説明

活性汚泥処理装置

【課題】硝化槽内の溶存酸素量を増やしたとしても、脱窒槽における脱窒反応が効率的になされる膜分離活性汚泥処理装置を提供する。
【解決手段】脱窒槽(3) の下流側に膜モジュール(9) と散気装置(15)とを有する膜ろ過ユニット(5) を活性汚泥中に浸漬させた硝化槽(4) を配するとともに、前記脱窒槽(3) の上流側に隣接して溶存酸素低減槽(6) を配している。この溶存酸素低減槽(6) には前記硝化槽(4) から活性汚泥の一部を戻している。溶存酸素低減槽(6) にて活性汚泥の一部を含む原水(排水)中の溶存酸素量を低減させることにより、脱窒槽(3) に送り込まれる原水中の溶存酸素量が実質的に0mg/Lまで低減でき、脱窒反応が活発化される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機物やバクテリア類を含む大量の排水を生物学的に連続処理する膜分離活性汚泥処理装置に関し、特に脱窒槽における脱窒反応を活発化させることを可能にした活性汚泥処理装置に関する。
【背景技術】
【0002】
従来の膜分離活性汚泥システムによれば、微細目スクリーンにて比較的小さな夾雑物が除去された排水(原水)が原水調整槽に導入される。この原水調整槽では、液面を液面計により測定し、第1送液ポンプを間欠作動させて槽内の液面高さを所定の範囲となるように調整している。一般的に、第1液送ポンプにより送り出される原水は脱窒槽に導入されたのち、脱窒槽から溢流する脱窒後の原水を隣接する硝化槽に流入させる。この硝化槽には膜ろ過ユニットが浸漬配置されている。この硝化槽では汚泥の硝化とリン摂取がなされ、膜ろ過ユニットにて活性汚泥と処理水とに膜分離される。膜分離された処理水は吸引ポンプにより処理水槽へと送液される。一方、硝化槽にてばっ気処理されて増殖した汚泥の固形分(懸濁物質)は、汚泥貯蔵槽に送られて貯蔵される。また、硝化槽の内部の汚泥の一部は第2液送ポンプによって上記脱窒槽へと返送されて、脱窒槽と硝化槽との間を循環する。
【0003】
好適な膜ろ過ユニットの例として、例えば特開2000−51672号公報(特許文献1)を挙げることができる。前記膜ろ過ユニットは、多数の中空糸膜を平行に並べたシート状の中空糸膜エレメントを複数枚組み込んだ中空糸膜モジュールと同中空糸膜モジュールの下方に配された散気装置とを備えている。前記中空糸膜モジュールは、相互の膜面を平行にして配列された複数枚からなり、全体の形状は略直方体形状を呈している。一方、前記散気装置は、例えば金属、樹脂などからなるパイプに孔を設けた複数本の散気管を平行に配設し、各散気管の一端をブロアに接続させている。散気装置から空気の気泡を発生させて、生活排水、工場排水などの汚水を処理する場合、硝化槽の汚泥中の有機物を、好気性微生物の存在下で散気装置から発生した空気と接触させることにより、前記有機物を前記好気性微生物に吸着・代謝分解させて、生物学的処理がなされる。
【0004】
前記中空糸膜モジュールと散気装置とは側部の四方を遮閉板により囲まれている。この遮閉板は、散気装置から発生する気泡の上昇により気液混合流を生成し、その流れを上昇流から下方流へと導くための壁部となる。散気装置から発生した気液混合流は、斜め方向に飛散せず、まっすぐに上昇して中空糸膜モジュールに効率よく接触する。このとき、中空糸膜モジュールの膜面に対する気液混合流の一様な分散により、中空糸膜モジュールを均一に洗浄する。またこの基液混合流により上記生物学的処理が効率的になされるとともに、中空糸膜のろ過機能により固液分離がなされる。前記膜分離ユニットには取出管路の一端が接続され、その他端には吸引ポンプが接続されており、前記取出管路を通して、膜ろ過ユニットによってろ過された処理水(ろ過水)が取り出されて処理水槽へと移送される。
【0005】
一般に上記シート状の膜モジュールは、中空糸膜に限るものではなく、複数の微細な孔を有するろ過膜を備えたものであれば、例えば平膜タイプ、管状膜タイプ、袋状膜タイプなどの種々の公知の分離膜を適用することができる。また、その材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックスなどが挙げられる。
【0006】
このシート状の膜モジュールに形成された微細孔の平均孔径は、一般に限外ろ過膜と呼ばれる膜では平均孔径0.001〜0.1μm、一般に精密ろ過膜と呼ばれる膜では平均孔径0.1〜1μmである。例えば、活性汚泥の固液分離に用いるときは、0.5μm以下の孔径であることが好ましく、浄水のろ過のように除菌が必要な場合は0.1μm以下の孔径であることが好ましい。
【0007】
膜分離活性汚泥処理システムは、原水を脱窒槽及び硝化槽(好気槽)において活性汚泥により生物学的に浄化する。窒素の除去は、脱窒槽と硝化槽との間で汚泥を循環させることにより、いわゆる硝化脱窒反応によってなされる。BODに換算される有機物は、主として硝化槽内に配置されたばっ気装置である膜ろ過ユニットの空気排出部から排出される空気により好気的に酸化され分解される。またリンの除去は、汚泥中の微生物(リン蓄積細菌)の作用によりポリリン酸として微生物体内に取り込まれることにより行われる。この微生物は好気状態においてリンを取り込み、嫌気状態において体内に蓄えたリンを放出する。リン蓄積細菌は、嫌気状態と好気状態とに繰り返して曝されると、嫌気状態で放出したリンの量よりも多くのリンを好気状態で吸収する。
【0008】
生物由来の排泄物や死骸などの窒素化合物の一部は、肥料として植物やバクテリアに同化される。また、こうした窒素化合物の一部は、酸素の多い好気条件下で独立栄養アンモニア酸化細菌や独立亜硝酸酸化細菌により、亜硝酸、硝酸へと酸化される。他方、酸素がない嫌気条件下では、脱窒菌と呼ばれる微生物が酸素に代わって硝酸から亜硝酸を生成し、更には一酸化二窒素、窒素ガスへと還元して窒素を放出する。この還元反応が上記硝化脱窒反応と称される。
【0009】
このような硝化脱窒反応に基づく膜分離活性汚泥処理装置が、例えば国際公開第03/101896号パンフレット(特許文献2)に開示されている。同特許文献2によれば、硝化槽から脱窒槽へ循環液である汚泥を送液する際、硝化槽中に配された最も低い位置にある散気装置の下方の槽底部近傍から汚泥を取り出すように構成し、硝化槽と硝化槽との2つの処理槽のみで、凝集剤などを使用せずに窒素及びリンを除去している。
【0010】
上記膜分離活性汚泥処理装置にあっては、循環液である汚泥を取り出す位置を最も低い位置に配されている散気装置から更に20cm以上下方に離している。こうすることにより、硝化槽から送液される汚泥が脱窒槽に導入される位置で溶存酸素濃度を0.2mg/L以下とし、硝化槽より汚泥を取り出す位置では溶存酸素濃度を0.5mg/L以下とすることができるというものである。
【特許文献1】特開2000−51672号公報
【特許文献2】国際公開第03/101896号パンフレット
【発明の開示】
【発明が解決しようとする課題】
【0011】
ところで、上記特許文献2の記載によると、無酸素槽(脱窒槽)内に溶存酸素、硝酸イオン、亜硝酸イオンが実質的に存在しないと有機物が脱窒菌により嫌気的に分解され、このとき脱窒菌に蓄積されたポリリン酸がリン酸として菌体外に放出される。特許文献1に記載された発明によれば、ばっ気槽からの循環液(汚泥)が無酸素槽に入る部位における溶存酸素濃度は0.2mg/L以下とする必要があり、0.1mg/L以下とすると、リンの除去性がより安定するため好ましく、さらに0.05mg/L以下とするとより好ましいとしている。しかるに、この特許文献1による方法で循環液の溶存酸素濃度を低減させようとしても限度がある。また、近年では高度な窒素除去が求められており、前述した循環式硝化脱窒法において除去率を上げるために、硝化槽から脱窒槽へ送液する循環倍率を高くしなければならないことが多くなってきた。循環倍率を上げると、脱窒槽への溶存酸素の持込みが増加し、脱窒槽が嫌気となりにくく、脱窒槽内において硝酸イオンを完全に脱窒することができなくなる場合がある。
【0012】
本発明の目的は、循環式硝化脱窒法を用いた膜分離活性汚泥処理法にあって、脱窒槽に戻される汚泥中の溶存酸素濃度を更に低減させて、リンの除去性を向上させる活性汚泥処理装置を提供するにある。
【課題を解決するための手段】
【0013】
かかる目的は、本発明の基本構成である、脱窒槽及び硝化槽が順次配され、脱窒槽と硝化槽との間で汚泥を循環させて排水を生物学的に処理するとともに、前記硝化槽には1基以上の膜ろ過ユニットが浸漬され、排水を活性汚泥と処理水とに膜分離する活性汚泥処理装置にあって、前記脱窒槽の上流側に処理排水中の溶存酸素量を低減させる溶存酸素低減槽が配され、前記硝化槽の活性汚泥を前記溶存酸素低減槽又はその上流部に循環させる汚泥循環路を有してなることを特徴とする活性汚泥処理装置により効果的に達成される。
【0014】
好適な態様によれば、前記溶存酸素低減槽の上流側には、送液手段により送液管路を介して前記溶存酸素低減槽に間欠的に原水を送り込むとともに、前記脱窒槽又は硝化槽の液面高さを調整する。そして、原水調整槽からの送液を溶存酸素低減槽と脱窒槽に分配してもよく、その送液のための送液分配手段を更に設けることもできる。
【作用効果】
【0015】
上記溶存酸素低減槽に原水を所要の時間収容している。この収容された溶存酸素低減槽の原水には元々溶存酸素が含まれている。また、この種の膜分離活性汚泥処理法によれば、硝化槽からばっ気処理されて溶存酸素濃度の高い汚泥を脱窒槽に戻して循環させている。上記特許文献2では、その硝化槽の溶存酸素濃度が低い領域を選んで溶存酸素濃度が比較的低い汚泥を脱窒槽に戻しているが、0に近い濃度まで溶存酸素量を減少させることはできない。
【0016】
その点、本発明によれば、前述のように脱窒槽の上流側に溶存酸素低減槽を配して、そこに原水を送り込むことによって、原水中のBOD成分が消費されることにより、硝化槽から持込まれた溶存酸素が急激に消費される。溶存酸素低減槽より溢流する汚泥中には、溶存酸素がほとんどないため、脱窒槽は、無酸素状態が安定して維持され、高速で脱窒することができる。脱窒反応には、BOD成分が必要なため、場合によっては、原水を溶存酸素低減槽だけでなく、脱窒槽に分配する。このことは脱窒槽の嫌気状態を高くすることにつながるため十分なリンの放出も行うことも可能にする。
【0017】
この原水調整槽からの原水を溶存酸素低減槽と脱窒槽に分配する場合、その分配比率を調整できるようにする必要がある。開閉バルブ付分岐送液管路から分配させる場合には、前記分配比率を調整することが難しいため、通常は、それぞれの送液路に可変容量ポンプを配し、それぞれのポンプによって好適な分配比率のもと送液するか、或いは分配槽を介して分配することが望ましい。
【発明を実施するための最良の形態】
【0018】
以下、本発明の好適な実施形態につき詳細に説明するが、本発明は特許請求の範囲内において多様な変更が可能であり、以下の実施形態に限定解釈されるものではない。
【0019】
図1は、本発明の実施形態の一例を示す活性汚泥処理装置の概略構成図である。同図において、符号1は微細目スクリーン、符号2は原水調整槽、符号3は脱窒槽、符号4は硝化槽、符号5は膜ろ過ユニット、符号7は汚泥貯蔵槽、符号8は処理水槽を示している。符号6は本発明の最も特徴とする構成である溶存酸素低減槽を示している。
【0020】
本実施形態にあっては、前記溶存酸素低減槽6は、前記原水調整槽2と脱窒槽3との間に配設されている。この溶存酸素低減槽6には、原水が連続あるいは、間欠的に投入されるとともに、硝化槽からの循環汚泥が返送される。溶存酸素低減槽6の平均滞留時間は、循環倍率や、汚泥濃度、原水のBODなどによって最適値は異なるが、30分〜3時間程度が適当である。あまり短いと十分に溶存酸素が低減されず、あまり長いと水槽の容量が大きくなり無駄である。溶存酸素低減槽では、硝化槽から持ち込まれた溶存酸素が微生物の原水BOD成分を利用等によって消費される。
【0021】
また本実施形態では、図1に実線で示すように、第1送液ポンプP1により原水調整槽2の原水を送液路L1を通して間欠的に溶存酸素低減槽6へと送り込んでいるが、同図に仮想線で示すように、前記第1送液路L1を分岐させて、その分岐路L1’を脱窒槽3へと延ばしてもよい。その場合には、分岐路L1’に開閉バルブ25を介装させることが好ましく、開閉バルブ25を閉じた状態では、原水調整槽2の原水は専ら溶存酸素低減槽6へと送られ、開閉バルブ25を開いて、原水調整槽2の原水を溶存酸素低減槽6及び脱窒槽3へと振り分けて送り込むようにする。このときの原水の分配比は、前記開閉バルブ25の開度を調整することにより任意に決めることができる。しかし、開閉バルブ25の開度を調整するだけで原水の分配比を調整することは難しい。そこで、通常は、それぞれの送液路に図示せぬ可変容量ポンプを配し、それぞれのポンプによって好適な分配比のもとで送液したり、或いは図示せぬ分配槽を介して分配するようにする。
【0022】
このように原水の一部を脱窒槽3に送り込む理由は、脱窒槽3において、脱窒するためのBOD成分を確保するためである。溶存酸素低減槽6でBODが処理されすぎてしまうと、脱窒のためのBOD成分が不足し、脱窒速度の低下を招く場合があることによる。溶存酸素低減槽6では、溶存酸素が消費されるために必要なBOD成分があればよい。分配比は、溶存酸素低減槽の溶存酸素濃度や処理水水質などをもとに適宜決定される。
【0023】
更に本実施形態では、図1に示すように、脱窒槽3から脱窒済の汚泥を第2送液ポンプP2により第2送液路L2を通して積極的に硝化槽4へと送り込む。硝化槽4の活性汚泥の一部は第3送液ポンプP3により第3送液路L3を通して連続的に溶存酸素低減槽6へと戻される。従って、硝化槽4の活性汚泥の一部は溶存酸素低減槽6及び脱窒槽3の間を循環して、硝化脱窒処理がなされる。
【0024】
このように溶存酸素低減槽6を脱窒槽3の上流側に隣接して配設することにより、排水(原水)は、微細目スクリーン1を通して微細な夾雑物が分離されて原水調整槽2に送り込まれる。原水調整槽2では、第1送液ポンプP1を駆動して、原水を溶存酸素低減槽6に送り込み、ここで原水と硝化槽4から戻された活性汚泥の一部に溶解している酸素を溶存酸素量が殆ど0に近い値にまで低減させる。溶存酸素濃度が0に近い排水は、溶存酸素低減槽6からの溢流により脱窒槽3へと流入して効率的に脱窒とリンの放出とがなされる。この脱窒、リンの放出がなされた排水は、脱窒槽3から第2送液路L2を介して第1送液ポンプP1により積極的に硝化槽4へと送り込まれる。この脱窒、リンの放出がなされた排水は、硝化槽4にて有機物の酸化分解と、好気性菌による硝化及びリンの摂取がなされて活性汚泥を増殖させる。硝化槽4では膜ろ過ユニット5により活性汚泥の固形分と処理水とに膜分離され、処理水は吸引ポンプPvにより吸引されて、処理水槽8へと送られる。このとき発生する余剰汚泥の一部は、上述のように第3送液ポンプP3を介して脱窒槽3に戻され、余剰汚泥の残部は汚泥貯蔵槽7へと排出される。
【0025】
本実施形態では、硝化槽4内に1以上の膜ろ過ユニット5を並列して浸漬させている。図示例によれば、理解を容易にするため2基の膜ろ過ユニット5を示しているが、単基でもよく、或いは2基以上の複数基が配される。大量の排水処理を行う場合には、4基以上、50基以下の膜ろ過ユニット5を並設することが好ましい。膜ろ過ユニット5は、図1に示すように、中空糸膜モジュール9と散気装置15とを備えている。
【0026】
前記中空糸膜モジュール9は、図2に示すように、多数枚のシート状の中空糸膜エレメント10が所要の間隔をおいて平行に配された略立方体形状を呈している。本実施形態にあって、前記中空糸膜エレメント10は、図3に示すように多数の多孔性中空糸10aを平行に配列してシート状となし、各多孔性中空糸10aの一端側を固定用樹脂11をもって閉塞固定するとともに、他端側は各多孔性中空糸10aの中空部を開口させて、同じく固定用樹脂11をもって固定している。この多孔性中空糸10aの材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックスなどが挙げられる。また、前記シート状の膜エレメントは、中空糸膜に限るものではなく、複数の微細な孔を有するろ過膜を備えたものであれば、例えば平膜タイプ、管状膜タイプ、袋状膜タイプなどの種々の公知の分離膜を適用することができる。
【0027】
このシート状の中空糸膜エレメント10に形成された微細孔の平均孔径は、一般に限外ろ過膜と呼ばれる膜では平均孔径0.001〜0.1μm、一般に精密ろ過膜と呼ばれる膜では平均孔径0.1〜1μmである。例えば、活性汚泥の固液分離に用いるときは、0.5μm以下の孔径であることが好ましく、浄水のろ過のように除菌が必要な場合は0.1μm以下の孔径であることが好ましい。
【0028】
本実施形態による前記中空糸膜エレメント10の膜面積は1枚あたり25m2 であり、前記中空糸膜モジュール9の膜面積は500m2 であって、1枚の中空糸膜エレメント10によって、1日あたり400tの排水を処理できる。因みに、1基の膜ろ過ユニット5に、20枚、40枚、60枚の中空糸膜エレメント10を組み込むことができ、その膜ろ過ユニット5の1基あたりの全膜面積は500m2 、1000m2 、1500m2 であって、ユニット1基あたりの処理量は、1日あたり400t、800t、1200tとなる。
【0029】
従って、1日あたり10000t以上の処理を行うには、最も大きな膜ろ過ユニットを使ったとしても、単一の処理槽(硝化槽)に10基以上の膜ろ過ユニットを並べて浸漬する必要がある。通常、これらの単一槽内に浸漬される複数の膜ろ過ユニット5は、それぞれが分岐管を介して同一の吸引ヘッダーを通して単一の吸引ポンプPvにより吸引され、処理水として一括処理される。この単一ポンプによる処理を一系列としたとき、更に処理量を増やすには、当然にポンプ容量を増やし、処理槽を大きくしなければならないが、膜ろ過ユニット数を更に増やし、場合によっては系列数をも増やさなければならない。
【0030】
上記中空糸膜モジュール9は、図2に示すように、多数本の多孔性中空糸10aを平行に並列させたシート状の中空糸膜エレメント10の上部開口端部を固定用樹脂11を介してろ過水取出管12に連通支持させるとともに、下端を閉塞して同じく固定用樹脂11を介して下枠13により固定支持させ、前記ろ過水取出管12及び下枠13の各両端を一対の縦杆14により支持して構成される。多数枚の中空糸膜エレメント10が、多孔性中空糸10aを垂直にして上下端面を開口させた矩形筒状の上部ケーシング20のほぼ全容積内に収容されてシート状に並列支持される。
【0031】
本実施形態による前記多孔性中空糸10aは、中心部に沿って長さ方向に中空とされたPVDF(ポリフッ化ビニデン)からなる中空糸が使われており、そのろ過孔の孔径は0.4μmである。また、1枚あたりの有効膜面積は25m2 である。上記シート状の中空糸膜エレメント10は膜ろ過ユニット5あたり20枚が使われ、その大きさは奥行きが30mm、幅が1250mm、高さが2000mmである。散気装置8をも含めた1膜ろ過ユニット5の大きさは、奥行きが1552.5mm、幅が1447mm、高さが3043.5mmである。上記ろ過水取出管12の材質はABS樹脂であり、縦杆14の材質はSUS304が使われている。ただし、多孔性中空糸10a、ろ過水取出管12及び縦杆14などの材質、中空糸膜エレメント10の大きさ、膜ろ過ユニット1基の大きさや同ユニット1基あたりの中空糸膜エレメント10の枚数などは、用途に応じて多様に変更が可能である。例えば、中空糸膜エレメント10の枚数で言えば処理量に合わせて20枚、40枚、60枚、…と任意に設定できる。
【0032】
各中空糸膜エレメント10の上記ろ過水取出管12の一端には、図3に示すように、各多孔性中空糸10aによってろ過された良質処理水の取出口12aが形成されている。本実施形態にあって、図2及び図3に示すように、各取出口12aには、それぞれL型継手12bがシール材を介して液密に取り付けられる。また、上記上部ケーシング20の上端の前記取出口12aが形成されている上側端縁に沿って集水ヘッダー管21が水平に設けられている。この集水ヘッダー管21の、前記ろ過水取出管12に設けられた複数の前記取出口12aと対応する位置には、それぞれに集水口21aが形成されており、各集水口21aに上記取出口12aと同様のL型継手21bがシール材を介して液密に取り付けられている。前記ろ過水取出管12の処理水取出口12aと前記集水ヘッダー管21の集水口21aとが、それぞれに取り付けられたL型継手12b,21b同士を接続することにより通水可能に連結される。集水ヘッダー管21の一端部には吸引ポンプPvと吸引管路22とを介して接続される吸水口21cが形成されている。各集水ヘッダー管21ごとに形成された吸水口21cと前記吸引管路22とは、図1に示すように、同吸引管路22からそれぞれ分岐した分岐管路22aに介装された開閉バルブ23を介して連結されている。
【0033】
一方の散気装置15は、図4に示すように、前記上部ケーシング20の下端に結合された上下が開口する矩形筒体からなり、その4隅の下端から下方に延びる4本の支柱24aを備えた下部ケーシング24の底部に収容固設されている。前記散気装置15は、矩形状の枠体に両端部が固着支持された細長い金属又は合成樹脂からなる複数のパイプ状の散気管17を備えている。この散気管17には、通常、下面側に長さ方向に延びるエア噴出スリットか、或いは複数のエア噴出孔が形成されている。また、この散気管17の一端は閉塞されており、他端はばっ気ブロアBから延びるエア主管18から分岐するエア導入管16と開閉バルブ19を介して連通している。
【0034】
図示例によれば、前記散気管17の本体はスリット付きゴム管から構成されており、水平に配されたゴム管の下面には、長さ方向に沿って内外に連通する図示せぬスリットが形成されている。前記散気装置15は上記中空糸膜モジュール9の下面から下方に45cmの間隔をおいて配されることが好ましく、前記支柱24aを下部ケーシング24から下方に突出させて、外部に開放させることは汚泥の流動を円滑にするため望ましい。
【0035】
また、本実施形態による散気装置15は複数基の各膜ろ過ユニット5ごとに配されており、単一のばっ気ブロアBから送られるエアを、それぞれの散気装置15に分流させるために、前記ばっ気ブロアBに直接接続されたエア主管18を有しており、同エア主管18から各散気装置15のエア導入管16に接続させている。このエア導入管16のエア主管側の端部は槽外に配され、実際には、槽外のエア導入管16の端部に上記開閉バルブ19が設けられ、同開閉バルブ19の開閉操作を槽外にて行えるようにすることが望ましい。
【0036】
本発明は、例示した上述のような構成を備えた複数基の膜ろ過ユニット5を同一硝化槽4に浸漬して並置し、脱窒槽3と硝化槽(好気槽)4との間で汚泥を循環させながら、上述のような生物化学的な活性汚泥処理を行う。
【0037】
ところで、このような活性汚泥処理を行う場合、脱窒槽3において溶存酸素量が多いと脱窒菌がそれを優先的に利用して増殖するため、脱窒反応が阻害される。そのため脱窒槽3では溶存酸素量はなるべく少なく、好ましくは0.05mg/L以下とする。しかしながら、従来の一般的な活性汚泥処理は勿論のこと、上記特許文献2に開示されているように硝化槽4における活性汚泥中に溶解している溶存酸素量が最も少ない領域の汚泥を脱窒槽へと戻すようにしても、脱窒槽3の汚泥導入領域の溶存酸素量は0.2mg/Lがせいぜいであり、それ以上は溶存酸素量を低減することは難しい。逆に、上記硝化槽4では硝化細菌が要求する好気的環境条件は溶存酸素量が1〜2mg程度必要となる。そのため、上述のごとき膜ろ過ユニット5に散気装置15を付設して、汚泥中に空気を放出して旋回流を発生させて汚泥の攪拌と同時に、汚泥中に酸素を溶解させるようにしている。
【0038】
この汚泥中への空気の放出は単に汚泥の攪拌と酸素を溶解を促進させるだけではなく、膜ろ過ユニット5の膜面の洗浄にも使われている。そのため、通常の散気装置15における散気管17に形成されるエア放出孔の孔径は比較的大きく形成されている。その結果、汚泥中へのエアの溶解が少なくなる場合が多く、前記散気装置15に加えて、微細なエア放出孔を有し、酸素の溶解が効率的に行える微細気泡を放出する図示せぬ補助散気装置を硝化槽4内の溶存酸素量の少ない領域に配置することも行われている。
【0039】
このように、従来の活性汚泥処理では硝化槽4に高い溶存酸素濃度が求められるため、同硝化槽4から脱窒槽へと戻される活性汚泥もまた、そこに溶解された溶存酸素量が必然的に多くなってしまい、ある値以下には溶存酸素量を低減できないのが現状である。
【0040】
これに対して、本実施形態のように脱窒槽3の上流側に隣接させて溶存酸素低減槽6を配することにより、循環汚泥を含む原水を脱窒槽3に送り込む以前に溶存酸素低減槽6に収容するため、硝化槽4の活性汚泥に要求される溶存酸素量を満足させたとしても、前記溶存酸素低減槽6にて溶存酸素量をほぼ0mg/Lにまで低減させることができるため、脱窒槽3の脱窒反応が効率的になされるようになる。
【図面の簡単な説明】
【0041】
【図1】本発明の代表的な実施形態を示す膜分離活性汚泥処理装置の概略構成図である。
【図2】同膜分離活性汚泥処理装置に適用される膜ろ過ユニットの一例を一部切開して示す全体立体図である。
【図3】前記膜ろ過ユニットに適用される分離膜エレメントと集水ヘッダー管との接続関係を示す立体図である。
【図4】前記膜ろ過ユニットに適用される散気装置の一例を示す概略構成図である。
【符号の説明】
【0042】
1 微細目スクリーン
2 原水調整槽
3 脱窒槽
4 硝化槽
5 膜ろ過ユニット
6 溶存酸素低減槽
7 汚泥貯蔵槽
8 処理水槽
9 中空糸膜モジュール
10 (シート状の)中空糸膜エレメント
10a 多孔性中空糸
11 固定用樹脂
12 ろ過水取出管
12a ろ過水取出口
12b L型継手
13 下枠
14 縦杆
15 散気装置
16 エア導入管(分岐管)
17 散気管
18 エア主管
19 開閉バルブ
20 上部ケーシング
21 集水ヘッダー管
21a 集水口
21b L型継手
21c 吸水口
22 吸引管路
22a 分岐管路
23 開閉バルブ
24 下部ケーシング
24a 支柱
25 開閉バルブ
P1 第1送液ポンプ
P2 第2送液ポンプ
P3 第3送液ポンプ
L1 第1送液路
L1’ 分岐路
L2 第2送液路
L3 第3送液路
Pv 吸引ポンプ
B ばっ気ブロア

【特許請求の範囲】
【請求項1】
脱窒槽及び硝化槽が順次配され、脱窒槽と硝化槽との間で汚泥を循環させて排水を生物学的に処理するとともに、前記硝化槽には1基以上の膜ろ過ユニットが浸漬され、排水を活性汚泥と処理水とに膜分離する活性汚泥処理装置にあって、
前記脱窒槽の上流側に処理排水中の溶存酸素量を低減させる溶存酸素低減槽が配され、前記硝化槽の活性汚泥を前記溶存酸素低減槽又はその上流部に循環させる汚泥循環路を有してなることを特徴とする活性汚泥処理装置。
【請求項2】
前記溶存酸素低減槽の上流側には、送液手段により送液管路を介して前記溶存酸素低減槽に間欠的に原水を送り込むとともに、前記脱窒槽又は硝化槽の液面高さを調整する原水調整槽が配されてなる請求項1記載の活性汚泥処理装置。
【請求項3】
原水調整槽からの送液を溶存酸素低減槽と脱窒槽に分配して送液する送液分配手段を更に有してなる請求項2記載の活性汚泥処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2007−167774(P2007−167774A)
【公開日】平成19年7月5日(2007.7.5)
【国際特許分類】
【出願番号】特願2005−369433(P2005−369433)
【出願日】平成17年12月22日(2005.12.22)
【出願人】(000176741)三菱レイヨン・エンジニアリング株式会社 (90)
【Fターム(参考)】