説明

熱源システム

【課題】熱源システムにおける熱媒ポンプの運転台数制御で生じるエネルギロスを回避して、省エネルギ化を促進する。
【解決手段】運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜X3における流量値Qs(Qs1〜Qs3)を閾値流量として、負荷装置の負荷流量Qが閾値流量Qsよりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると熱媒ポンプの運転台数Nを一台増加させるポンプ制御手段5を設ける。また、このポンプ制御手段5は、負荷流量Qを検出する流量検出手段FSの検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整するポンプ出力制御を実行するものにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空調設備などで用いる熱源システムに関し、詳しくは、熱源機で冷却又は加熱した熱媒を負荷装置に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、負荷装置が必要とする熱媒流量である負荷流量の変化に応じて熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムに関する。
【背景技術】
【0002】
従来、この種の熱源システムでは熱負荷の増減に伴う負荷流量の変化に応じて熱媒ポンプの運転台数を変更するのに、次の(イ)〜(ハ)の如き制御方式を採っていた(特許文献1参照)。
【0003】
(イ)図5に示すように各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力(一般的には定格最大出力)で運転した場合における熱媒送給流量Qと熱媒送給圧力Pとの相関を示す運転台数N毎のポンプ性能曲線L1〜L3(即ち、運転状態にある熱媒ポンプの全体を1台のポンプと見なしたときの流量と圧力に関するポンプ性能曲線)を設定する。
【0004】
(ロ)負荷装置に供給する熱媒の送給圧力制御として、各運転台数Nでの熱媒ポンプ運転において負荷装置への熱媒送給圧力Pを一定の目標圧力Pmsに調整するいわゆる吐出圧一定制御を実施することに対し、上記運転台数N毎のポンプ性能曲線L1〜L3上で吐出圧一定制御の目標圧力Pms(一定)に対応する流量値Qs′(Qs1′〜Qs3′)を閾値流量とする。
【0005】
(ハ)負荷流量Qを検出する流量検出手段の検出情報に基づき、上記閾値流量Qs′の各々について、負荷流量Qが閾値流量Qs′よりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qs′よりも増加すると熱媒ポンプの運転台数Nを一台増加させる。
換言すれば、負荷流量Qが各閾値流量Qs′よりも減少するごとに熱媒ポンプの運転台数Nを一台ずつ減少させ、かつ、負荷流量Qが各閾値流量Qs′よりも増加するごとに熱媒ポンプの運転台数Nを一台ずつ増加させる。
【0006】
つまり、この従来方式では、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分(一般的には等間隔配分)で閾値流量Qs′(Qs1′〜Qs3′)を設定し、これら閾値流量Qs′を台数変更指標として負荷流量Qの変化に応じ熱媒ポンプの運転台数Nを変更していた。
【0007】
また、上記の吐出圧一定制御に代え、送給圧力制御として、同図5に示すように負荷流量Qと、その負荷流量Qの熱媒を負荷装置に供給するのに必要な送給圧力Pとの相関を示すポンプ制御線Mを配管抵抗等も考慮した状態で設定し、このポンプ制御線M上で各時点の負荷流量Q(現状流量)に対応する圧力値を目標圧力Pmとして、熱媒送給圧力Pの検出情報に基づき負荷装置への熱媒送給圧力Pを各時点の目標圧力Pm(即ち、負荷流量Qの変化に伴い変化する目標圧力)に調整する改良システムも提案されている(特許文献2参照)。
【0008】
しかし、この改良システムにしても熱媒ポンプの運転台数制御ついては前述の従来方式を踏襲しており、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分で設定した閾値流量Qs′(Qs1′〜Qs3′)を台数変更指標として、負荷流量Qの変化に応じ熱媒ポンプの運転台数Nを変更していた。
【0009】
【特許文献1】特開昭58−93974号公報
【特許文献2】特開2002−31376号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
しかし、上記従来方式のポンプ運転台数制御では、閾値流量Qs′(Q1′〜Q3′)と負荷流量Qとの比較により決定される熱媒ポンプの運転台数Nより仮に少ない運転台数N−1で熱媒ポンプを運転しても、流量面及び圧力面の夫々について何ら問題なく負荷装置に熱媒を供給できる状況(即ち、閾値流量Qs′と負荷流量Qとの比較により決定される運転台数Nが実際に必要なポンプ運転台数よりも過大となる状況)が頻繁に生じていた。
【0011】
そして、このように必要以上の運転台数Nで熱媒ポンプが運転されると、個々の出力を絞った状態で複数の熱媒ポンプを運転することになってポンプ効率の低下を招いたり、また、余剰のポンプ出力が大きくなって熱媒ポンプの出力ロスが増大する、あるいはまた、個々の熱媒ポンプの運転で生じる不可避的なエネルギロスの合計が増大するといったことを招き、この点、省エネルギ化を図る上で改善の余地があった。
【0012】
この実情に鑑み、本発明の主たる課題は、熱媒ポンプの運転台数変更において合理的な制御形態を採ることで、上記の如き問題を解消して省エネルギ化を促進する点にある。
【課題を解決するための手段】
【0013】
本発明の第1特徴構成は熱源システムに係り、その特徴は、
熱源機で冷却又は加熱した熱媒を負荷装置に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、
前記負荷装置が必要とする熱媒流量である負荷流量の変化に応じて前記熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムであって、
各運転台数での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転した場合における熱媒送給流量と熱媒送給圧力との相関を示す運転台数毎のポンプ性能曲線を設定するとともに、
前記負荷流量とその負荷流量の熱媒を前記負荷装置に供給するのに必要な送給圧力との相関を示すポンプ制御線を設定して、
これら運転台数毎のポンプ性能曲線とポンプ制御線との各交点における流量値又はその近傍流量値の夫々を閾値流量として設定し、
これらの設定に対して前記ポンプ制御手段は、ポンプ運転台数制御として、負荷流量を検出する流量検出手段の検出情報に基づき、
前記閾値流量の各々について、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある点にある。
【0014】
つまり、この構成において(図2参照)、上記した運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの交点X1〜X3の夫々は、各運転台数N(N=1,2,3)での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力運転する状況下でポンプ制御線Mが示す流量・圧力相関(即ち、負荷流量Qとその負荷流量Qの熱媒を負荷装置に供給するのに必要な送給圧力との相関)を満足することができる運転台数毎の上限的なポンプ運転状態を示す点となる。
【0015】
したがって、これら各交点X1〜X3における流量値Qs(Qs1〜Qs3)の夫々を閾値流量として、上記の如く、これら閾値流量Qsの各々について、負荷流量Qが閾値流量Qsよりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると熱媒ポンプの運転台数Nを一台増加させるようにすれば、負荷流量Qの変化に応じた熱媒ポンプの運転台数変更において必要以上の運転台数Nで熱媒ポンプが運転されるといった状況が生じるのを回避しながら、負荷流量Qの熱媒を負荷装置に対して適切に供給することができる。
【0016】
即ち、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分で台数変更指標としての閾値流量Qs′(Qs1′〜Qs3′)を設定していた先述の従来方式では(図5参照)、閾値流量Qs′と負荷流量Qとの比較により決定される熱媒ポンプの運転台数Nより一台少ない運転台数で熱媒ポンプを運転しても、流量面及び圧力面の夫々について何ら問題なく負荷装置に熱媒を供給できる運転台数過大状況が図2におけるQs1〜Qs1′の流量域、及び、Qs2〜Qs2′の流量域の夫々で生じており、これに対し上記構成によれば、このような状況が生じるのを回避することができて、熱媒ポンプの運転台数Nを各時点での可能な範囲で確実に最小化することができ、これにより、省エネルギ化を促進することができる。
【0017】
なお、上記例では3台の熱媒ポンプを装備する場合を示したが、熱媒送給路に並列配置で介装する熱媒ポンプの台数は3台に限らず2台以上の複数であれば何台であってもよく、また、それら複数の熱媒ポンプは最大出力等の仕様が互いに異なるものであってもよい。
【0018】
装備した複数の熱媒ポンプの全てを運転台数変更の対象ポンプとするに限らず、装備した熱媒ポンプのうちの一部の複数ポンプについてはシステム運転時において常時運転し、その他の複数ポンプのみを運転台数変更の対象とするようにしてもよい。
【0019】
運転台数N毎のポンプ性能曲線L1〜L3は、運転熱媒ポンプの夫々を定格の最大出力で運転した場合における流量・圧力相関を示すもの、あるいは、運転熱媒ポンプの夫々を実質的な最大出力で運転した場合における流量・圧力相関を示すもののいずれであってもよい。
【0020】
ポンプ制御線Mは実測により求めることが望ましいが、システムの実施を容易にするため、ポンプ制御線Mとしてシミュレートや演算により求めた近似的な曲線、折れ線、直線などを用いてもよい。また、ポンプ制御線Mとしてシミュレートや演算により求めた近似的なものを採用する場合、求めたポンプ制御線Mを実測データ等に基づき補正した上で使用するのが望ましい。
【0021】
運転台数N毎のポンプ性能曲線L1〜L3、ポンプ制御線M、並びに、それらの交点X1〜X3は図上に描いたものである必要はなく、ポンプ制御手段が式や座標としてのみ認識するものであってもよく、また、これらポンプ性能曲線L1〜L3やポンプ制御線M、あるいは、それらの交点X1〜X3や閾値流量Qs(Qs1〜Qs3)の夫々は、予め決定したものを初期設定的な入力によりポンプ制御手段に記憶させる方式、あるいは、所要データの入力によりポンプ制御手段に演算させる方式のいずれを採用してもよい。
【0022】
台数変更指標としての閾値流量Qs(Qs1〜Qs3)は、運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜X3における流量値と必ずしも厳密に合致させる必要はなく、例えば、安全率を見込んで各交点X1〜X3における流量値よりも若干小さい流量値を閾値流量Qsにしたり、また逆に、各熱媒ポンプの実質の最大出力が定格の最大出力よりも大きいことを安全分として各交点X1〜X3における流量値よりも若干大きい流量値を閾値流量Qsにするなど、各交点X1〜X3における流量値の近傍流量値を閾値流量Qsにしてもよい。
【0023】
負荷流量Qを検出する流量検出手段は、負荷装置における熱媒流量Qを直接的に検出するもの、あるいは、間接的に検出するもののいずれであってもよく、また、その検出方式の種々のものを採用することができる。
【0024】
本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、負荷流量を検出する流量検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量の変化に応じて調整するポンプ出力制御を実行する構成にしてある点にある。
【0025】
つまり、この構成によれば、前記ポンプ運転台数制御に加え、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整するので、ある運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転する上限側の閾値流量Qs(即ち、現状の運転台数よりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)よりも負荷流量Qが減少した状態では、少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての出力が低下する。
【0026】
即ち、各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプを常に最大出力で運転するのに比べ、上記の出力低下分だけ運転熱媒ポンプ全体としての消費エネルギを低減することができ、これにより、熱媒ポンプの運転台数Nを各時点での可能な範囲で確実に最小化し得る前記ポンプ運転台数制御と相まって、省エネルギ化を一層効果的に促進することができる。
【0027】
なお、運転熱媒ポンプの出力を調整するには、負荷流量Qの変化に応じて運転熱媒ポンプの出力を連続的に変更する調整形態あるいは段階的に変更する調整形態のいずれを採用してもよいが、いずれにしても前記ポンプ制御線Mを出力調整の基準線とする形態で負荷流量Qの変化に応じて運転熱媒ポンプの出力を調整するのが望ましい。
【0028】
負荷流量Qの変化に応じた運転熱媒ポンプの出力調整は、ポンプ運転台数制御による各運転台数Nでの熱媒ポンプ運転の全てについて実施するに限らず、各運転台数Nでの熱媒ポンプ運転のうちの一部の熱媒ポンプ運転についてのみ実施するようにしてもよい。
【0029】
また、運転熱媒ポンプの出力を調整するには、インバータ制御(周波数制御)によるポンプ回転数の調整を初め、種々の出力調整方式を採用することができる。
【0030】
この構成において用いる流量検出手段は、負荷装置における熱媒流量Qを直接的に検出するもの、あるいは、間接的に検出するもののいずれにしても種々の検出方式のものを採用することができ、また、第1特徴構成の実施において用いる流量検出手段を兼用するもの、あるいは、それとは別個のもののいずれであってもよい。
【0031】
本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ出力制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整して、前記負荷装置への熱媒送給圧力を目標圧力に調整する送給圧力制御と、
前記流量検出手段の検出情報に基づき前記送給圧力制御の目標圧力を負荷流量の変化に応じて変更する目標変更制御とを実行する構成にしてある点にある。
【0032】
つまり、この構成では、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整する前記ポンプ出力制御として、1つは運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整することで、負荷装置への熱媒送給圧力Pを目標圧力Pmに調整する送給圧力制御を実行させる。
【0033】
そして、他の1つとして送給圧力制御における目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御を実行させ、このように負荷流量Qの変化に応じて目標圧力Pmを変更する形態で上記送給圧力制御を実行させることにより、全体としては、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整する。
【0034】
即ち、上記構成によれば、全体としては負荷流量Qの変化に応じたポンプ運転台数制御と同様、負荷流量Qの変化に応じて運転熱媒ポンプの出力を調整するものの、制御端末では実質的に、負荷流量Qの変化に応じたポンプ運転台数制御とは異なり、前記ポンプ出力制御での運転熱媒ポンプの出力調整を熱媒送給圧力Pに応じて行なわせる形態となり、これにより、前記ポンプ運転台数制御及び前記ポンプ出力制御夫々の独立性を高めてシステム運転の安定性を高めることができる。
【0035】
なお、この構成の実施において、送給圧力制御で調整する熱媒送給圧力P、目標変更制御で変更する送給圧力制御の目標圧力Pm、圧力検出手段が検出する熱媒送給圧力Pは、運転熱媒ポンプ全体としての吐出圧力に限られるものではなく、負荷装置の入口熱媒圧力や運転熱媒ポンプ全体としての入出口熱媒差圧などであってもよい。
【0036】
本発明の第4特徴構成は、第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記目標変更制御として、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する構成にしてある点にある。
【0037】
つまり(図2参照)、熱媒ポンプの運転台数Nを一台減少させたときの運転台数減少の指標となった閾値流量Qs、及び、熱媒ポンプの運転台数Nを一台増加させたときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsはいずれも、略言すれば、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qs(即ち、現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に相当する。
【0038】
したがって、上記構成では、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qsに対して前記ポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)又は近傍圧力値を前記送給圧力制御の目標圧力Pmとする形態で、前記送給圧力制御の目標圧力Pmを熱媒ポンプ運転台数の変更毎に段階的に変更する。
【0039】
即ち、このように送給圧力制御の目標圧力Pmを段階的に変更すれば、前記ポンプ出力制御として、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分だけ運転熱媒ポンプ全体としての出力が低下するように少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての消費エネルギを低減することができて、省エネルギ化を一層促進することができる。
【0040】
また、上記構成では、熱媒ポンプの運転台数変更があったときのみ送給圧力制御の目標圧力Pmが変更され、それ以外の定常運転状態では送給圧力制御の目標圧力Pmが一定に維持される(言わば、熱媒ポンプ運転台数Nごとの個別の吐出圧一定制御となる)から、熱媒ポンプの運転台数変更には至らない小幅な負荷流量Q変化が多い場合においてシステムの運転を安定化するのに有効である。
【0041】
本発明の第5特徴構成は、第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記目標変更制御として、
前記流量検出手段の検出情報に基づき、各時点の負荷流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値を前記送給圧力制御の目標圧力とする形態で、
前記送給圧力制御の目標圧力を負荷流量の変化に伴い連続的に変更する構成にしてある点にある。
【0042】
つまり、この構成によれば、各時点の負荷流量Q(現状流量)に対して前記ポンプ制御線M上で対応する圧力値P又はその近傍圧力値を前記送給圧力制御の目標圧力Pmとする形態で、前記送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更するから、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qs(現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)よりも減少した状態では、その流量減少分とその流量減少に対応する圧力減少分とについて、運転熱媒ポンプ全体としての出力が低下するように少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての消費エネルギを低減することができて、省エネルギ化を一層効果的に促進することができる。
【0043】
本発明の第6特徴構成は、第3〜第5特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ運転台数制御として、
前記圧力検出手段により検出される熱媒送給圧力が前記送給圧力制御における目標圧力の設定許容範囲内にある状態において、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある点にある。
【0044】
つまり、この構成では、前記送給圧力制御において負荷装置への熱媒送給圧力Pが目標圧力Pmの設定許容範囲から外れている状況、即ち、適正な熱媒送給圧力Pが確保されていない状況では、負荷流量Qが閾値流量Qs(下限側の閾値流量)より減少したとしても、また、負荷流量Qが閾値流量Qs(上限側の閾値流量)より増加したとしても熱媒ポンプの運転台数変更は実施せず、現状の熱媒ポンプ運転台数が保持される。
【0045】
したがって、この構成によれば、適正な熱媒送給圧力Pが確保されていない状況で熱媒ポンプの運転台数Nを変更するために負荷装置に対する熱媒送給圧力Pがさらに不適切なものになるといったことを防止することができ、この点でシステム運転の安定性を高めることができる。
【0046】
本発明の第7特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記熱媒送給路における熱媒ポンプ並列配置群の下流側部分と上流側部分とを短絡する短絡還流路を設けて、この短絡還流路に短絡流量調整弁を介装し、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、短絡還流量制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき前記短絡流量調整弁の開度を調整して前記負荷装置への熱媒送給圧力を目標圧力に調整する短絡式の送給圧力制御と、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する目標変更制御とを実行する構成にしてある点にある。
【0047】
つまり、前述の如く(図2参照)、熱媒ポンプの運転台数Nを一台減少させたときの運転台数減少の指標となった閾値流量Qs、及び、熱媒ポンプの運転台数Nを一台増加させたときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsはいずれも、略言すれば、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qs(即ち、現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に相当する。
【0048】
したがって、上記構成では、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qsに対して前記ポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)又は近傍圧力値を上記短絡式の送給圧力制御における目標圧力Pmとする形態で、その送給圧力制御の目標圧力Pmを熱媒ポンプ運転台数Nの変更毎に段階的に変更する。
【0049】
即ち、このように短絡式の送給圧力制御における目標圧力Pmを段階的に変更すれば、複数の熱媒ポンプの夫々に出力固定型のポンプを用いる場合でも、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qsより減少した状態では、その負荷流量Qの減少で生じる運転熱媒ポンプ全体としての熱媒送給流量うちの余剰分を短絡式の送給圧力制御による短絡流量調整弁の開度調整により短絡還流路を通じ逃がすことができて、各運転台数Nでの熱媒ポンプ運転の夫々につき負荷装置への熱媒送給圧力Pを熱媒ポンプ運転台数N毎の目標圧力Pmに安定的に維持することができ、これによりシステムの運転を安定化することができる。
【発明を実施するための最良の形態】
【0050】
〔第1実施形態〕
図1は空調用の熱源システムを示し、このシステムは熱源機としてインバータ装置INVによる出力調整(即ち容量制御)が可能な複数の冷凍機Rを備え、各冷凍機Rには冷却水循環路1を介して冷却塔CTを個別に接続してある。
【0051】
2aは各冷凍機Rから1次側冷水往路3aを通じて並列的に供給される冷水Cを受け入れる1次側ヘッダ、2bは複数の冷水中継路3bを通じて1次側ヘッダ2aから冷水Cの供給を受ける2次側ヘッダであり、この2次側ヘッダ2bから空調機等の複数の負荷装置Uに対し熱媒としての冷水Cを2次側冷水往路3cを通じて並列的に送給することで、各負荷装置Uでは供給冷水Cの保有冷熱を冷房等の所要目的に消費する。
【0052】
2cは冷熱消費で昇温した冷水Cを各負荷装置Uから2次側冷水還路3dを通じて受け入れ、その受け入れ冷水Cを1次側冷水還路3eを通じて各冷凍機Rに戻す還側ヘッダであり、冷凍機Rと負荷装置Uとを結ぶ冷水循環系は1次側ヘッダ2aと還側ヘッダ2cとを境として冷凍機Rの側である1次側(換言すれば熱源側)と負荷装置Uの側である2次側(換言すれば負荷側)とに区分される。
【0053】
この熱源システムの構成機器としては冷凍機R、冷却塔CT、負荷装置Uの他、各冷凍機Rへの1次側冷水還路3eに介装した1次ポンプJA、2次側冷水往路3cとともに負荷装置Uへの熱媒送給路を構成する並列の冷水中継路3b夫々に介装した2次ポンプJB、各冷却水循環路1に介装した冷却水ポンプJCなどを備え、これらポンプJA,JB,JCは各々に装備のインバータ装置INVを用いた周波数制御によるポンプモータの回転数調整でポンプ出力を連続的に調整し得る可変ポンプにしてある。
【0054】
なお、冷却塔CT、冷却水ポンプJC、1次ポンプJAの夫々は対応する冷凍機Rの発停に応じて発停され、2次ポンプJBは負荷装置Uの側の必要冷水流量である負荷流量Qに応じて運転台数制御されるとともに出力制御される。
【0055】
Vaは1次側冷水往路3aの夫々に装備した開閉弁であり、これら開閉弁Vaは対応する冷凍機R及び1次ポンプJAの運転時に開弁される。
【0056】
Vbは各負荷装置Uに装備した流量調整弁であり、1次ポンプJA及び2次ポンプJBによる冷水循環の下で、これら流量調整弁Vbにより各負荷装置Uの冷水流量q(即ち、負荷装置U個々の負荷流量)が各負荷装置Uの熱負荷g(即ち、負荷装置U個々の必要冷熱量)に応じて調整される。
【0057】
Vsは1次側ヘッダ2aと2次側ヘッダ2bとにわたらせた短絡還流路3fに装備した流量バランス調整用の短絡流量調整弁であり、この短絡流量調整弁Vsは後述の圧力センサPSにより検出される負荷装置Uへの冷水送給圧力P(本例では2次側ヘッダ2b内の冷水圧力)に応じて、その冷水送給圧力Pを適正値に保つように開度調整される。
【0058】
4は1次側ヘッダ2aと還側ヘッダ2cとを短絡するバイパス路であり、このバイパス路4を通じた冷水流動により1次側と2次側との冷水流量差が吸収される。即ち、2次側よりも1次側の冷水流量が大きい状態ではその差分の冷水Cが1次側ヘッダ2aからバイパス路4を通じて還側ヘッダ2cの方に流れ、逆に、1次側よりも2次側の冷水流量が大きい状態ではその差分の冷水Cが還側ヘッダ2cからバイパス路4を通じて1次側ヘッダ2aの方に流れる。
【0059】
各部の流量、温度、圧力等を検出するセンサとしては、負荷装置Uへの冷水送給圧力Pを検出する上記圧力センサPSの他、負荷装置U側の負荷流量Q(即ち、各負荷装置Uからの戻り冷水Cの合計流量Q=Σq)を検出する流量センサFS、負荷装置Uへの供給冷
水温度Ti及び冷凍機Rへの戻り冷水温度Toを検出する温度センサTSを装備し、また、各1次ポンプJAの流量・送水圧力、各冷凍機Rの出口冷水温度・入口冷却水温度・出口冷却水温度、各負荷装置Uの入口冷水圧力・出口冷水圧力、各冷却水ポンプJCの流量、外気の温度・湿度などを検出するセンサSも装備してある。
【0060】
5はシステム制御器であり、このシステム制御器5は上記各センサの検出情報に基づき1次側及び2次側の夫々について次の如き制御を実行する構成にしてある。
【0061】
各負荷装置Uの熱負荷gに応じて各負荷装置Uの冷水流量qが流量調整弁Vbにより調整されることに対し、1次側については、温度センサTSにより検出される負荷装置Uへの供給冷水温度Tiと冷凍機Rへの戻り冷水温度Toとの差温、並びに、流量センサFSにより検出される負荷装置U側の負荷流量Q(=Σq)に基づき、負荷装置U側の熱負荷
総計G(=Σg)を逐次演算する。
【0062】
そして、各負荷装置Uにおける熱負荷gの変化に伴い熱負荷総計Gが変化することに対し、その熱負荷総計Gの変化に応じて冷凍機Rの運転台数を変更する熱源側の運転台数制御を行なうとともに、運転冷凍機R並びにそれに対する1次ポンプJA及び冷却水ポンプJC夫々の出力を熱負荷総計Gの変化に伴いインバータ装置INVにより連続的に調整する熱源側の出力制御を行い、これにより、熱負荷総計Gに対して1次側の発生冷熱量を平衡させる。
【0063】
一方、2次側については、上記流量調整弁Vbによる冷熱流量qの調整で負荷流量Q(=Σq)が変化することに対し、流量センサFSによる検出負荷流量Qに基づき、2次ポ
ンプJBの運転台数Nを負荷流量Qの変化に応じて変更するポンプ運転台数制御を行なうとともに、運転2次ポンプJBの出力を負荷流量Qの変化に伴いインバータ装置INVにより連続的に調整するポンプ出力制御を行なう。
【0064】
更に詳述すると、負荷装置Uへの熱媒送給路に並列配置で介装される熱媒ポンプの一例である2次ポンプJBについて上記ポンプ運転台数制御及びポンプ出力制御を実行するのに、具体的には次の(A)〜(F)の制御形態を採用している(図2,図3参照)。
【0065】
(A)各運転台数Nでの2次ポンプ運転において運転2次ポンプJBの夫々を最大出力で運転した場合における冷水送給流量Qと冷水送給圧力Pとの相関を示す運転台数N毎のポンプ性能曲線L1〜L3を設定する。
【0066】
また、配管抵抗なども考慮して、負荷流量Qと、その負荷流量Qの冷水Cを各負荷装置Uに供給するのに必要な送給圧力Pとの相関を示すポンプ制御線Mを設定する。
これら運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜K3における流量値Qs(Qs1〜Qs3)の夫々を閾値流量として設定する。
【0067】
なお、本例では、このように設定した閾値流量Qs(Qs1〜Qs3)をポンプ制御手段としてのシステム制御器5に対し初期設定により記憶させ、同様にポンプ制御線Mを関数式として初期設定によりシステム制御器5に記憶させる。
【0068】
また本例では、ポンプ制御線Mとしてシミュレートや演算により求めた近似的な2次曲線をシステム試運転時の実測データ等に基づき補正した上で使用している。
【0069】
(B)そして、ポンプ運転台数制御として、負荷流量Qを検出する流量センサFSの検出情報に基づき、上記閾値流量Qs(Qs1〜Qs3)の各々について、負荷流量Qが閾値流量Qsよりも減少すると2次ポンプJBの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると2次ポンプJBの運転台数Nを一台増加させる。
【0070】
つまり、図2において負荷流量QがQs3〜Qs2の流量域にある状態では3台の2次ポンプJBの全てを運転し、負荷流量QがQs2〜Qs1の流量域にある状態では2台の2次ポンプJBを運転し、負荷流量QがQs1以下の流量域にある状態では1台の2次ポンプJBを運転する。
【0071】
即ち、このポンプ運転台数制御により、2次ポンプJBの運転台数Nが過大となる状況が生じるのを回避して、2次ポンプJBの運転台数Nを各時点での可能な範囲で確実に最小化する。
【0072】
(C)一方、運転2次ポンプJBの出力を負荷流量Qの変化に伴い調整するポンプ出力制御としては、負荷装置Uへの冷水送給圧力Pを検出する圧力センサPSの検出情報に基づき、ポンプ運転台数制御による各運転台数N(N=1,2,3)での2次ポンプ運転において運転2次ポンプJB夫々の出力をインバータ装置INVにより調整して、負荷装置Uへの熱媒送給圧力Pを目標圧力Pmに調整する送給圧力制御を実行するとともに、流量センサFSの検出情報に基づき、この送給圧力制御の目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御を実行する。
【0073】
(D)そして、この目標変更制御については、上記ポンプ運転台数制御で2次ポンプJBの運転台数Nを一台減少させたときには、送給圧力制御の目標圧力Pmを、そのときの運転台数減少の指標となった閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。
【0074】
また、上記運転台数制御で2次ポンプJBの運転台数Nを一台増加させたときには、送給圧力制御の目標圧力Pmを、そのときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。
【0075】
換言すれば、各運転台数Nでの2次ポンプ運転における上限側の閾値流量Qs(現状の運転台数Nよりも2次ポンプJBの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)を送給圧力制御の目標圧力Pmとする形態で、送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する。
【0076】
即ち、この目標変更制御の下で送給圧力制御を行なうポンプ出力制御では、負荷流量Qの変化に対し負荷装置Uへの冷水送給圧力Pは図2における圧力変化線PLmに沿って変化する。
【0077】
そして、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分だけ運転2次ポンプ全体としての出力が低下するように運転2次ポンプJB夫々の出力が最大出力よりも低下側に調整されることで、上記ポンプ運転台数制御による2次ポンプ運転台数Nの最小化と相まって2次ポンプ運転の消費エネルギがさらに低減される。
【0078】
(E)なお本例では、上記ポンプ運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転において圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御における目標圧力Pm(Ps1〜のPs3)の設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少すると2次ポンプJBの運転台数Nを一台減少させる。
【0079】
また同様に、各運転台数Nでの2次ポンプ運転において圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御における目標圧力Pm(Ps1〜のPs3)の設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも増加すると2次ポンプJBの運転台数Nを一台増加させる。
【0080】
即ち、このように適正な冷水送給圧力Pが確保される状況での2次ポンプ運転台数変更のみを許容することにより、適正な熱媒送給圧力Pが確保されていない状況で2次ポンプJBの運転台数Nを変更するために負荷装置Uに対する冷水送給圧力Pがさらに不適切なものになるといったことを防止する。
【0081】
(F)また本例では、短絡還流路3fに装備した短絡流量調整弁Vsの開度制御として、圧力センサPSの検出情報に基づき短絡流量調整弁Vsすることによっても、負荷装置Uへの冷水送給圧力Pを各運転台数Nでの2次ポンプ運転における送給圧力制御の目標圧力Pm(即ち、目標変更制御により2次ポンプ運転台数Nの変更毎に変更される目標圧力Ps1〜Ps3)に調整するようにしてある。
【0082】
換言すれば、圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整して負荷装置Uへの冷水送給圧力Pを目標圧力Pmに調整する短絡流量調整弁Vsの開度制御において、その目標圧力Pmを前記目標変更制御により2次ポンプ運転台数Nの変更毎に段階的に変更する。
【0083】
つまり、各運転台数Nでの2次ポンプ運転で運転2次ポンプJBの出力を負荷流量Qの変化に伴い調整する前記出力制御において、運転2次ポンプJBの出力が調整範囲の下限に至って、それ以上は運転2次ポンプJBの出力を低下側に調整できない状態に至ったとしても、この短絡流量調整弁Vsの開度制御により負荷装置Uへの冷水送給圧力Pを各運転台数Nでの2次ポンプ運転における目標圧力Pm(Ps1〜Ps3)に調整できるようにしてある。
【0084】
〔第2実施形態〕
前述の第1実施形態では、2次ポンプJBの出力制御における送給圧力制御の目標圧力Pmについて、目標変更制御により送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する例を示したが、これに代え、この第2実施形態では、送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更する。
【0085】
つまり、この第2実施形態では、目標圧力制御を次の(D′)の如き制御形態でシステム制御器5に実行させる(図4参照)。
【0086】
(D′)流量センサFSの検出情報に基づき、各時点の負荷流量Q(現状流量)に対してポンプ制御線M上で対応する圧力値Pを送給圧力制御の目標圧力Pmとする形態で、送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更する。
【0087】
即ち、この目標変更制御の下で前記送給圧力制御を行なう2次ポンプJBの出力制御では、負荷流量Qの変化に対し負荷装置Uへの冷水送給圧力Pは図4における圧力変化線PLmに沿って変化する。
【0088】
そして、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分とその流量減少に対応する圧力減少分とについて運転2次ポンプ全体としての出力が低下するように運転2次ポンプJB夫々の出力が最大出力よりも低下側に調整されることで、上記運転台数制御による2次ポンプ運転台数Nの最小化と相まって2次ポンプ運転の消費エネルギがさらに効果的に低減される。
【0089】
なお、この第2実施形態においても、前述第1実施形態の場合と同様、前記運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転で圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御の各時点における目標圧力Pmの設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少(又は増加)すると2次ポンプJBの運転台数Nを一台減少(又は増加)させるのが望ましい。
【0090】
そしてまた、前述の第1実施形態と同様、圧力センサPSの検出情報に基づき短絡流量調整弁Vsすることによっても、負荷装置Uへの冷水送給圧力Pを送給圧力制御における各時点の目標圧力Pm(即ち、上記の目標変更制御により負荷流量Qの変化に伴い連続的に変更する目標圧力)に調整するのが望ましい。
【0091】
その他については、第1実施形態と同じである。
【0092】
〔第3実施形態〕
前述の第1及び第2実施形態ではいずれも負荷流量Qの変化に応じて運転2次ポンプJBの出力をインバータ装置INVにより調整する例を示したが、この第3実施形態では、この2次ポンプJBの出力制御を行なわない例を示す。
【0093】
つまり、この第3実施形態では、各2次ポンプJBに出力固定型のポンプを使用している。そして、2次ポンプJBの出力制御に代え、システム制御器5は、前述の第1実施形態で示した短絡流量調整弁Vsの開度制御と実質的に同じ制御である短絡還流量制御を実行する構成にしてある。
【0094】
具体的には、短絡還流量制御として短絡式の送給圧力制御とその送給圧力制御の目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御とを実行し、短絡式の送給圧力制御では、負荷装置Uへの冷水送給圧力Pを検出する圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整して負荷装置Uへの冷水送給圧力Pを目標圧力Pmに調整する。
【0095】
一方、目標変更制御では、前記運転台数制御で2次ポンプJBの運転台数Nを一台減少させたときには、短絡式の送給圧力制御における目標圧力Pmを、そのときの運転台数減少の指標となった閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。
【0096】
また、前記運転台数制御で2次ポンプJBの運転台数Nを一台増加させたときには、短絡式の送給圧力制御における目標圧力Pmを、そのときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsに対してポンプ制御線M上で対応する圧力値圧力値Ps(Ps1〜Ps3)に変更する。
【0097】
換言すれば、各運転台数Nでの2次ポンプ運転における上限側の閾値流量Qs(現状の運転台数Nよりも2次ポンプJBの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)を短絡式の送給圧力制御における目標圧力Pmとする形態で、短絡式送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する。
【0098】
即ち、2次ポンプJBに出力固定型のポンプを用いながらも、上記目標変更制御の下で短絡式の送給圧力制御を行なうことにより、負荷流量Qの変化に対し負荷装置Uへの冷水送給圧力Pは第1実施形態の場合と同様、図2における圧力変化線PLmに沿って変化する。
【0099】
つまり、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsより減少した状態では、その負荷流量Qの減少で生じる出力固定型の運転2次ポンプ全体としての熱媒送給流量うちの余剰分を短絡式の送給圧力制御による短絡流量調整弁Vsの開度調整により短絡還流路3fを通じ逃がし、これにより各運転台数Nでの2次ポンプ運転の夫々につき負荷装置Uへの冷水送給圧力Pを2次ポンプ運転台数N毎の目標圧力Pm(Ps1〜Ps3)に安定的に維持する。
【0100】
なお、この第3実施形態においても、前述第1実施形態の場合と同様、前記運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転で圧力センサPSにより検出される冷水送給圧力Pが短絡式の送給圧力制御における目標圧力Pmの設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少(又は増加)すると2次ポンプJBの運転台数Nを一台減少(又は増加)させるようにするのが望ましい。
【0101】
その他については第1実施形態と同じである。
【0102】
〔別実施形態〕
前述の第1及び第2実施形態では、複数の熱媒ポンプ(2次ポンプJB)の全てが出力可変型のポンプである場合を示し、また、前述の第3実施形態では複数の熱媒ポンプ(2次ポンプJB)の全てが出力固定型のポンプである場合を示したが、本発明は複数の熱媒ポンプにおける一部が出力可変型のポンプで他のものが出力固定型のポンプである場合にも適用できる。
【0103】
そして、この場合にはポンプ運転台数制御による各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプのうちに出力可変型のポンプが存在する場合に、その出力可変型の運転ポンプにつき前述のポンプ出力制御を実施し、運転台数Nの変更で運転熱媒ポンプの全てが出力固定型のポンプとなった場合には、前述短絡式の送出圧力制御を行なうようにすればよい。
【0104】
前述の各実施形態では、冷凍機Rにより冷却する冷水Cを熱媒とする例を示したが、熱媒は冷水Cに限らずブラインや温水などであってもよく、また、熱媒を冷却又は加熱する熱源機も冷凍機に限らず冷温水発生機やボイラあるいは熱交換器など、どのようなものであってもよい。
【0105】
前述の各実施形態では、1次ポンプJAと2次ポンプJBを備える熱媒循環系において2次ポンプを本発明実施対象の熱媒ポンプとする例を示したが、1次ポンプと2次ポンプとを兼ねる熱媒ポンプを備える熱媒循環系において、その熱媒ポンプにつき本発明を適用してもよく、また、熱媒循環系以外で複数の熱媒ポンプにより負荷装置に熱媒を供給する場合にも本発明を適用することができる。
【0106】
本発明は空調設備の熱源システムに限らず、負荷装置に熱媒を供給する複数の熱媒ポンプを備える熱源システムであれば、各種分野における種々の目的の熱源システムに適用することができる。
【図面の簡単な説明】
【0107】
【図1】第1実施形態を示すシステム構成図
【図2】第1実施形態のポンプ制御方式を説明するグラフ
【図3】第1実施形態のポンプ制御方式を説明するフローチャート
【図4】第2実施形態のポンプ制御方式を説明するグラフ
【図5】従来のポンプ制御方式を説明するグラフ
【符号の説明】
【0108】
R 熱源機
C 熱媒
U 負荷装置
3b 熱媒送給路
JB 熱媒ポンプ
Q 負荷流量
N 運転台数
5 ポンプ制御手段
P 圧力
L1〜L3 運転台数毎のポンプ性能曲線
M ポンプ制御線
X1〜X3 交点
Qs1〜Qs3 閾値流量(Qs)
FS 流量検出手段
PS 圧力検出手段
Pm 目標圧力
3f 短絡還流路
Vs 短絡流量調整弁

【特許請求の範囲】
【請求項1】
熱源機で冷却又は加熱した熱媒を負荷装置に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、
前記負荷装置が必要とする熱媒流量である負荷流量の変化に応じて前記熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムであって、
各運転台数での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転した場合における熱媒送給流量と熱媒送給圧力との相関を示す運転台数毎のポンプ性能曲線を設定するとともに、
前記負荷流量とその負荷流量の熱媒を前記負荷装置に供給するのに必要な送給圧力との相関を示すポンプ制御線を設定して、
これら運転台数毎のポンプ性能曲線とポンプ制御線との各交点における流量値又はその近傍流量値の夫々を閾値流量として設定し、
これらの設定に対して前記ポンプ制御手段は、ポンプ運転台数制御として、負荷流量を検出する流量検出手段の検出情報に基づき、
前記閾値流量の各々について、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある熱源システム。
【請求項2】
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、負荷流量を検出する流量検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量の変化に応じて調整するポンプ出力制御を実行する構成にしてある請求項1記載の熱源システム。
【請求項3】
前記ポンプ制御手段は、前記ポンプ出力制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整して、前記負荷装置への熱媒送給圧力を目標圧力に調整する送給圧力制御と、
前記流量検出手段の検出情報に基づき前記送給圧力制御の目標圧力を負荷流量の変化に応じて変更する目標変更制御とを実行する構成にしてある請求項2記載の熱源システム。
【請求項4】
前記ポンプ制御手段は、前記目標変更制御として、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する構成にしてある請求項3記載の熱源システム。
【請求項5】
前記ポンプ制御手段は、前記目標変更制御として、
前記流量検出手段の検出情報に基づき、各時点の負荷流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値を前記送給圧力制御の目標圧力とする形態で、
前記送給圧力制御の目標圧力を負荷流量の変化に伴い連続的に変更する構成にしてある請求項3記載の熱源システム。
【請求項6】
前記ポンプ制御手段は、前記ポンプ運転台数制御として、
前記圧力検出手段により検出される熱媒送給圧力が前記送給圧力制御における目標圧力の設定許容範囲内にある状態において、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある請求項3〜5のいずれか1項に記載の熱源システム。
【請求項7】
前記熱媒送給路における熱媒ポンプ並列配置群の下流側部分と上流側部分とを短絡する短絡還流路を設けて、この短絡還流路に短絡流量調整弁を介装し、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、短絡還流量制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき前記短絡流量調整弁の開度を調整して前記負荷装置への熱媒送給圧力を目標圧力に調整する短絡式の送給圧力制御と、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する目標変更制御とを実行する構成にしてある請求項1記載の熱源システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate