反射光量センサ回路の場合は反射光量センサ出力を温度変動により補正する必要があるため温度と反射光量センサ出力との関係式又はテーブルを別に作成し、この関係式又はテーブルで反射光量センサ出力を温度補正した後に前記校正前準備及び校正測定の手順を踏むようにするか、或いは校正時のテーブルや関係式の中に温度補正のテーブルや関係式を組み込んだ構成として校正前準備及び校正測定の手順を踏むようにする必要があり、その例を第3〜第6の実施形態として示し説明する。
【0028】
温度補正方法としては、定められた温度T0(例えばT0=25℃)での被測定物の反射光量センサ出力値S(T0)をSとし、温度Tでの温度補正前の値S(T)をSncとする。次に温度を変化させSncの温度特性を測定し、S/Snc=f(T)なる温度補正式のグラフを作成し、補正式を求めると、温度Tで測定したSncから 温度T0での値SはS=Snc×f(T) により温度補正後の反射光量センサ出力値Sを比較的簡単に求めることができる。またS=Snc×f(T) か、または直接特性グラフから、温度TとSnc値を入力とし、S値を出力とするテーブルを作成し、このテーブルを参照することにより容易にS値が得られる。本実施形態では実際に温度Tの関数である温度補正式f(T)を求める場合は反射率基準板のうち白基準板の反射光量センサ出力値S1を使用し、温度T0での値S1を温度Tでの値S1ncで除した値S1/S1nc=f(T)として温度Tを変化させてグラフを作成しf(T)を求めた。
従って以下に示す校正前準備における「白基準板」、「黒基準板」の反射光量センサ出力値S1、S2及び「常用反射率基準板」のセンサ出力値S0は上記の方法により温度Tにおける補正前のS1nc、S2nc、及びS0ncを温度T0での値に補正したものである。
先ず、校正前準備として次に示すような手順で、照射光量Iと反射率R1、R2、R0の反射率基準板との特性を取得し、次にS0に対する(式2)におけるa,bの特性を求め、この特性式a=g(S0)、b=h(S0) の特性テーブルをメモリに書き込む。
1)校正用反射率基準板として高反射率R1の「白基準板」と低反射率R2の「黒基準板」及び反射率R0の「常用反射率基準板」として被測定物の台紙である「濾紙」を用意する。
2)投射光量を変化させ、各光量毎の「白基準板」、「黒基準板」の校正用反射率基準板、及び「濾紙」の「常用反射率基準板」の反射光量センサ出力値Sを測定、記録する。各光量毎の「白基準板」、「黒基準板」の反射光量センサ出力値S1、S2から、a,b値を算出する。
3)投射光量設定電圧Eを横軸に取り、「白基準板」、「黒基準板」、a値、b値を縦軸にとり、夫々のグラフを作成し、各グラフが直線(リニア)となることを確認し、次に「常用反射率基準板」のセンサ出力値S0を横軸に取り、a値、b値を縦軸にとりグラフを作成し、a値、b値について直線式 a=g(S0)、 b=h(S0)を求める。
4)この直線式又はこのデータより、「常用反射率基準板」の光量センサ出力値S0とa値、b値のテーブルを作成する。この校正用テーブル作成段階で、先に説明した温度補正テーブルと関連付けを考慮し以下の4ケースに分けて作成する。
イ.校正用テーブルと温度補正テーブルを別々とし、校正用テーブルは(入力) S0−(出力)a,b とし、温度補正テーブルは(入力)温度TとSnc値−(出力)S値とする。
温度補正テーブル:S=f(T)×Snc、校正用テーブル:a=g(S0)、b=h(S0)の各式及びグラフをもとにテーブルを作成する。
ロ.校正兼反射率算出用テーブルまたは校正兼反射率算出兼反射濃度算出用テーブルと、温度補正テーブルを作成する。
直線式 a=g(S0)、b=h(S0) と計算式 R=S/a−b/a=(S−b)/a、D=−log10R、より校正兼反射率算出用テーブルは、反射率R=(S−b)/a={S−h(S0)}/g(S0) 及びこのグラフより、(入力)S0とS−(出力)反射率R のデータテーブルを作成する。校正兼反射率算出兼反射濃度算出用テーブルは、反射濃度 D=−log10[{S−h(S0)}/g(S0)] 及びこのグラフより (入力) S0とS−(出力) 反射濃度Dのデータテーブルを作成する。温度補正テーブルは、式 S=f(T)×Snc、S0=f(T)×S0nc 及びこのグラフより、(入力)温度TとSnc値−(出力)S値 のデータテーブルを作成する。
ハ.テーブルは作成せず、校正用ではa,bとS0との直線表現の関係式 a=g(S0)、b=h(S0) 、温度補正用は温度との関係式f(T) を用意する。
ニ.校正用テーブルと温度補正テーブルとを1つにしたテーブルを作成する。
R=S/a−b/a 、D=−log10R、S=f(T)×Snc、S0=f(T)×S0nc、a=g(S0)、b=h(S0)より 温度補正兼校正兼反射率算出用テーブルは、式 R=(S−b)/a=[f(T)×Snc−h{f(T)×S0nc}]/g{f(T)×S0nc} 及びこのグラフより [入力]温度T、S0nc値(温度補正前のS0値)、Snc値(温度補正前のS値)−[出力]反射率R のデータテーブルを作成する。
温度補正兼校正兼反射率算出反射濃度算出用テーブルは、式 D=−log10[[f(T)×Snc−h{f(T)×S0nc}]/g{f(T)×S0nc}] 及びこのグラフより[入力]温度T、S0nc値(温度補正前のS0値)、Snc値(温度補正前のS値)−[出力]反射濃度Dのデータテーブルを作成する。
5)項目4)のイ.〜ニ.で用意したテーブルおよび関係式をそれぞれの場合に応じてE−PROMやフラッシュメモリ等のリライタブル不揮発性メモリに書き込む。
以上が校正前準備である。この1)〜5)の校正前準備は装置を起動する毎に行う必要は無く、基本的に反射率計の測定部内の光学系の形状及び位置変化や黒色塗装状態の大幅な変化が無ければ直線式や値は変化しないため、反射率計の改修時や装置のメンテナンス時等に上記「校正前準備」の操作を行う程度でよい。また校正前準備2)の段階での3種の基準板における反射光量センサ出力値の測定では基準板の反射光量センサ出力値は投射光量に対しリニアな関係にあるため2点以上の光量値について夫々測定すればよい。
【0029】
次に、校正時及び測定時の機能構成と動作説明をする。
図10は本発明第3の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではイ.のケースに相当するものである。
イ.校正用テーブルと温度補正テーブルを別々とし、校正用テーブルはS0(入力)−a,b(出力) とし、温度補正テーブルは温度TとSnc値(入力)−S値(出力) とする。
温度補正テーブル:S=f(T)×Snc、校正用テーブル:a=g(S0)、b=h(S0) の各式及びグラフをもとにテーブルを作成する。
図10において反射光量計101は構成要素である反射光量センサ及び反射光量センサ回路にハードウェア的な温度補正機能を持たないが、それ以外の機能としては図1の反射光量計11と同じであり、演算制御回路102と12夫々同じ機能を有する。103はリライタブル不揮発性メモリであり、測定前準備の段階で内部に温度補正用と校正用の2個のテーブルが格納されている。リライタブル不揮発性メモリ103への入出力数が多いため実際は演算制御回路のリライタブル不揮発性メモリ103入出力部分にマルチプレクサが設けてあり、温度補正用の入出力と校正用の入出力とを切り替えている。105は温度変化により出力が変化するいわゆる温度センサである。
【0030】
以上のような構成の反射率計又は反射濃度計において次にその動作を説明する。
先ず、図9の排煙濃度測定装置のブロック図に示すようにロール型の濾紙91はフィルタホルダー92を通過後反射濃度計93を通り巻き取られるので常に汚れの無いクリーンな濾紙を供給することができる。そこでクリーンなロール型濾紙91をフィルタホルダー92及び反射濃度計93に供給しフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。このスモーク堆積開始とほぼ同時に反射濃度計93内にある図10の反射光量計101では校正用として用いる常用反射率基準板であるクリーンな濾紙の反射光量を測定し測定結果として温度補正前の反射光量センサ出力値S0ncのアナログ信号を演算制御回路102に送出する。演算制御回路102では入力された反射光量センサ出力値S0ncをA/D変換しディジタル値のS0ncをマイクロプロセッサのアキュムレータ等のS0nc用メモリに格納しそのメモリ出力S0ncをリライタブル不揮発性メモリ103に出力する。次に反射光量計101の近傍に設置されている温度センサ105から温度信号Tが演算制御回路102に入力されA/D変換しディジタル値のTをマイクロプロセッサのアキュムレータ等のT用メモリに格納しそのメモリ出力Tをリライタブル不揮発性メモリ103に出力する。リライタブル不揮発性メモリ103の内部の温度補正テーブルではこの2つの入力T、S0ncから温度補正後の常用反射率基準板であるクリーンな濾紙の反射光量センサ出力値S0を演算制御回路102に出力する。演算制御回路102では入力されたS0をS0用メモリに格納し、格納したS0を再びリライタブル不揮発性メモリ103の校正用テーブル入力へ送る。リライタブル不揮発性メモリ103は入力されたS0値に対応するa値、b値を演算制御回路102に送り、演算制御回路102のa値、b値用メモリに格納される。次に図9に於いてロール型濾紙91のフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させた時点でその堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動させ、そのときの反射光量を図10の反射光量計101で測定し、温度補正前の反射光量センサ出力Snc(アナログ量)を演算回路102に送出する。演算制御回路102では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncをマイクロプロセッサのアキュムレータ等のSnc用メモリに格納し、そのSnc信号をリライタブル不揮発性メモリ103の温度補正テーブルの入力に送出する。また同時に先に取得した温度信号Tも温度補正テーブルの入力に送出する。リライタブル不揮発性メモリ103の温度補正テーブルではこの2つの入力T、Sncから温度補正後の被測定物であるスモークに対する反射光量センサ出力値Sを演算制御回路102に出力する。演算制御回路102では入力されたSをS用メモリに格納し、先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を今回採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。
連続でスモークを採取し、各反射率測定毎に校正を行う場合は、図9に於ける反射濃度計93で上記の最初(1回目)のスモークサンプルの反射光量センサ出力値Sを計測し始めると同時にフィルタホルダー92内で次(2回目)のスモークサンプルを採取し始める。反射率Rの算出時間より排煙のサンプル採取時間が長いが2回目のサンプル採取が終了した時点でそのスモークサンプルを反射濃度計93まで移動せずその半分程度まで移動し、反射濃度計93の反射率測定部分をクリーンな濾紙にし、そこで上記のように常用反射率基準板であるクリーンな濾紙の反射光量を測定し、測定結果を新たな次(2回目のサンプル)の温度補正前反射光量センサ出力値S0ncのアナログ信号として演算制御回路102に出力する。次に濾紙を更に移動し2回目のスモークサンプルを反射濃度計93の反射率測定部分まで移動させる。この移動期間中に演算制御回路102は入力された2回目のクリーンな濾紙の温度補正前センサ出力値S0ncをA/D変換した後、ディジタル値のS0ncをマイクロプロセッサのアキュムレータ等のS0nc用メモリに格納しそのメモリ出力S0ncをリライタブル不揮発性メモリ103に出力する。次に反射光量計101の近傍に設置されている温度センサ105から温度信号Tが演算制御回路102に入力されA/D変換しディジタル値のTを取得する。この2回目の温度信号Tと1回目のTとを比較しあらかじめ定められた範囲内であれば1回目の温度信号Tを今回の温度信号Tとし、定められた範囲以上であれば2回目のTをマイクロプロセッサのアキュムレータ等のT用メモリに格納しそのメモリ出力Tをリライタブル不揮発性メモリ103に出力する。リライタブル不揮発性メモリ103の内部の温度補正テーブルではこの2つの入力T、S0ncから温度補正後の常用反射率基準板であるクリーンな濾紙の反射光量センサ出力値S0を演算制御回路102に出力する。演算制御回路102では入力されたS0を最初(1回目)のS0用メモリに格納されたS0と比較し予め定められた比率以内であれば2回目のS0を破棄し、従ってa値、b値はメモリに格納した1個目のS0の値を使用するが、2回目の濾紙のセンサ出力値S0が1回目のS0と比較し予め定められた比率以上であれば1回目のS0に変えて2回目のS0を定められたS0用メモリに再格納し、格納したS0を再びリライタブル不揮発性メモリ103の校正用テーブル入力へ送り、リライタブル不揮発性メモリ103は入力された2回目のS0に対応したa値、b値を演算制御回路102に送り、演算制御回路102のa値、b値用メモリに格納される。
次に図9において2回目のスモークサンプルが反射濃度計93の反射率測定部分まで移動した時点で2回目のスモークサンプルの温度補正前の反射光量センサ出力値Sncを計測し始めると同時にフィルタホルダー92内で次(3回目)のスモークサンプルを採取し始める。
2回目のスモークサンプルの反射光量の処理については上述したとおりである。つまり図10の反射光量計101で測定した温度補正前の反射光量センサ出力Snc (アナログ量)を演算回路102に送出し、演算制御回路102では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncをマイクロプロセッサのアキュムレータ等のSnc用メモリに格納し、そのSnc信号をリライタブル不揮発性メモリ103の温度補正テーブルの入力に送出する。また同時に先に取得した温度信号Tも温度補正テーブルの入力に送出する。リライタブル不揮発性メモリ103の温度補正テーブルではこの2つの入力T、Sncから温度補正後の被測定物であるスモークに対する反射光量センサ出力値Sを演算制御回路102に出力する。演算制御回路102では入力されたSをS用メモリに格納し、先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を今回採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。このように連続でスモークを採取し、各計測毎に校正を行う場合は以上の動作の繰り返しとなる。
連続でスモークを採取するが、複数回の計測毎に校正を行う場合は上述したように各回毎のスモーク採取位置から反射率測定位置への半分送りを複数回毎に行い、それ以外の送りではスモーク採取位置から反射率測定位置への全送りにすればよい。
【0031】
図11は本発明第4の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではロ.のケースに相当するものである。
ロ.校正兼反射率算出用テーブルまたは校正兼反射率算出兼反射濃度算出用テーブルと、温度補正テーブルを作成する。
直線式 a=g(S0)、b=h(S0) と計算式 R=S/a−b/a=(S−b)/a、D=−log10R 、より校正兼反射率算出用テーブルは、反射率R=(S−b)/a={S−h(S0)}/g(S0) 及びこのグラフより、(入力)S0とS−(出力)反射率R のデータテーブルを作成する。
校正兼反射率算出兼反射濃度算出用テーブルは、反射濃度 D=−log10[{S−h(S0)}/g(S0)] 及びこのグラフより (入力) S0とS−(出力)反射濃度D のデータテーブルを作成する。
温度補正テーブルは、式 S=f(T)×Snc、S0=f(T)×S0nc 及びこのグラフより、(入力)温度TとSnc値−(出力)S値 のデータテーブルを作成する。
【0032】
図11と本発明第3の実施形態における構成を示すブロック図である図10において、反射光量計101と111及び温度センサ105と115とは夫々同じものであり、リライタブル不揮発性メモリ103と113は内容が温度補正用テーブルと校正用テーブルから成っているが校正用テーブルの書き込まれた内容は異なるがメモリー機能としては同じである。図11において本発明第3の実施形態と異なるのは図10の演算制御回路102の代わりに、本発明第4の実施形態では図11に示すようにコントローラ112となっている点であり、このコントローラ112はA/D変換器とメモリは備わっているが演算機能を持たず、装置及び反射光量計の制御機能を持つものである。従って演算機能を持たない代わりにリライタブル不揮発性メモリ113に演算機能部分を代用させるものである。
【0033】
以上のような構成の反射率計において次にその動作を説明する。
先ず、図9の排煙濃度測定装置のブロック図に示すようにロール型の濾紙91はフィルタホルダー92を通過後反射濃度計93を通り巻き取られるので常に汚れの無いクリーンな濾紙を供給することができる。そこでクリーンなロール型濾紙91をフィルタホルダー92及び反射濃度計93に供給しフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。このスモーク堆積開始とほぼ同時に反射濃度計93内にある図11の反射光量計111では校正用として用いる常用反射率基準板であるクリーンな濾紙の反射光量を測定し測定結果として温度補正前の反射光量センサ出力値S0ncのアナログ信号をコントローラ112に送出する。コントローラ112では入力された反射光量センサ出力値S0ncをA/D変換しディジタル値のS0ncをの内蔵メモリの中のS0nc用メモリに格納しそのメモリ出力S0ncをリライタブル不揮発性メモリ113に出力する。また反射光量計111の出力がコントローラ112に入力される時と前後して反射光量計111の近傍に設置されている温度センサ115から温度信号Tがコントローラ112に入力されA/D変換しディジタル値のTを内蔵メモリの中のT用メモリに格納しそのメモリ出力Tをリライタブル不揮発性メモリ113に出力する。リライタブル不揮発性メモリ113の内部の温度補正テーブルではこの2つの入力T、S0ncから温度補正後の常用反射率基準板であるクリーンな濾紙の反射光量センサ出力値S0をコントローラ112に出力する。コントローラ112では入力されたS0をS0用メモリに格納する。
【0034】
次に図9に於いてロール型濾紙91のフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させた時点でその堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動させ、そのときの反射光量を図11の反射光量計111で測定し、温度補正前の反射光量センサ出力Snc(アナログ量)をコントローラ112に送出する。コントローラ112では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncを内蔵メモリの中のSnc用メモリに格納し、そのSnc信号をリライタブル不揮発性メモリ113の温度補正テーブルの入力に送出する。また同時に先に取得した温度信号Tも温度補正テーブルの入力に送出する。リライタブル不揮発性メモリ113の温度補正テーブルではこの2つの入力T、Sncから温度補正後の被測定物であるスモークに対する反射光量センサ出力値Sをコントローラ112に出力する。コントローラ112では入力されたSをS用メモリに格納する。次に先にS0用メモリに格納したS0と、先程S用メモリに格納したSとをリライタブル不揮発性メモリ113の校正兼反射率算出用テーブルの入力に送出し、このテーブルの出力値を今回採取したスモークの反射率Rとして出力する。また必要に応じてS0用メモリに格納したS0と、先程S用メモリに格納したSとをリライタブル不揮発性メモリ113の校正兼反射率算出兼反射濃度算出用テーブルの入力に送出し、このテーブルの出力値を今回採取したスモークの反射濃度Dとして出力する。
連続でスモークを採取し、各測定毎又は複数回測定毎に校正を行う場合は実施形態3で説明したと同じ方法で行う。説明は省略する。
【0035】
図12は本発明第5の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではハ.のケースに相当するものである。
ハ.テーブルは作成せず、校正用ではa,bとS0との直線表現の関係式 a=g(S0)、b=h(S0) 、温度補正用は温度との関係式f(T) を用意する。
図12と本発明第3の実施形態における構成を示すブロック図である図10において、反射光量計121と101、演算制御回路122と102及び温度センサ125と105とは夫々同じものであり、リライタブル不揮発性メモリ123と103はメモリ機能としては同じであるが、書き込み内容が第3の実施形態では温度補正用テーブルと校正用テーブルから成っており、本実施形態では温度補正用としてf(T)の式、校正用としてはa=g(S0)、b=h(S0)の1次式が書き込まれている。
【0036】
以上のような構成の反射率計において次にその動作を説明する。
先ず図9に示すような装置の電源が投入された初期状態で図12の演算制御回路122は特性式が格納されているリライタブル不揮発性メモリ123のアドレスに出力設定信号Enを入力し、温度補正用としてf(T)の式、及び校正用としてはa=g(S0)、b=h(S0)の1次式を取り込み、夫々の指定メモリに格納する。
次に図9の排煙濃度測定装置のブロック図に示すようにロール型の濾紙91はフィルタホルダー92を通過後反射濃度計93を通り巻き取られるので常に汚れの無いクリーンな濾紙を供給することができる。そこでクリーンなロール型濾紙91をフィルタホルダー92及び反射濃度計93に供給しフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。このスモーク堆積開始とほぼ同時に反射濃度計93内にある図12の反射光量計121では校正用として用いる常用反射率基準板であるクリーンな濾紙の反射光量を測定し測定結果として温度補正前の反射光量センサ出力値S0ncのアナログ信号を演算制御回路122に送出する。演算制御回路122では入力された反射光量センサ出力値S0ncをA/D変換しディジタル値のS0ncをマイクロプロセッサのアキュムレータ等のS0nc用メモリに格納する。また反射光量計121の出力が演算制御回路122に入力される時と前後して反射光量計121の近傍に設置されている温度センサ125から温度信号Tが演算制御回路122に入力されA/D変換しディジタル値のTをマイクロプロセッサのアキュムレータ等のT用メモリに格納する。次に電源投入時点でリライタブル不揮発性メモリ123より取り出し、専用メモリに格納した温度補正用のf(T)式と先程メモリに格納した温度信号T、温度補正前の常用反射率基準板であるクリーンな濾紙の反射光量センサ出力値S0ncを各メモリより出力し、S0=f(T)×S0nc の式に従ってS0を算出し、S0用メモリに格納する。次に電源投入直後にリライタブル不揮発性メモリ123より取り出し、専用メモリに格納した校正用のa値、b値の特性式a=g(S0)、b=h(S0) 式と先程メモリに格納した温度補正後の反射光量センサ出力値S0を各メモリより出力し、a値、b値を算出し、a値、b値の夫々の専用メモリに格納する。
次に図9に於いてロール型濾紙91のフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させた時点でその堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動させ、そのときの反射光量を図12の反射光量計121で測定し、温度補正前の反射光量センサ出力Snc(アナログ量)を演算回路122に送出する。演算制御回路122では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncをマイクロプロセッサのアキュムレータ等のSnc用メモリに格納する。次に温度補正用の専用メモリに格納されている温度補正用のf(T)式と温度信号T及び先程メモリに格納した温度補正前のスモークの反射光量センサ出力値Sncを各メモリより出力し、S=f(T)×Snc の式に従ってSを算出し、格納する。
先に校正用の専用メモリに格納したa値、b値と、先程S用メモリに格納したS値とを各メモリより出力し、(式4) R=S/a−b/a=(S−b) /a に代入し、R値を算出し、その値を今回採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。
連続でスモークを採取し、各測定毎又は複数回測定毎に校正を行う場合は実施形態3で説明したと同じ方法で行う。説明は省略する。
【0037】
図13は本発明第6の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではニ.のケースに相当するものである。
ニ.校正用テーブルと温度補正テーブルとを1つにしたテーブルを作成する。
R=S/a−b/a 、D=−log10R、S=f(T)×Snc、S0=f(T)×S0nc、a=g(S0)、b=h(S0)より、
温度補正兼校正兼反射率算出用テーブルは、式 R=(S−b) /a=[f(T)×Snc−h{f(T)×S0nc}]/g{f(T)×S0nc} 及びこのグラフより、[入力]温度T、S0nc値(温度補正前のS0値)、Snc値(温度補正前のS値)−[出力]反射率R のデータテーブルを作成する。
温度補正兼校正兼反射率算出反射濃度算出用テーブルは、式 D=−log10[[f(T)×Snc−h{f(T)×S0nc}]/g{f(T)×S0nc}] 及びこのグラフより、[入力]温度T、S0nc値(温度補正前のS0値)、Snc値(温度補正前のS値)−[出力]反射濃度Dのデータテーブルを作成する。
【0038】
本実施形態の構成を示すブロック図の図13と本発明第4の実施形態における構成を示すブロック図の図11において、反射光量計131と111、コントローラ132と112及び温度センサ135と115とは夫々同じものであり、リライタブル不揮発性メモリ133と113はメモリ機能としては同じであるが内容が異なり、本発明第4の実施形態では温度補正用テーブルと校正用テーブルから成っているが、本実施形態では温度補正と校正とが1つのテーブル内に収まっている。そのためテーブル内容としては複雑であるが操作的にはシンプルになっている。
以上のような構成の反射率計において次にその動作を説明する。
先ず、図9の排煙濃度測定装置のブロック図に示すようにロール型の濾紙91はフィルタホルダー92を通過後反射濃度計93を通り巻き取られるので常に汚れの無いクリーンな濾紙を供給することができる。そこでクリーンなロール型濾紙91をフィルタホルダー92及び反射濃度計93に供給しフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。このスモーク堆積開始とほぼ同時に反射濃度計93内にある図13の反射光量計131では校正用として用いる常用反射率基準板であるクリーンな濾紙の反射光量を測定し測定結果として温度補正前の反射光量センサ出力値S0ncのアナログ信号をコントローラ132に送出する。コントローラ132では入力された反射光量センサ出力値S0ncをA/D変換しディジタル値のS0ncをの内蔵メモリの中のS0nc用メモリに格納する。また反射光量計131の出力がコントローラ132に入力される時と前後して反射光量計131の近傍に設置されている温度センサ135から温度信号Tがコントローラ132に入力されA/D変換しディジタル値のTを内蔵メモリの中のT用メモリに格納する。
次に図9に於いてロール型濾紙91のフィルタホルダー92で挟んだ部分に定められた量の排ガスを通しその濾紙上に排煙固形物のスモークを堆積させる。その堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動させ、そのときの反射光量を図13の反射光量計131で測定し、温度補正前の反射光量センサ出力Snc(アナログ量)をコントローラ132に送出する。コントローラ132では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncを内蔵メモリの中のSnc用メモリに格納する。
次に先にコントローラ132のメモリに格納した常用反射率基準板であるクリーンな濾紙の温度補正前の反射光量センサ出力値S0nc、温度信号T、及びスモークの温度補正前の反射光量センサ出力Sncの3個の信号をリライタブル不揮発性メモリ133に出力する。
校正前準備の段階で校正前準備項目4)のニ.に示すように校正用テーブルと温度補正テーブルとを統合し、且つ反射率計算用テーブルも加えて1つのテーブルにした温度補正・校正・反射率計算テーブルや、更に反射濃度計算用テーブルも加えて1つのテーブルにした温度補正・校正・反射率計算・反射濃度計算テーブルを作成しリライタブル不揮発性メモリ133に予め書き込んでいるのでS0nc、T、Sncの3個の信号を入力することにより、温度補正され且つ校正処理された、今回採取したスモークの反射率R、または反射濃度Dとして出力される。
連続でスモークを採取し、各測定毎又は複数回測定毎に校正を行う場合は実施形態3で説明したと同じ方法で行う。説明は省略する。
【0039】
次に本発明の第7の実施形態について説明する。
実施形態1〜6では校正時に1枚の反射率基準板あるいはこの基準板に変わる常用反射率基準板を用いた実施形態を紹介し、特に常用反射率基準板を用いて校正の省力化と時間短縮化及び高精度を維持し、反射率の連続取得を可能にした実施形態について説明したが、この実施形態で常用反射率基準板として用いたロール型ろ紙は反射率がほぼ一定であるが更に詳しく調べてみると測定場所により僅かではあるが変動することが確認されている。それ故、校正の省力化と時間短縮化及び反射率の連続取得という条件のもとでこの反射率変動幅より高い測定精度が要求された場合、常用反射率基準板としてロール型濾紙は使用出来なくなる。また一般的に校正から反射率測定までの時間が短いほど変動要因が少なく変動値が低くなるので測定精度が向上する。
そこで本実施形態では校正の省力化と時間短縮化及び反射率の連続取得という条件のもとで、測定精度をさらに高めるために常用反射率基準板を用いず、照射光量をモニターすることにより(式6)、(式7)に示すa値、b値を求めて校正する反射率計測例について説明する。
【0040】
図14は本発明の第7の実施形態を示すリングライトガイドである。ガラスファイバー入射光側口金141、フレキシブルチューブ142、リングライト筐体143、リングライト(環状光源) 144は第1の実施形態である図3と同じである。第1の実施形態との違いはモニタ用ライトガイド145と、モニタ用ライトガイド145からの光を受光し電気信号の照射光量モニタ出力に変換する照射光量モニタ146とを設けた点である。モニタ用ライトガイド145は、ファイバ光投射口からリングライト筺体143へ伸びている直径100ミクロン程度のファイバー束からほぼ均等に抜き出して束ねてものでありリングライトと同等の光量特性を持つ。また照射光量モニタ146はモニター光量センサ147とモニタ光量センサ回路148とで構成され、外部からの光を遮断する遮光筒140の両端にはモニタ用ライトガイド145の先端とモニター光量センサ147とが光軸を一致させて取り付けられており、必要に応じて可視光領域特に450nmから650nmまではフラットな光透過特性を持つ光量減衰用のフィルタ149を設ける。またモニタ用ライトガイド145からのモニタ光を受光するモニター光量センサ147は図4の反射率計の反射光量センサ44と同等のセンサを用い、モニタ光量センサ回路148は反射光量センサ回路47と同等の回路を用い、モニタ光量センサ回路148から照射光量モニタ出力Mを出力する。それ故、照射光量モニタ出力Mと反射光量センサ出力Sとは検出する光の波長幅も同じであり、センサおよび回路の温度特性も同じであるため両出力は同じ環境特性を持つため、更に高精度のモニタ検出が可能である。
【0041】
以上のような構成において、モニタ光の光量を[Im]とするとき照射光量Iとモニタ光量[Im]とは比例関係にあり比例定数をkとすると、I=k[Im] (但しk≫1) から [Im]=I/k で表される。
次に図14の光量減衰用光量フィルタ149の減衰量をj(j≧1) とし、照射光量モニタ出力値をM、とするとき、モニタ用の光量センサ147とモニタ光量センサ回路148は図4の反射率計の光量センサ44および光量センサ回路45と同じものを使用しているので照射光量モニタ用センサの光電変換率は(式5)のC、照射光量モニタ出力値Mの電気ノイズ成分は(式5)のNに等しく、従って
照射光量モニタ出力値Mは M=C[Im] /j+N で表すことができ、[Im]=I/kであるから、 M=CI/jk+N となる。これを照射光量Iについて展開すると
I=jk(M−N)/C ‥‥‥‥‥‥‥‥ (式13)
(式13)から照射光量Iと照射光量モニタ出力値Mとはリニアな関係にあること事がわかる。
更に(式6)及び(式7)は(式13) から a、bは
a= CIP(1+mr2Q2)=jkP(1+mr2Q2)(M−N) ‥‥‥‥‥ (式14)
b= CI(1−P)r1Q1+N
=jk(1−P)r1Q1M +{1−jk(1−P)r1Q1}N ‥‥‥‥‥ (式15)
で表すことができる。ここでC、P、m、r1、r2、Q1、Q2、j、k、N は固定値(定数)であるので、(式14)、(式15)からa値、b値はそれぞれ照射光量モニタ出力値Mに対しリニアな関係にあることが判る。この(式14)、(式15)のMに対するリニアな関係式を簡単に a=v(M)、 b=w(M) で表す。
(式14)、(式15)は反射率がR1,R2 (R1>R2)である既知の2種類の校正用反射率基準板の反射光量センサ出力値S1、S2と照射光量モニタ出力値Mを測定できる場合、上記校正準備段階で照射光量Iを変化させて照射光量モニタ出力値Mとa,b値とのリニアな関係式a=v(M)、b=w(M) を把握しておくことにより、被測定物の反射光量センサ出力値Sを測定すると同時に照射光量モニタ出力値Mを測定しa,b値を確定し、このa,b値と被測定物の反射光量センサ出力値Sから(式4) R=S/a−b/a に基づいて反射率Rを求めることができることを意味するものである。これにより照射光量変化及び環境変化に対しタイムラグのない校正ができ実施形態1より更に高精度な測定が行える。またこの場合は手作業による校正操作が不要であるため省力化にもなり、更に連続測定作業にも適している。
【0042】
図17は本発明の第7の実施形態の反射率計で(式14)、(式15)を確認した時のグラフである。ここで用いた基準板は、反射率RがR1,R2(R1> R2)である既知の2枚の校正用反射率基準板として、高反射率基準板である「白基準板」(R1=0.90)と、低反射率基準板である「黒基準板」(R2=0.03)である。この2種類の基準板を図4に示す反射率計を用い、照射用光源のリングライトガイド照明装置の光量設定電圧を変化させ、つまり照射光量Iを変化させて反射光量センサ出力値S1、S2を測定し、また同時に図14に示す構成で照射光量モニタ出力値Mを測定する。この測定結果から(式3)に基づいて各照射光量I毎のa,bを算出した。実施形態1で説明したように反射率R1、R2の2種類の基準板の反射光量センサ出力値S1、S2は照射光量Iに対しリニアに変化し、そしてa,b特性についても照射光量Iに対しリニアに変化し、(式6)、(式7)と合致することを確認した。また照射光量Iと照射光量モニタ出力値Mとはリニアな関係にあるので照射光量モニタ出力値Mを横軸に取り、縦軸にa,bをとった時の特性図が図17である。図17においては照射光量Iが照射光量モニタ出力値Mとリニアな関係にあるためa,b特性は照射光量モニタ出力値Mに対しリニアに変化しており、(式14)、(式15)に示す特性に合致していることがわかる。
従って反射率計測として、図17に示すようなMを基準とするa値、b値の各特性式 a=v(M)、b=w(M) をグラフより求め、M(入力)−a値、b値(出力) のテーブルを作成しておくことにより、被測定物の反射率測定において、被測定物の反射光量センサ出力値Sを測定すると同時に照射光量モニタ出力値Mも測定し、このM値から先に作成したテーブルを参照してa値、b値を求めるか、或いは直接M値を先に図17のグラフより求めた特性式 a=v(M)、b=w(M) に入れa値、b値を確定し、このa値、b値と被測定物の反射光量センサ出力値Sから(式4) R=S/a−b/a に基づいて反射率Rを算出することができることを示すものであり、敏速で正確な校正が行える。
【0043】
以上から、校正前準備として次に示すような手順で、照射光量Iと反射率R1、R2の反射率基準板の反射光量センサ出力値S1、S2及び照射光量モニタ出力値Mとの特性を取得し、次に照射光量モニタ出力値Mに対する(式3)によりa,bの特性を求め、この特性式、特性テーブルをメモリに書き込む。
1)校正用反射率基準板として高反射率R1の「白基準板」と低反射率R2の「黒基準板」を用意する。
2)投射光量を変化させ、各光量毎の照射光量モニタ出力値Mと「白基準板」、「黒基準板」の校正用反射率基準板の反射光量センサ出力値Sを測定、記録する。各光量毎の「白基準板」、「黒基準板」の反射光量センサ出力値S1、S2から、a,bを算出する。
3)投射光量設定電圧Eを横軸に取り、照射光量モニタ出力値M、「白基準板」及び「黒基準板」の校正用反射率基準板の反射光量センサ出力値S、a値、b値を縦軸にとり、夫々のグラフを作成し、各グラフが直線(リニア)となることを確認し、次に照射光量モニタ出力値Mを横軸に取り、a値、b値を縦軸にとりグラフを作成し、a値、b値について直線式a=v(M)、b=w(M)を求める。
4)この直線式直線式a=v(M)、b=w(M) 又はこのグラフより、照射光量モニタ出力値M(入力)とa値、b値(出力)のテーブルを作成する。
5)このa値、b値についての直線式a=v(M)、 b=w(M)及びテーブルをE−PROMやフラッシュメモリ等の書換え可能な不揮発性メモリに書き込む。
以上が校正前準備である。この1)〜5)の校正前準備は装置を起動する毎に行う必要は無く、基本的に反射率計の測定部内の光学系の形状及び位置変化や黒色塗装状態の大幅な変化が無ければ直線式や値は変化しないため、反射率計の改修時や装置のメンテナンス時等に上記「校正前準備」の操作を行う程度でよい。また校正前準備2)の段階での2種の基準板における反射光量センサ出力値の測定では基準板の反射光量センサ出力値は投射光量に対しリニアな関係にあるため2点以上の光量値について夫々測定すればよい。
【0044】
次に、機能構成図に従って校正時及び測定時の機能構成と動作説明をする。
図15は本発明の第7の実施形態における反射率計または反射濃度計の回路ブロック図であり、本発明の第1の実施形態の回路ブロック図である図1に対応している。両図において反射光量計151と11は図4の反射光量計であり、演算制御回路152と12、リライタブル不揮発性メモリ153と13は同じものである。第1の実施形態との違いは照射光量モニタ154を設けた点である。照射光量モニタ154は図14の照射光量モニタ146の機能を有するものであり、モニタ用ライトガイド145からのモニタ光を検出することによりリングライトの照射光量を常に検出し、モニタ光の受光量を照射光量モニタ出力Mとして演算制御回路152へ送出している。以上のように構成した図15の反射率計機能ブロック図において次に動作説明をする。
先ず、図9に示すようにロール型濾紙91を挟んだフィルタホルダー92に定められた量の排気ガスを通し濾紙上に排ガスの固形物のスモークを堆積させ、この堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動する。移動後再びフィルタホルダー92側では排気ガスを通して次のスモークサンプルを採取するが、この採取動作の開始と同時に図15の明照射光量モニタ154よりアナログ量の照射光量モニタ出力Mを演算制御回路152に入力する。演算制御回路152では入力された照射光量モニタ出力Mを内蔵しているA/D変換器でディジタル値に直し、内蔵しているマイコンのアキュムレータ等のM用メモリに格納しそのメモリ出力Mをリライタブル不揮発性メモリ153に出力する。M(入力)−a,b(出力)のデータテーブルが書き込まれている前記メモリ153は入力されたM値に対応するa値、b値を演算制御回路152に出力する。演算制御回路152はメモリ153より入力されたa値、b値を演算制御回路152内のa値、b値用メモリに格納する。
【0045】
次に図9に於いて先ほど、堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動した濾紙の反射光量を図15の反射光量計151で測定し、その反射光量センサ出力S(アナログ量)を演算制御回路152に送出する。演算制御回路152では入力された反射光量センサ出力値SをA/D変換しディジタル値のSをマイクロプロセッサのアキュムレータ等のS用メモリに格納し、先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を先に採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度Dを算出し出力する。
次に図9に於いて先ほど、フィルタホルダー92側では定められた量の排気ガスを通して2番目のスモークサンプルを採取を行っているが、採取が終了すれば、先に説明したと同様にスモーク部分の濾紙を反射率計に移動し、照射光量をモニタした後に反射率を測定する。ここで照射光量モニタ値を取得した時、新しいモニタ値を取得する度にそれに対応するa値、b値を校正に用いることもできるが、現在使用しているa値、b値に対応しているモニタ値と比較し予め定められた範囲以内であれば前と同じモニター値を使用し、予め定められた範囲を超えた値の時に、この値を新しいモニタ値とし、この値に対応したa値、b値を校正に用いることもできる。このようにして反射光量測定直前に照射光量をモニターし照射光量モニタ出力Mにより反射率計の、校正を行うことにより精度の高い反射率測定ができる。またこの実施形態では反射率の連続測定のとき特別なことをする必要がなく上記の測定方法を繰り返すだけで実現できるので連続測定に適している。
上記の動作ではリライタブル不揮発性メモリ153の内容が作成したテーブルである時の説明をしたが、前記メモリ153の内容がテーブルの元であるa値、b値のMを変数とする特性式a=v(M)、b=w(M) の場合は、次の様にして反射率R、及び反射濃度Dを算出する。図9に示すような装置において、電源が投入された初期状態で図15の演算制御回路152は特性式が格納されているリライタブル不揮発性メモリ153のアドレスを指定しa値、b値の特性式を取り込み、夫々の指定メモリに格納する。次に測定段階で照射光量モニタ出力Mが入力された時点でディジタル値に変換されたMを前記特性式に代入してa値、b値を求め、予め定められた夫々のメモリーに格納する。次にスモークサンプルの反射光量センサ出力値Sが入力された時にテーブル参照時の動作と同じようにa値、b値、Sから(式4)より反射率R=S/a−b/a を計算し、その値を先に採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。
【0046】
次に図16は本発明第8の実施形態における反射率計の校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。
本実施形態の構成を示すブロック図の図16と本発明第7の実施形態の構成を示すブロック図の図15とにおいて反射光量計151と161は同じものであり、リライタブル不揮発性メモリ153と163は書き込まれた内容は異なるが同じ機能を持つものである。図16において図15と異なるのは図15の演算制御回路152の代わりに図16ではコントローラ162となっている点であり、このコントローラ162はA/D変換器とメモリは備わっているが演算機能を持たず、装置及び反射光量計の制御機能を持つものである。従って演算機能を持たない代わりにリライタブル不揮発性メモリ163に演算機能部分を代用させるものである。つまり入力として照射光量モニタ出力Mと被測定物の反射光量センサ出力値Sであり、出力として反射率R又は反射濃度Dのテーブルがリライタブル不揮発性メモリ163の内容となる。それ故、前述した校正前準備の項目4)を次のように変更する。
4)この直線式 a=v(M)、b=w(M) と反射率Rの(式4) R=S/a−b/a 及び反射濃度Dの(式1) D=−log10R より、
反射率 R=(S−b)/a={S−w(M)}/v(M)
反射濃度D=−log10R=−log10[{S−w(M)}/v(M)]
となり、この式から照射光量モニタ出力M、及び被測定物の反射光量センサ出力値S(入力)−反射率R (出力)とする反射率テーブル、並びに照射光量モニタ出力M、及び被測定物の反射光量センサ出力値S(入力)−反射濃度 (出力)とする反射濃度テーブルを作成する。
次に図16に従って簡単に動作説明をする。
先ず、図9に示すようにロール型濾紙91を挟んだフィルタホルダー92に定められた量の排気ガスを通し濾紙上に排ガスの固形物のスモークを堆積させ、この堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動する。移動後再びフィルタホルダー92側では排気ガスを通して次のスモークサンプルを採取するが、この採取動作の開始と同時に図16の照射光量モニタ164よりアナログ量の照射光量モニタ出力Mをコントローラ162に入力する。コントローラ162では入力された照射光量モニタ出力Mを内蔵しているA/D変換器でディジタル値に直し、内蔵しているM用メモリに格納しそのメモリ出力である照射光量モニタ出力Mをリライタブル不揮発性メモリ163に出力する。
【0047】
次に図9に於いて先ほど、堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動した濾紙の反射光量を図16の反射光量計161で測定し、その反射光量センサ出力S(アナログ量)をコントローラ162に送出する。コントローラ162では入力された反射光量センサ出力値SをA/D変換し、ディジタル値のSをメモリに格納し、そのメモリ出力である反射光量センサ出力Sをリライタブル不揮発性メモリ163に出力する。M及びS(入力)−R(出力)、並びにM及びS(入力)−D(出力)のデータテーブルが書き込まれているメモリ163は入力されたM値及びS値に対応するR値又はD値を今回採取したスモークの反射率R、又は反射濃度Dとして出力する。
次に図9に於いて先ほど、フィルタホルダー92側では定められた量の排気ガスを通して2番目のスモークサンプルを採取しているが、採取が終了すれば、先に説明したと同様の動作を行い、反射率を測定する。
以上第7の実施形態、第8の実施形態のように照射光量が変化する環境下で反射率測定をする場合は照射光量をモニタすることが重要であり、光ファイバーの一部を光量モニタ用に分け、反射率計と同じセンサ及び光フィルタを使用し、反射光量測定時に照射光量をモニターし照射光量モニタ出力Mにより反射率計の校正を反射率測定時に行うため正確な反射率測定ができるのみならず、これらの操作が人の手を用いずにできるため自動化に適しており、また連続測定にも適している。
【0048】
第7及び第8の実施形態では反射光量センサ、反射光量センサ回路、モニタ光量センサ、及びモニタ光量センサ回路は周囲温度変動による影響が無視できるようにハード面で対応しているため、反射光量計として変動要因を照射光量のみにし、周囲温度を要因に入れていない構成にしている。しかしハード面で対応されていない反射光量センサ、反射光量センサ回路、モニタ光量センサ、及びモニタ光量センサ回路の場合は反射光量センサ出力を温度変動により補正する必要があるため温度と反射光量センサ出力との関係式又はテーブルを別に作成し、この関係式又はテーブルで反射光量センサ出力や照射光量モニタ出力を温度補正した後に前記校正前準備及び校正測定の手順を踏むようにするか、或いは校正時のテーブルや関係式の中に温度補正のテーブルや関係式を組み込んだ構成として校正前準備及び校正測定の手順を踏むようにする必要があり、その実施形態を第9〜第12の実施形態として示し説明する。
温度補正方法としては、定められた温度T0(例えばT0=25℃)での被測定物の反射光量センサ出力値S(T0)をSとし、温度Tでの温度補正前の値S(T)をSncとする。次に温度を変化させSncの温度特性を測定し、S/Snc= f(T)なる温度補正式のグラフを作成し、補正式を求めると、温度Tで測定したSncから 温度T0での値SはS=Snc×f(T) により温度補正後の反射光量センサ出力値Sを簡単に求めることができる。またS=Snc×f(T) か、または直接特性グラフから、温度TとSnc値を入力とし、S値を出力とするテーブルを作成し、このテーブルを参照することにより容易にS値が得られる。これは照射光量モニタ出力値Mについても同様に、照射光量モニタ出力値M(T0)をMとし、温度Tでの温度補正前の値M(T)をMncとする。本実施形態では実際に温度Tの関数である温度補正式f(T)を求める場合は反射率基準板のうち白基準板の反射光量センサ出力値S1を使用し、温度T0での値S1を温度Tでの値S1ncで除した値S1/S1nc =f(T)として温度Tを変化させてグラフを作成しf(T)を求めた。
従って以下に示す校正前準備における「白基準板」、「黒基準板」の反射光量センサ出力値S1、S2及び照射光量モニタ出力値Mは上記の方法により温度Tにおける補正前のS1nc、S2nc、及びMncを温度T0での値に温度補正したものである。
【0049】
先ず、校正前準備として次に示すような手順で、照射光量Iと反射率R1、R2の反射率基準板及び照射光量モニタ出力値Mとの特性を取得し、次に照射光量モニタ出力値Mに対する(式2)におけるa,bの特性を求め、この特性式a=v(M)、b=w(M) の特性テーブルをメモリに書き込む。
1)校正用反射率基準板として高反射率R1の「白基準板」と低反射率R2の「黒基準板」を用意する。
2)投射光量を変化させ、各光量毎の照射光量モニタ出力値Mと「白基準板」、「黒基準板」の校正用反射率基準板の反射光量センサ出力値Sを測定、記録する。各光量毎の「白基準板」、「黒基準板」の反射光量センサ出力値S1、S2から、a,bを算出する。
3)投射光量設定電圧Eを横軸に取り、照射光量モニタ出力値M、「白基準板」及び「黒基準板」の校正用反射率基準板の反射光量センサ出力値S1、S2、a値、b値を縦軸にとり、夫々のグラフを作成し、各グラフが直線(リニア)となることを確認し、次に照射光量モニタ出力値Mを横軸に取り、a値、b値を縦軸にとりグラフを作成し、a値、b値について直線式a=v(M)、b=w(M)を求める。
4)この直線式又はこのデータより、照射光量モニタ出力値M(入力)とa値、b値(出力)のテーブルを作成する。この校正用テーブル作成段階で、先に説明した温度補正テーブルと関連付けを考慮し以下の4ケースに分けて作成する。
イ.校正用テーブルと温度補正テーブルを別々とし、校正用テーブルは(入力)M−(出力)a,b とし、温度補正テーブルは、(入力)温度T及びSnc値−(出力)S値 とする。
温度補正テーブル:S=f(T)×Snc 、並びに校正用テーブル:a=v(M)、 b=w(M) の各式及びグラフをもとに双方のテーブルを作成する。
ロ.校正兼反射率算出用テーブルまたは校正兼反射率算出兼反射濃度算出用テーブルと、温度補正テーブルを作成する。
直線式 a=v(M)、b=w(M) と計算式 R=S/a−b/a=(S−b)/a、D=−log10R、より
校正兼反射率算出用テーブルは、反射率R=(S−b)/a ={S−w(M)}/v(M) 及びこのグラフより、(入力)MとS−(出力)反射率R のデータテーブルを作成する。
校正兼反射率算出兼反射濃度算出用テーブルは、反射濃度 D=−log10[{S−w(M)}/v(M)] 及びこのグラフより (入力)MとS−(出力)反射濃度D のデータテーブルを作成する。
温度補正テーブルは、式 S=f(T)×Snc、M=f(T)×Mnc 及びこのグラフより、(入力)温度TとSnc値−(出力)S値 のデータテーブルを作成する。
ハ.テーブルは作成せず、校正用ではa,bとMとの直線表現の関係式a=v(M)、 b=w(M)、温度補正用は温度との関係式f(T) を用意する。
ニ.校正用テーブルと温度補正テーブルとを1つにしたテーブルを作成する。
R=S/a−b/a 、D=−log10R、S=f(T)×Snc、M=f(T)×Mnc、a=v(M)、b=w(M)より
温度補正兼校正兼反射率算出用テーブルは、反射率 R=(S−b) /a =[f(T)×Snc−w{f(T)×Mnc}]/ v{f(T)×Mnc} 及びこのグラフより [入力]温度T、Mnc値(温度補正前のM値)、Snc値(温度補正前のS値)−[出力]反射率R のデータテーブルを作成する。
温度補正兼校正兼反射率算出兼反射濃度算出用テーブルは、反射濃度D=−log10 [[f(T)×Snc−w{f(T)×Mnc}]/v{f(T)×Mnc}] 及びこのグラフより [入力]温度T、Mnc値(温度補正前のM値)、Snc値(温度補正前のS値)−[出力]反射濃度D のデータテーブルを作成する。
5)項目4)のイ.〜ニ.で用意したテーブルおよび関係式をそれぞれの場合に応じてE−PROMやフラッシュメモリ等のリライタブル不揮発性メモリに書き込む。
以上が校正前準備である。この1)〜5)の校正前準備は装置を起動する毎に行う必要は無く、基本的に反射率計の測定部内の光学系の形状及び位置変化や黒色塗装状態の大幅な変化が無ければ直線式や値は変化しないため、反射率計の改修時や装置のメンテナンス時等に上記「校正前準備」の操作を行う程度でよい。また校正前準備2)の段階での2種の基準板における反射光量センサ出力値の測定では基準板の反射光量センサ出力値は投射光量に対しリニアな関係にあるため2点以上の光量値について夫々測定すればよい。
【0050】
次に、校正時及び測定時の機能構成と動作説明をする。
図18は本発明第9の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路、モニタ光量センサ、及びモニタ光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではイ.のケースに相当するものである。
イ.校正用テーブルと温度補正テーブルを別々とし、校正用テーブルは(入力)M−(出力)a,b とし、温度補正テーブルは、(入力)温度T及びSnc値−(出力)S値 とする。
温度補正テーブル:S=f(T)×Snc、並びに校正用テーブル:a=v(M)、b=w(M) の各式及びグラフをもとに双方のテーブルを作成する。
【0051】
次に、校正時及び測定時の機能構成と動作説明をする。
図18は本発明の第9の実施形態における反射率計または反射濃度計の回路ブロック図であり、本発明の第7の実施形態の回路ブロック図である図15に対応している。両図において反射光量計181は構成要素である図4に示す反射光量センサ44及び反射光量センサ回路47にハードウェア的な温度補正機能を持たないが、それ以外の機能として反射光量計151と同じであり、同様に照射光量モニタ184は構成要素である図14に示すモニタ光量センサ147及びモニタ光量センサ回路148にハードウェア的な温度補正機能を持たないが、それ以外の機能として照射光量モニタ154と同じである。そして照射光量モニタ184は反射光量計181と比較的接近した場所に設けられておりほぼ同じ雰囲気にある。演算制御回路182と152とは夫々同じ機能を有する。183はリライタブル不揮発性メモリであり、測定前準備の段階で内部に温度補正用と校正用の2個のテーブルが格納されている。リライタブル不揮発性メモリ183への入出力数が多いため実際は演算制御回路のリライタブル不揮発性メモリ183入出力部分にマルチプレクサが設けてあり、温度補正用の入出力と校正用の入出力とを切り替えている。185は温度変化により出力が変化するいわゆる温度センサであり、反射光量計181の近傍に設けられている。
【0052】
以上のように構成した図18の反射率計機能ブロック図において次に動作説明をする。
先ず、図9に示すようにロール型濾紙91を挟んだフィルタホルダー92に定められた量の排気ガスを通し濾紙上に排ガスの固形物のスモークを堆積させ、この堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動する。移動後再びフィルタホルダー92側では排気ガスを通して次のスモークサンプルを採取するが、この採取動作の開始とほぼ同時に図18の照射光量モニタ184よりアナログ量の照射光量モニタ出力Mncを演算制御回路182に入力する。演算制御回路182では入力された照射光量モニタ出力Mncを内蔵しているA/D変換器でディジタル値に直し、内蔵しているマイコンのアキュムレータ等のMnc用メモリに格納しそのメモリ出力Mncをリライタブル不揮発性メモリ183に出力する。次に反射光量計181の近傍に設置されている温度センサ185から温度信号Tが演算制御回路182に入力されA/D変換しディジタル値のTをマイクロプロセッサのアキュムレータ等のT用メモリに格納しそのメモリ出力Tをリライタブル不揮発性メモリ183に出力する。リライタブル不揮発性メモリ183の内部の温度補正テーブルではこの2つの入力T、Mncから温度補正後の照射光量モニタ出力値Mを演算制御回路182に出力する。演算制御回路182では入力されたMをM用メモリに格納し、次にはリライタブル不揮発性メモリ193への出力と入力を内蔵しているマルチプレクサを使い新たな出力と入力に切り替える。そして新たな出力として、格納したMを再びリライタブル不揮発性メモリ183の校正用テーブル入力へ送る。(入力)M−(出力)a,bのデータテーブルが書き込まれているリライタブル不揮発性メモリ183は入力されたM値に対応するa値、b値を演算制御回路182に出力する。演算制御回路182はメモリ183より入力されたa値、b値を演算制御回路182内のa値、b値用メモリに格納する。
【0053】
次に図9に於いて先ほど、堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動した濾紙の反射光量を図18の反射光量計181で測定し、その反射光量センサ出力Snc(アナログ量)を演算制御回路182に送出する。演算制御回路182では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncをマイクロプロセッサのアキュムレータ等のSnc用メモリに格納しそのメモリ出力Sncをリライタブル不揮発性メモリ183に出力する。温度T信号は先に演算制御回路182のT用メモリに格納され、そのメモリ出力Tをリライタブル不揮発性メモリ183に出力している。従ってリライタブル不揮発性メモリ183の内部の温度補正テーブルではこの2つの入力T、Sncから温度補正後の反射光量センサ出力値Sを演算制御回路182に出力する。演算制御回路182では入力されたSをS用メモリに格納し、このS値と先にメモリに格納したa値、b値とから(式4)の反射率R=S/a−b/a を計算し、その値を先に採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度Dを算出し出力する。
次に図9に於いて先ほど、フィルタホルダー92側では定められた量の排気ガスを通して2番目のスモークサンプルを採取を行っているが、採取が終了すれば、先に説明したと同様の動作を行い、反射率を測定する。連続してスモークサンプルを採取し反射率Sncを測定する場合は以上の操作を繰り返す。このようにして反射光量測定直前に照射光量をモニターし照射光量モニタ出力Mにより反射率計の校正を行うことにより精度の高い反射率測定ができる。またこの実施形態では反射率の連続測定のとき特別なことをする必要がなく上記の測定方法を繰り返すだけで実現できるので連続測定に適している。
次に図19は本発明第10の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではロ.のケースに相当するものである。
ロ.校正兼反射率算出用テーブルまたは校正兼反射率算出兼反射濃度算出用テーブルと、温度補正テーブルを作成する。
直線式 a=v(M)、 b=w(M) と計算式 R=S/a−b/a=(S−b)/a、D=−log10R、より
校正兼反射率算出用テーブルは、反射率R=(S−b)/a={S−w(M)}/v(M) 及びこのグラフより、(入力)MとS−(出力)反射率R のデータテーブルを作成する。
校正兼反射率算出兼反射濃度算出用テーブルは、反射濃度 D=−log10[{S−w(M)}/v(M)] 及びこのグラフより (入力)MとS−(出力)反射濃度D のデータテーブルを作成する。
温度補正テーブルは、式 S=f(T)×Snc、M=f(T)×Mnc 及びこのグラフより、(入力)温度TとSnc値−(出力)S値 のデータテーブルを作成する。
【0054】
次に、校正時及び測定時の機能構成と動作説明をする。
図19は本発明の第10の実施形態における反射率計または反射濃度計の回路ブロック図であり、本発明の第8の実施形態の回路ブロック図である図16に対応している。両図において反射光量計191は構成要素である図4に示す反射光量センサ44及び反射光量センサ回路47にハードウェア的な温度補正機能を持たないが、それ以外の機能として反射光量計161と同じであり、同様に照射光量モニタ194は構成要素である図14に示すモニタ光量センサ147及びモニタ光量センサ回路148にハードウェア的な温度補正機能を持たないが、それ以外の機能として照射光量モニタ164と同じである。そして照射光量モニタ194は反射光量計191と比較的接近された場所に設けられておりほぼ同じ雰囲気にある。コントローラ192と162とは夫々同じ機能を有する。リライタブル不揮発性メモリ193は、測定前準備の段階で内部に温度補正用と校正用の2個のテーブルが格納されている。リライタブル不揮発性メモリ193への入出力数が多いため実際は演算制御回路のリライタブル不揮発性メモリ193の入出力部分にマルチプレクサが設けてあり、温度補正用の入出力と校正用の入出力とを切り替えている。195は温度変化により出力が変化するいわゆる温度センサであり、反射光量計191の近傍に設けられている。
【0055】
以上のように構成した図19の反射率計機能ブロック図において次に動作説明をする。
先ず、図9に示すようにロール型濾紙91を挟んだフィルタホルダー92に定められた量の排気ガスを通し濾紙上に排ガスの固形物のスモークを堆積させ、この堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動する。移動後再びフィルタホルダー92側では排気ガスを通して次のスモークサンプルを採取するが、この採取動作の開始とほぼ同時に図19の照射光量モニタ194よりアナログ量の照射光量モニタ出力Mncをコントローラ192に入力する。コントローラ192では入力された照射光量モニタ出力Mncを内蔵しているA/D変換器でディジタル値に直し、内蔵しているMnc用メモリに格納しそのメモリ出力Mncをリライタブル不揮発性メモリ193に出力する。次に反射光量計191の近傍に設置されている温度センサ195から温度信号Tがコントローラ192に入力されA/D変換しディジタル値のTを内蔵しているT用メモリに格納しそのメモリ出力Tをリライタブル不揮発性メモリ193に出力する。リライタブル不揮発性メモリ193の内部の温度補正テーブルではこの2入力であるT、Mncから温度補正後の照射光量モニタ出力値Mをコントローラ192に出力する。コントローラ192では入力されたMをM用メモリに格納する。
【0056】
次に図9に於いて先ほど、堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動した濾紙の反射光量を図19の反射光量計191で測定し、その反射光量センサ出力Snc(アナログ量)をコントローラ192に送出する。コントローラ192では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncを内蔵しているSnc用メモリに格納し、そのメモリ出力Sncをリライタブル不揮発性メモリ193に出力する。一方温度T信号は先にコントローラ192のT用メモリに格納され、そのメモリ出力Tをリライタブル不揮発性メモリ193に出力している。従ってリライタブル不揮発性メモリ193の内部の温度補正テーブルではこの2つの入力T、Sncから温度補正後の反射光量センサ出力値Sをコントローラ192に出力する。コントローラ192では入力されたSをS用メモリに格納する。次にリライタブル不揮発性メモリ193への出力と入力を内蔵しているマルチプレクサを使い新たな出力と入力に切り替える。そして新たな出力として先にM用メモリに格納したMと、先程S用メモリに格納したSとをリライタブル不揮発性メモリ193の校正兼反射率算出用テーブルの入力に送出し、このテーブルの出力値を今回採取したスモークの反射率Rとして出力する。また必要に応じてM用メモリに格納したMと、先程S用メモリに格納したSとをリライタブル不揮発性メモリ193の校正兼反射率算出兼反射濃度算出用テーブルの入力に送出し、このテーブルの出力値を今回採取したスモークの反射濃度Dとして出力する。
【0057】
次に図9に於いて先ほど、フィルタホルダー92側では定められた量の排気ガスを通して2番目のスモークサンプルを採取を行っているが、採取が終了すれば、先に説明したと同様の動作を行い、反射率又は反射濃度を測定する。連続してスモークサンプルを採取し反射率Sncを測定する場合は以上の操作を繰り返す。このようにして反射光量測定直前に照射光量をモニターし照射光量モニタ出力Mにより反射率計の、校正を行うことにより精度の高い反射率測定ができる。またこれらの操作が人の手を用いずにできるため自動化に適しており、またこの実施形態では反射率の連続測定のとき特別なことをする必要がなく上記の測定方法を繰り返すだけで実現できるので連続測定に適している。
【0058】
次に図20は本発明第11の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではハ.のケースに相当するものである。
ハ.テーブルは作成せず、校正用ではa,bとMとの直線表現の関係式a=v(M)、 b=w(M)、温度補正用は温度との関係式f(T) を用意する。
本実施形態の構成を示すブロック図の図20と本発明第9の実施形態における構成を示すブロック図である図18において、反射光量計201と181、演算制御回路202と182、照射光量モニタ回路204と184及び温度センサ205と185とは夫々同じものであり、リライタブル不揮発性メモリ203と183はメモリ機能としては同じであるが、書き込み内容が第9の実施形態では温度補正用テーブルと校正用テーブルから成っており、本実施形態では温度補正用として温度補正式f(T)の式、校正用としてはa=v(M)、b=w(M)の1次式が書き込まれている。
【0059】
以上のような構成の反射率計において次にその動作を説明する。
先ず図9に示すような装置の電源が投入された初期状態で図20の演算制御回路202は特性式が格納されているリライタブル不揮発性メモリ203のアドレスに出力設定信号Enを入力し、温度補正用としてf(T)の式、及び校正用としてはa=v(M)、b=w(M)の1次式を取り込み、夫々演算制御回路202内部の指定メモリに格納する。
次に測定操作では図9に示すようにロール型濾紙91を挟んだフィルタホルダー92に定められた量の排気ガスを通し濾紙上に排ガスの固形物のスモークを堆積させ、この堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動する。移動後再びフィルタホルダー92側では排気ガスを通して次のスモークサンプルを採取するが、この採取動作の開始と同時に図20の照射光量モニタ204よりアナログ量の温度補正前の照射光量モニタ出力Mncを演算制御回路202に入力する。演算制御回路202では入力された補正前照射光量モニタ出力Mncを内蔵しているA/D変換器でディジタル値に直し、内蔵しているマイコンのアキュムレータ等のMnc用メモリに格納する。次に反射光量計201の近傍に設置されている温度センサ205から温度信号Tが演算制御回路202に入力されA/D変換しディジタル値のTをマイクロプロセッサのアキュムレータ等のT用メモリに格納する。次に電源投入時点でリライタブル不揮発性メモリ203より取り出し、専用メモリに格納した温度補正用のf(T)式と先程メモリに格納した温度信号T、補正前照射光量モニタ出力Mncを各メモリより出力し、温度補正後の照射光量モニタ出力値M=f(T)×Mnc の式に従ってMを算出し、M用メモリに格納する。次に電源投入直後にリライタブル不揮発性メモリ203より取り出し、専用メモリに格納した校正用のa値、b値の特性式a=v(M)、b=w(M) 式と先程メモリに格納した温度補正後の照射光量モニタ出力値Mを各メモリーより出力し、 a値、b値を算出し、a値、b値の夫々の専用メモリに格納する。
【0060】
次に図9に於いて先に反射濃度計93の反射率測定部分に移動させたスモークの堆積した箇所の濾紙の反射光量を図20の反射光量計201で測定し、温度補正前の反射光量センサ出力Snc(アナログ量)を演算回路202に送出する。演算制御回路202では入力された反射光量センサ出力値SncをA/D変換しディジタル値のSncをマイクロプロセッサのアキュムレータ等のSnc用メモリに格納する。次に温度補正用の専用メモリに格納されている温度補正用のf(T)式と温度信号T及び先程メモリに格納した温度補正前のスモークの反射光量センサ出力値Sncを各メモリより出力し、温度補正後の反射光量センサ出力値S=f(T)×Snc の式に従ってSを算出し、S用メモリに格納する。
先に校正用の専用メモリに格納したa値、b値と、先程S用メモリに格納したS値とを各メモリーより出力し、(式4) R=S/a−b/a=(S−b)/a に代入し、R値を算出し、その値を今回採取したスモークの反射率Rとして出力する。また必要に応じて(式1)の反射濃度D=−log10R から反射濃度を算出し出力する。
連続でスモークを採取する場合は上記操作を繰り返す。また本実施形態ではリライタブル不揮発性メモリ203の中身が数式だけであり、テーブルを作成し書き込む必要がないために校正前の準備が簡単になる。またこの方法実施形態では反射率の連続測定のとき特別なことをする必要がなく上記の測定方法を繰り返すだけで実現できるので連続測定にも適している。
【0061】
図21は本発明第12の実施形態における反射率計であり、校正機能を有し、反射率R、反射濃度Dを算出するための構成を示すブロック図である。本実施形態では反射率計に使用している反射光量センサ及び反射光量センサ回路にはハードウェア的な温度補正機能を持たないために温度補正機能を付加した構成での実施形態である。また本実施形態における測定前準備は先に説明した項目1)〜5)であるがそのうち項目4)ではニ.のケースに相当するものである。
ニ.校正用テーブルと温度補正テーブルとを1つにしたテーブルを作成する。
R=S/a−b/a 、D=−log10R、S=f(T)×Snc、M=f(T)×Mnc、a=v(M)、b=w(M)より
温度補正兼校正兼反射率算出用テーブルは、反射率 R=(S−b) /a =[f(T)×Snc−w{f(T)×Mnc}]/v{f(T)×Mnc} 及びこのグラフより [入力]温度T、Mnc値(温度補正前のM値)、Snc値(温度補正前のS値)−[出力]反射率R のデータテーブルを作成する。
温度補正兼校正兼反射率算出兼反射濃度算出用テーブルは、反射濃度D=−log10 [[f(T)×Snc−w{f(T)×Mnc}]/v{f(T)×Mnc}] 及びこのグラフより [入力]温度T、Mnc値(温度補正前のM値)、Snc値(温度補正前のS値)−[出力]反射濃度Dのデータテーブルを作成する。
【0062】
次に、校正時及び測定時の機能構成と動作説明をする。
図21は本発明の第12の実施形態における反射率計または反射濃度計の回路ブロック図であり、本発明の第10の実施形態の回路ブロック図である図19に対応している。両図において反射光量計211と191、照射光量モニタ214と194、コントローラ212と192、温度センサ215と195夫々同じであり、反射光量計及び照射光量モニタは夫々センサ及び回路に温度補正機能を持たない。リライタブル不揮発性メモリ213と193は、機能的には同じであるが、メモリの中身のテーブルがリライタブル不揮発性メモリ193では反射率出力の場合は温度補正用と校正用兼反射率計算用の2個のテーブルが格納されているが、リライタブル不揮発性メモリ213では反射率出力の場合は温度補正用と校正用兼反射率計算用の各テーブルが統合され1つになっており、反射濃度出力の場合は温度補正用と校正用兼反射率計算用と反射濃度計算用の各テーブルが統合され1つになっている。
【0063】
以上のように構成した図21の反射率計機能ブロック図において次に動作説明をする。
先ず、図9に示すようにロール型濾紙91を挟んだフィルタホルダー92に定められた量の排気ガスを通し濾紙上に排ガスの固形物のスモークを堆積させ、この堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動する。移動後再びフィルタホルダー92側では排気ガスを通して次のスモークサンプルを採取するが、この採取動作の開始と同時に図21の照射光量モニタ214よりアナログ量の照射光量モニタ出力Mncをコントローラ212に入力する。コントローラ212では入力された温度補正前の照射光量モニタ出力Mncを内蔵しているA/D変換器でディジタル値に直し、内蔵しているMnc用メモリに格納する。
次に反射光量計211の近傍に設置されている温度センサ215から温度信号Tがコントローラ212に入力されA/D変換しディジタル値のTを内蔵しているT用メモリに格納する。
【0064】
次に図9に於いて先ほど、堆積した箇所の濾紙を反射濃度計93の反射率測定部分に移動した濾紙の反射光量を図21の反射光量計211で測定し、その反射光量センサ出力Snc(アナログ量)をコントローラ212に送出する。コントローラ212では入力された温度補正前の反射光量センサ出力値SncをA/D変換しディジタル値のSncを内蔵しているSnc用メモリに格納する。
次に先にコントローラ212のメモリに格納した温度補正前の照射光量モニタ出力Mnc、温度信号T、及びスモークの温度補正前の反射光量センサ出力Sncの3個の信号をリライタブル不揮発性メモリ213に出力する。
校正前準備の段階で校正前準備項目4)のニ.に示すように校正用テーブルと温度補正テーブルとを統合し、且つ反射率計算用テーブルも加えて1つのテーブルにした温度補正兼校正兼反射率計算テーブルや、更に反射濃度計算用テーブルも加えて1つのテーブルにした温度補正兼校正兼反射率計算兼反射濃度計算テーブルを作成しリライタブル不揮発性メモリ133に予め書き込んでいるのでMnc、T、Sncの3個の信号を入力することにより、温度補正され且つ校正処理された、今回採取したスモークの反射率R、または反射濃度Dとして出力される。
次に図9に於いて先ほど、フィルタホルダー92側では定められた量の排気ガスを通して2番目のスモークサンプルを採取を行っているが、採取が終了すれば、先に説明したと同様の操作を行い、反射率又は反射濃度を測定する。
このようにして反射光量測定直前に照射光量をモニターし照射光量モニタ出力Mにより反射率計の、校正を行うことにより精度の高い反射率測定ができる。またこれらの操作が人の手を用いずにできるため自動化に適しており、この方法は反射率の連続測定にも適している。
【0065】
以上の実施形態において、校正用の特性式やテーブルは反射率計内部のメンテナンス等で照射受光間の光学系の変更や位置関係の変更等が発生すれば特性を取り直し、a値、b値の特性つまり校正用特性を変更し、テーブルを変更する必要があるために、校正用の特性やテーブルを格納するメモリはリライタブル不揮発性メモリ使用している。本来、不揮発性メモリーは電源を切っても記憶内容が消えないメモリを意味するものであるが、本発明における前記不揮発性メモリーはRAM等の揮発性メモリーを使用していても、本体装置の電源を切った場合でもバックアップ用電池等の電源を使用して常時動作をさせ記憶内容が消えないようにしているものでもよい。
また、今まで反射率計、反射濃度計の校正する場合は2枚以上の校正用反射率基準板を用いていたがこの校正用特性グラフの関係式を用いる本発明の方法を用いれば、1枚の基準板による校正でa値、b値が求められ2枚以上の校正用反射率基準板を用いた時と同等の精度の校正ができることが判る。
【0066】
本明細書に記載した実施形態例では45/0光学系(:45度方向から被測定物を照射し、垂直方向から被測定物からの反射光を検出する。)を用いた構成での反射率計について説明したが、本発明はそれに限らず0/45光学系(:垂直方向から被測定物を照射し、45度方向から被測定物からの反射光を検出する。)を用いた場合でも実施可能である。その構成例を図22に示す。この図面から出力される反射光量出力と照射光量モニタ出力は図15,16に対応するものであり、照射光量モニタ出力を無くした場合は図1,2に対応し、温度センサを付加すれば図10〜13及び図18〜21に対応する。図22においてランプとハーフミラーとの間、またはハーフミラーと測定物との間に凸レンズを設け照射光の発散を防ぎ、照射効率を向上させることもできる。
【符号の説明】
【0067】
11、21、101、111、121、131、151、161、181、191、201、211 反射光量計
12、102、122、152、182、202 演算制御回路
22、112、132、162、192、212 コントローラ
13、23、103、113、123、133、153、163、183、193、203、213 リライタブル不揮発性メモリ
184、194、204、214 照射光量モニタ
105、115、125、135、185、195、205、215 温度センサ
31、81、141 グラスファイバー入射光側口金
32、82、142 フレキシブルチューブ
33、83、143 リングライト筐体
34、84、144 リングライト(環状光源)
140 遮光筒 145 モニタ用ライトガイド
146 照射光量モニタ 147 モニタ光量センサ
148 モニタ光量センサ回路 149 光量減衰用フィルタ
40 環状光源 41 被測定物台紙
42 被測定物 43 アパーチャー
44 反射光量センサ 45 反射光量センサ回路
46 3刺激値緑フィルタ 91 ロール型濾紙
92 フィルタホルダー 93 反射率濃度計

【特許請求の範囲】
【請求項1】
反射率がR1、R2(R1> R2)である既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量Iに対応する反射光量センサ出力SとのI−S特性を測定し、関係式 S=aR+bのa,b値と変動因子との関係を把握してその因果関係であるI−a,b特性、S−a,b特性をメモリに記憶しておき、校正時にはその際の照射光量I0を検出し、その値と記憶した因果関係から2種類の校正用反射率基準板に基づく校正時の正確なa,b値を特定して関係式S=aR+b を確立し、次に被測定物の反射光量センサ出力値Sを測定し、反射率Rの式 R=S/a−b/a より、反射率Rを、また前記反射率R値を用い 濃度D=−log10R を算出するものである反射率及び反射濃度を計測する方法。
ここで、aは被測定物の反射光の検出に関する定数を、bは被測定物検出時のノイズ成分を表す。
【請求項2】
前記校正時の照射光量I0検出は、前記2種類の校正用反射率基準板のいずれかを用い、その際の反射光の検出量測定によってなされる請求項1に記載の反射率及び反射濃度を計測する方法。
【請求項3】
前記校正時の照射光量I0検出は、既知の反射率の被測定物の台紙または白色バッキング材を常用反射率基準板として用い、その際の反射光の検出量測定によってなされる請求項1に記載の反射率及び反射濃度を計測する方法。
【請求項4】
前記校正時の照射光量I0検出は、照射光量モニタによってなされる請求項1に記載の反射率及び反射濃度を計測する方法。
【請求項5】
定められた温度T0での被測定物の反射光量センサ出力値S(T0)をSとし、温度Tでの温度補正前の値S(T)をSncとし、温度を変化させSncの温度特性を測定し、S/Snc=f(T)なる温度補正式から温度補正テーブルを作成し、温度補正後の反射光量センサ出力値Sを求めるようにした請求項1乃至4のいずれかに記載の反射率及び反射濃度を計測する方法。
【請求項6】
測定対象への照射とその反射光量を検出すると共に照射光量を検出する手段を備えた45/0光学系もしくは0/45光学系で構成された反射光量計と、該反射光量計に装着または外部からアクセスできる不揮発性メモリと、前記反射光量計からの信号を入力し、前記不揮発性メモリに入出力し演算制御を行うマイクロプロセッサとを具備し、
前記不揮発性メモリには反射率がR1、R2(R1> R2)である既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量Iに対応する反射光量センサ出力SとのI−S特性を測定し、関係式 S=aR+bのa,b値と変動因子との関係を把握してその因果関係であるI−a,b特性、S−a,b特性が記憶されており、前記マイクロプロセッサは検出した照射光量値I0と前記メモリに記憶した因果関係から前記2種類の校正用反射率基準板に基づくその時点のa,b値を特定して関係式S=aR+b を確立し、次に被測定物の反射光量センサ出力値Sを測定し、反射率Rの式 R=S/a−b/a より、反射率Rを、また前記反射率R値を用い濃度 D=−log10R を算出するものである校正機能を備えたことを特徴とする反射率及び反射濃度計測システム。
ここで、aは被測定物の反射光の検出に関する定数を、bは被測定物検出時のノイズ成分を表す。
【請求項7】
測定対象への照射とその反射光量を検出すると共に照射光量を検出する手段を備えた45/0光学系もしくは0/45光学系で構成された反射光量計と、該反射光量計に装着または外部からアクセスできる不揮発性メモリと、前記反射光量計からの信号を入力し、前記反射光量計からの校正時の前記光量計信号を記憶しかつその信号を前記不揮発性メモリーに出力するとともに計測時の反射光量計の信号を前記不揮発性メモリに出力するコントローラとを具備し、
前記不揮発性メモリには反射率がR1、R2(R1> R2)である既知の2種類の校正用反射率基準板を用い、予めそれぞれについての照射光量Iに対応する反射光量センサ出力SとのI−S特性を測定し、関係式 S=aR+bのa,b値と変動因子との関係を把握してその因果関係であるI−a,b特性、S−a,b特性のテーブル及び反射率Rの式 R=S/a−b/a、濃度の式 D=−log10R に基づく反射率Rと濃度Dの計算テーブルが記憶されており、該不揮発性メモリーは校正時に記憶された信号と測定時に前記反射光量計からの反射光量センサ出力値Sを前記コントローラを通して前記不揮発性メモリに入力し、その入力に従ってテーブル出力信号の反射率R、濃度Dを不揮発性メモリから出力する機能を備えたことを特徴とする反射率及び反射濃度計測システム。
ここで、aは被測定物の反射光の検出に関する定数を、bは被測定物検出時のノイズ成分を表す。
【請求項8】
前記不揮発性メモリが外部から情報を自由に入力しまた変更できるメモリーカードである請求項6又は7に記載の反射率計もしくは反射濃度計システム。
【請求項9】
温度センサと前記不揮発性メモリには反射光量の温度特性情報を備え、計測時の環境温度による反射光量変動を補償する機能を備えたことを特徴とする請求項6乃至8のいずれかに記載の反射率及び反射濃度計測システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2011−232268(P2011−232268A)
【公開日】平成23年11月17日(2011.11.17)
【国際特許分類】
【出願番号】特願2010−104781(P2010−104781)
【出願日】平成22年4月30日(2010.4.30)
【出願人】(503361400)独立行政法人 宇宙航空研究開発機構 (453)
【Fターム(参考)】