説明

Fターム[4D040BB52]の内容

Fターム[4D040BB52]の下位に属するFターム

Fターム[4D040BB52]に分類される特許

1 - 20 / 344


【課題】気化器で得られたメタノールガスのみを測定し、また安定的に測定する装置を提供する。
【解決手段】気化器23に外部から空気を導入する前に活性炭21で空気中の可燃物等を取り除き、浄化空気として気化器に取り込むことにより、ベースの値が変動しないようにした。気化器でのエアレーション空気は気化器上部より取り循環使用し、エアレーションによる希釈がないようすることにより感度を上げた。この時、外部からの空気取り込み量は検知に必要な空気量に絞った。また、検知器26,27 2台を交互に切り替え使用し、1方が試料ガス採取時、他方が浄化空気により検知器の洗浄を行い、検出の安定化を図った。また、気化器への試料供給量を安定化させるため、装置下部にサンプリング槽32を設けて、そこから試料ポンプ30で定量供給することにより安定したガス検知とメタノール添加制御が行える高感度水素供与体添加制御装置を提供する。 (もっと読む)


【課題】ディッチにおける反応速度の向上を図ることができる排水処理装置を提供する。
【解決手段】排水処理装置は、原水流入経路18、循環液出口経路16、循環流発生手段12及び酸素供給手段(散気装置13)を備え、好気域14と無酸素域15とを形成した無終端水路(ディッチ11)と、循環液出口経路15から流出した循環液を固液分離する固液分離手段(最終沈殿池17)とを備え、循環液中に生物固定担体を投入し、循環流発生手段は、軸線を鉛直方向に向けた回転円筒体12aと、回転円筒体の外周に突設した撹拌羽根12bとを備え、酸素供給手段は、直径が50μm以下の微細気泡を発生する微細気泡発生器を備え、循環液出口経路は、生物固定担体の流出を防止するスクリーン16aを備えている。 (もっと読む)


【課題】コンパクトで設置が容易な無放流式の循環型水洗トイレシステムの提供を目的とする。
【解決手段】便器と、当該便器からの汚水を受水し、浄化処理するための汚水処理装置と、当該汚水処理装置にて処理された浄水を前記便器の水洗に循環使用するものであって、前記汚水処理装置は、便器からの汚水を受水し、槽の底部からエアー曝気するプレ処理槽と、当該プレ処理槽から移送された固液混合物を嫌気性微生物により分解処理する嫌気性処理槽と、当該嫌気性処理槽から移送された嫌気処理水を後処理するための槽の底部から水面高さの1/3〜2/3の位置に散気管を配置した沈殿処理曝気槽を有し、当該沈殿処理曝気槽にて浄化された水を前記便器の水洗に使用することを特徴とする。 (もっと読む)


【課題】有機排水の生物処理水を濾過装置と逆浸透膜分離装置で処理して回収・再利用するに当たり、回収処理系統における膜フラックス低下の問題点を解決し、長期に亘り安定運転を継続する。
【解決手段】有機排水を生物処理し、得られた生物処理水を濾過装置2で濾過した後、逆浸透膜分離装置4で脱塩処理する。濾過装置2の逆洗排水、濾過装置2の薬品洗浄排水及び逆浸透膜分離装置4の濃縮水を生物処理装置1に送給して生物処理するに当たり、生物処理装置1に送給される水を凝集・固液分離装置5で処理した後、生物処理装置1に送給する。 (もっと読む)


【課題】UASB処理の反応槽内の水質を微生物の反応活性が高活性となる状態に維持する。
【解決手段】廃水処理装置1は、被処理水を底部100から供給して微生物塊と接触させた後に処理水として上部から排出させる反応槽10と、反応槽10から流出する処理水の一部をpH調整するpH調整槽18を備える。pH調整槽18を、返送管181bまたは181cを介して反応槽10の側面と接続し、反応槽10から排出される処理水の一部を微生物塊の反応活性が高くなるpH範囲となるようにpH調整し、pH調整された処理水を反応槽10内のベッド19であって、被処理水の供給部100から被処理水の流通方向に離間した箇所に注入する。 (もっと読む)


【課題】亜硝酸態窒素への硝化処理(亜硝酸型の硝化反応)を安定して、且つ高負荷で行うことができるアンモニア態窒素含有排水の処理装置を提供することを目的とする。
【解決手段】アンモニア態窒素含有排水中のアンモニア態窒素をアンモニア酸化細菌により亜硝酸態窒素に酸化する硝化槽と、前記亜硝酸態窒素を窒素に還元する脱窒槽14と、前記硝化槽又は脱窒槽14で処理された液中の生物汚泥を前記硝化槽又は前記硝化槽に導入される前の前記アンモニア態窒素含有排水に返送する汚泥返送ライン18と、を有するアンモニア態窒素含有排水の処理装置1であって、前記硝化槽は、第1硝化槽10及び第2硝化槽12が直列に配置されたものであり、少なくとも第2硝化槽12には生物保持担体が設置されず、第2硝化槽12の容積は、全硝化槽の総容積の1/50以上〜1/3以下の範囲とする。 (もっと読む)


【課題】 ポンプや制御装置などを用いずに微生物の活動に必要な物質を与えてその活性の制御を可能とする。
【解決手段】非多孔性膜2を少なくとも一部に備える密封構造の容器4の中に微生物活性制御物質3を充填し、微生物活性制御物質3を容器4の非多孔性膜2の部分から非多孔性膜2の分子透過性能に支配される速度で容器4の周辺に供給し、容器の周辺の微生物の活性を制御する。微生物活性制御物質3は、微生物のエネルギー源となる電子供与体として機能する物質、酸性物質、塩基性物質、無機塩類、酸素放出物質及び酸素吸収物質のうちの少なくとも1種以上であり、酸性物質と塩基性物質、酸素放出物質と酸素吸収物質の組み合わせは除かれる。 (もっと読む)


【課題】N2Oが低濃度の場合でもガスを全量処理するため、処理効率が低下する恐れがあるため、N2O濃度の高い排ガスを選択的に回収することで、N2O処理効率を向上できる下水処理方法を提供する。
【解決手段】活性汚泥により廃水を処理する生物反応槽1に設置された溶存酸素計8と、生物反応槽1にエアレーションされたガスを回収するための排ガス回収手段5と、排ガス回収手段5に設けられた制御弁6を開閉制御する制御手段7を備え、制御手段7は溶存酸素計8の計測値の少なくとも6時間以上の平均値を、溶存酸素計8の計測値の現状値が超えた場合に、制御弁6を開閉制御してエアレーションされたガスを回収するものであり、生物反応槽の溶存酸素からN2O発生量を予測し、排ガス中のN2O濃度が高い場合に排ガスを処理する。 (もっと読む)


【課題】廃棄物を有効利用しながら、安全で生育の良い植物の育成と年単位の長期の水の防腐・浄化材として高い効果を期待出来る形状維持能力と再利用可能な木炭・pH緩衝調整剤混練粒状資材を提供する。
【解決手段】樹脂と、植物性材料と塩化合物とを300℃以上400℃以内の温度条件下で混練し、該混練物を粉砕して木炭・pH緩衝調整剤混練粒状資材を製造する。300℃以上400℃以内の高温下の混練により、植物性材料が炭化し、その部分に通気性と保水性と吸着性と水のpHの調整機能を持たせることが出来るなどの利点がある。混練物を破砕・粉砕することで、植物や水棲生物の生育環境に好ましい資材となり、混練物を5mm以下に粉砕することが出来る。樹脂には、ポリプロピレン、ポリエチレン、ペットを代表とする合成樹脂、植物性材料には、麦藁、稲藁、籾殻、木屑、大鋸屑を代表とする植物性材料を用いることができる。 (もっと読む)


【課題】広範な領域にわたって存在する硝酸性窒素汚染地下水に対して、短期間で硝酸性窒素の処理を行って、硝酸性窒素汚染地下水を浄化する。
【解決手段】硝酸性窒素含有地下水の帯水層に、硫黄粉末および炭酸カルシウム粉末を注入することにより該硝酸性窒素含有地下水を浄化するにあたり、粒径0.1〜500μmかつ水分散性を高めた硫黄粉末と粒径0.1〜500μmの炭酸カルシウム粉末を用いる。この水分散性を高めた硫黄粉末としてはコロイド硫黄や、界面活性剤で処理したものが好ましい。 (もっと読む)


【課題】幅広い水質変動に対応でき、アンモニア態窒素及び有機物の除去を安定的に継続できる廃水処理技術を提供する。
【解決手段】廃水が高濃度の有機物を含む場合は、メタン発酵により有機物濃度を減少させ、CODとアンモニア態窒素との比率に基づいてアナモックス処理又は活性汚泥処理を行う。廃水は、必要に応じて、予め希釈してケルダール態窒素濃度を低下させ、希釈水として活性汚泥処理後の排水を還流使用する。アナモックス処理後の廃水は、活性汚泥処理を施す。 (もっと読む)


【課題】包括固定化担体による高い硝化処理効率を充分に活用しつつ、ランニングコストや設備投資コストを極力押さえることができ、しかも最初沈殿池を有しない既設の廃水処理場にも容易に導入することができる。
【解決手段】廃水中のアンモニア性窒素を硝化菌により好気性条件下で硝化処理して硝酸性窒素にする硝化装置10において、廃水が流入し、硝化菌を含む活性汚泥18によりアンモニア性窒素を硝化する汚泥用硝化槽12と、汚泥用硝化槽12で硝化処理された硝化水中の固形分を固液分離して上澄み水を得る固液分離槽14と、上澄み水が流入し、硝化菌を包括固定した包括固定化担体30により上澄み水中に残存するアンモニア性窒素を硝化して最終硝化処理水を得ると共に、包括固定化担体30の担体分離スクリーン36が設けられた担体用硝化槽16と、を有する汚泥・担体硝化ライン58を少なくとも1系列備えた。 (もっと読む)


【課題】担体に安定してアンモニア酸化菌を付着固定させることができ、かつ安定した亜硝酸化処理ができるアンモニア性窒素及びカルシウム含有廃水の脱窒処理方法及びその装置を提供すること。
【解決手段】1)以下の工程を含む、アンモニア性窒素及びカルシウム含有廃水の脱窒処理方法。カルシウム濃度制御工程:アンモニア性窒素及びカルシウム含有廃水中のカルシウム濃度を亜硝酸化工程の運転条件に応じて制御する工程、亜硝酸化工程:カルシウム濃度制御工程で得られた廃水存在下、担体にアンモニア酸化菌を固定化するとともに該廃水を亜硝酸化する工程、脱窒工程:亜硝酸化工程で得られた亜硝酸及びアンモニア性窒素を含む廃水を脱窒処理する工程。2)上記1)のアンモニア性窒素及びカルシウム含有廃水の脱窒処理方法を実施する装置であって、前記カルシウム濃度制御工程に用いられる装置は、該廃水のカルシウム濃度を測定する装置、カルシウムを除去する装置、M−アルカリ度濃度、及びNH−N濃度を測定する装置を備えた槽を含み、前記亜硝酸化工程に用いられる装置は、前記M−アルカリ度濃度、及びNH−N濃度を測定する装置と連絡した中和剤添加量制御装置、及び該中和剤添加量制御装置に連絡した中和剤注入装置を備えた亜硝酸化槽を含み、前記脱窒工程に用いられる装置は、脱窒槽を含む、アンモニア性窒素及びカルシウム含有廃水の脱窒処理装置。 (もっと読む)


【課題】被処理水の水質の維持と亜酸化窒素(N2O)の生成量の抑制を両立可能な生物学的水処理装置を提供する。
【解決手段】第1の生物学的水処理装置11は、活性汚泥が溜められた生物反応槽13と、散気部15と、送気用ブロワ17と、酸化還元電位計19と、N2O量相関値取得部21と、曝気量補正量記憶部23と、第1の曝気量制御部25と、を備える。N2O量相関値取得部21は、生物反応槽13内の亜酸化窒素(N2O)の量の相関値を取得する。曝気量補正量記憶部23は、N2O生成量に対する適正な曝気量補正量に係る第1の関係表を記憶する。第1の曝気量制御部25は、亜酸化窒素(N2O)の量の相関値に対応する曝気部15,17の曝気量に係る適正補正量を用いて補正した曝気量を制御目標として、曝気部15,17の曝気量を制御する。 (もっと読む)


【課題】排ガス中に含まれる硫黄酸化物を中和除去するアンモニアのうち未反応の残留アンモニアを効率的に後処理することができる硫黄酸化物を含有する排ガス処理システム及び処理方法を提供することを目的としている。
【解決手段】本発明の硫黄酸化物を含有する排ガス処理システム10は、排ガス中の硫酸ミストを捕集する電気集塵手段を備えた硫黄酸化物を含有する排ガス処理システム10であって、前記電気集塵手段に前記排ガスを導入する前段で前記排ガス中にアンモニアを含有する無機炭酸を供給する無機炭酸供給手段70と、前記電気集塵手段の廃液に含まれる前記アンモニアを微生物で生物処理する廃液処理手段60と、を備えたことを特徴としている。 (もっと読む)


【課題】非イオン性又はカチオン性の水溶性の有機物及び/又は窒素化合物を含有する酸性液を生物処理するに当たり、pH、塩類濃度の調整に、希釈水を用いることなく、或いは少ない希釈水量で生物処理可能な水に調整して生物処理に供する。
【解決手段】アニオン交換膜21によって原水室22とアルカリ溶液室23とに隔てられた中和透析装置2の原水室22に酸性液を通水すると共に、アルカリ溶液室23にアルカリ溶液を通水して該酸性液を中和及び脱塩した後、中和脱塩処理液を生物処理する。アニオン交換膜21及びアルカリ溶液を用いた中和透析処理で、非イオン性又はカチオン性の水溶性の有機物及び/又は窒素化合物を含有する酸性液の中和と脱塩を行うことができ、得られた中和脱塩処理液を生物処理に供することができる。 (もっと読む)


【課題】 原水中のTOC、特に尿素を高度に分解することができる水処理方法を提供する。
【解決手段】 1は図示しない原水貯槽から供給される原水Wの前処理システムであり、この前処理システム1で処理された原水Wは、生物処理手段3に供給される。そして、この生物処理手段3で処理された処理水W1は一次純水装置に供給される。生物処理手段3の前段には図示しないpHセンサと第一の供給機構5とが設けられていて、第一の供給機構5からアンモニア性の窒素源(NH−N)及び硫酸が添加可能となっている。また、第一の供給機構5に併行して、酸化剤及び/又は殺菌剤を添加する第二の供給機構6が設けられている。このような構成により、生物処理手段3において硝化菌を優占種化する。 (もっと読む)


【課題】装置の立上時や低負荷処理時にも、担体を効率よく流動させ、処理水質を低下させずに安定して処理できる流動床式生物処理方法を提供する。
【解決手段】流動床式生物処理装置1は、槽体2と、該槽体2内に配置された駆動軸3と、該駆動軸3に固着された回転翼4とを備えている。窒素負荷が高いときには被処理水を槽体2の上部に供給し、窒素負荷が低いときには被処理水の少なくとも一部を槽体2の下部に供給する。低負荷時には、処理水の一部を返送し、被処理水の一部又は全部と共に槽体2の下部に供給してもよい。 (もっと読む)


【課題】 嫌気処理リアクタにおける反応を阻害することなく、低コストで運転および保守点検することができる有機性排水処理装置を提供する。
【解決手段】 有機性排水からなる原水を嫌気処理する嫌気リアクタ3と、嫌気リアクタの後段に設けられ、嫌気処理水を好気処理し、かつ嫌気処理水を好気性微生物担体部に上方から散水する散水機構を有する好気リアクタ4と、原水を嫌気リアクタを経由することなく好気リアクタに直接供給するように好気リアクタに接続されたバイパスラインL3と、好気リアクタから流出する処理水の硝化反応の進行状況を示す少なくとも1つの水質パラメータを測定する水質測定手段11,12と、処理水の水質を判定する基準となる水質パラメータの閾値を設定する手段13と、水質測定手段による水質パラメータの測定値を閾値と対照し、測定値が閾値から外れているときに原水の一部又は全量を嫌気リアクタを経由することなくバイパスラインL3を通って好気リアクタに直接供給させる制御手段10と、を有する。 (もっと読む)


【課題】河川水等に含まれる環境基準値(10mg/L)以下の比較的低濃度な硝酸態窒素の生物学的除去を、季節変動により生じる温度変化を捉えて、比較的容易に且つ安価に、効率良くできる技術を提供する。
【解決手段】被処理水に対して脱窒菌の代謝に必要とする栄養塩類として例えば石鹸を添加し、脱窒菌による生物学的窒素除去方法により被処理水中の窒素化合物を除去する方法である。被処理水の温度と石鹸の添加量と窒素化合物の濃度との相関データを予め用意しておく。被処理水の温度と窒素化合物の濃度とを測定してそれらの実測値を上記相関データ上で指定したときの石鹸の適正添加量を求める。石鹸の実添加量が上記適正添加量となるように調整した上で、被処理水中の窒素化合物の濃度が目標濃度になるまで窒素化合物を除去する。 (もっと読む)


1 - 20 / 344