説明

物理量センサ

【課題】入力されたパルス波形電圧と同期した信号を出力することが可能な物理量センサを提供する。
【解決手段】力覚センサ1は、外力又は慣性力が作用する作用部と、作用部を支持する支持部と、作用部及び支持部を連結する連結部と、連結部に配置された歪検出用抵抗素子Sを含むフルブリッジ回路FBと、フルブリッジ回路FBにパルス波形電圧を印加する信号入力部9と、パルス波形電圧が印加されたフルブリッジ回路FBからの出力信号が入力されるA/D変換部53と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多軸力センサ等、力又は加速度を検出する物理量センサに関する。
【背景技術】
【0002】
ロボットハンド等の自動作業機械では、その作業動作上で、作業対象物に対して力を加えたり、外界から力の作用を受けたりする。この場合、自動作業機械では、自身に加わる外部からの力やモーメントを検出し、当該力やモーメントに対応した制御を行うことが要求される。力やモーメントに対応する制御を高精度で行うためには、外部から加わる力とモーメントを正確に検出することが必要となる。
【0003】
そこで従来から、外力に比例した変形量に基づき力又は加速度を測定する物理量センサが提案されている。特許文献1に記載された圧力測定装置は、4つのインピーダンスから構成されるホイートストンブリッジ形のインピーダンスブリッジ回路を備えており、インピーダンスブリッジ回路にパルス駆動波形の電圧を印加し、インピーダンスブリッジ回路の両アームの中間地点の電位差を電圧センサによって一定の時間間隔でサンプリング測定し、サンプリング測定された今回の電圧と前回の電圧の差が一定のしきい値以下になったときの測定値をセンサ出力としている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−194646号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、かかる圧力測定装置において、電圧センサによるサンプリング測定のタイミングをパルス駆動波形と同期させることは困難であった。
【0006】
本発明は、これらの事情に鑑みて成されたものであり、入力されたパルス波形電圧と同期した信号を出力することが可能な物理量センサを提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明に係る物理量センサは、力又は加速度を検出する物理量センサであって、外力又は慣性力が作用する作用部と、前記作用部を支持する支持部と、前記作用部及び前記支持部を連結する連結部と、前記連結部に配置された歪検出用抵抗素子を含むホイートストンブリッジ回路と、前記ホイートストンブリッジ回路にパルス波形電圧を印加する電圧印加部と、前記パルス波形電圧が印加された前記ホイートストンブリッジ回路からの出力信号が入力され、当該出力信号をデジタル変換して出力するA/D変換部と、を備えることを特徴とする。
【0008】
かかる構成によると、A/D変換部がホイートストンブリッジ回路からの出力信号をデジタル変換して出力するので、ホイートストンブリッジ回路に入力されたパルス波形電圧と同期した信号を出力することができる。
【0009】
前記物理量センサは、前記ホイートストンブリッジ回路からの前記出力信号が入力されるフィルタ部と、前記フィルタ部からの出力信号が入力されるバッファ部と、をさらに備え、前記パルス波形電圧が印加された前記ホイートストンブリッジ回路からの出力信号は、前記フィルタ部及び前記バッファ部を介して前記A/D変換部に入力される構成であってもよい。
【発明の効果】
【0010】
本発明によれば、入力されたパルス波形電圧と同期した信号を出力することができる。
【図面の簡単な説明】
【0011】
【図1】本実施形態に係る滑り覚検知装置を適用した自動作業機械の概略側面図である。
【図2】(a)は、接触部と力覚センサの断面図であり、(b)は、力覚センサの斜視図である。
【図3】配線を除外して示した力覚センサの平面図である。
【図4】力覚センサの平面図である。
【図5】歪検出用抵抗素子とモニタ用抵抗素子の電気接続関係を示す回路図である。
【図6】本実施形態に係る力覚センサの一例を示す回路図である。
【図7】(a)は、歪検出用抵抗素子に0.3[mA]の電流を流した場合における出力信号の経時変化を示すグラフ、(b)は、歪検出用抵抗素子に1.17[mA]の電流を流した場合における出力信号の経時変化を示すグラフ、(c)は、歪検出用抵抗素子に3.5[mA]の電流を流した場合における出力信号の経時変化を示すグラフである。
【発明を実施するための形態】
【0012】
本発明の第1実施形態について、図面を参照して詳細に説明する。説明において、同一の要素には同一の番号を付し、重複する説明は省略する。本実施形態では、部品などの対象物を把持して製品に組み付ける自動作業装置に本発明を適用した場合を例にとって説明する。
【0013】
図1は、本実施形態に係る力覚センサ(物理量センサ)を適用した自動作業機械の概略側面図である。
図1に示すように、自動作業装置Rは、例えばいわゆるロボットハンドであり、製品を製造する工場のラインに沿って設置されている。自動作業装置Rは、床面に設置された装置本体R1と、装置本体R1の上部に設置された腕部R2と、腕部R2の先端に設けられた把持部R3と、を有している。
腕部R2は、複数の関節部rを有しており、水平方向或いは垂直方向に回動して、先端の把持部R3を所望の位置や向きに配置することが可能になっている。
把持部R3は、対象物たる部品Pに接触する一対の接触部R4と、一対の接触部R4を互いに近接・離間させる駆動部R5とを有している。接触部R4の内部には、接触部R4が部品Pから受ける外力Fを検知するための力覚センサ1が設置されている。
装置本体R1は、腕部R2や把持部R3の動作を制御する制御部R6や電源装置(図示省略)等を有している。
自動作業装置Rは、例えば、予め記憶されたプログラムにしたがって、作業台Dに載置された対象物たる部品Pを把持部R3で把持した後、腕部R2を駆動して製品の取付位置まで部品Pを運搬し、部品Pを製品に取り付ける動作を行う。
【0014】
図2の(a)は、接触部と力覚センサの断面図であり、(b)は、力覚センサの斜視図である。
図2(a)に示すように、接触部R4は、中空筒状を呈する金属製の本体部R4aと、この本体部R4aの表面に被覆されたエラストマーR4bと、を有している。
接触部R4には、部品Pを把持するときに部品Pから受ける反力F1と、部品Pが滑ったときに、部品PとエラストマーR4bとの間に生じる摩擦力F2と、が作用する。
なお、以下の説明においては、反力F1と摩擦力F2とを合わせて外力Fという場合がある。
【0015】
本体部R4aの先端側は、ドーム状に形成されて閉塞されており、本体部R4aの基端側は、駆動部R5に連結されている。
エラストマーR4bは、いわゆるゴムであり、例えばシリコーンゴムやフッ素ゴムなどで構成されている。エラストマーR4bは、本体部R4aを構成する金属材料などに比較して低い固有振動数を有しており、接触部R4と部品Pとの間に滑りが生じたときに、低い周波数の振動を発生させる機能を有している。
【0016】
力覚センサ1は、例えば6軸力センサであり、外力を、直交座標系の3軸(X軸、Y軸、Z軸)の各軸方向の応力成分(力:Fx,Fy,Fz)と、各軸方向のトルク成分(モーメント:Mx,My,Mz)に分け、6軸成分として検出する機能を有している。
力覚センサ1は、図2(a),(b)に示すように、台座11と、円筒形の減衰機構12と、力覚センサ用チップ2とから構成される。
【0017】
台座11は、例えばステンレス材(SUS)で作られた支持台部分を形成している。台座11の一端側(図2では下側)には、中央部にセンサチップ支持部11aが設けられ、周縁部に減衰機構支持部11bが設けられている。センサチップ支持部11aにはガラス台座13及び接合層14を介して力覚センサ用チップ2が取り付けられている。また減衰機構支持部11bには、接合層15を介して減衰機構12が取り付けられている。台座11の他端側11cは、本体部R4aの内部に充填された樹脂などに固定されている。
【0018】
減衰機構12は、外力や荷重を受け、当該外力を連結ロッド16を介して力覚センサ用チップ2に伝達するとき、力覚センサ用チップ2に伝達される当該外力を弱くする緩衝機構である。減衰機構12は、接合部18を介して連結ロッド16の一端側を保持する円筒状の保持部12aと、保持部12aよりも大径に形成されて力覚センサ用チップ2を覆う円筒状のケース部12bと、を備えている。保持部12aは、本体部R4aの先端側の内壁に固定されている。ケース部12bには、肉抜き用の長孔12cが周方向に沿って複数形成されている。
【0019】
連結ロッド16は、図2(a)に示すように、円柱状の部材であり、一端側を保持部12aに接合部18を介して保持され、他端側を力覚センサ用チップ2の作用部21に絶縁性を有する接合部19を介して接続されている。
【0020】
次に、力覚センサ用チップ2の構成について、図3及び図4を参照しながら詳細に説明する。図3は、配線を除外して示した力覚センサの平面図である。図4は、力覚センサの平面図である。
力覚センサ用チップ2は、6軸力センサチップであり、図3に示すように、平面視で略正方形のベース部材20上に構成されている。そして、当該ベース部材20は、図3に示すように、外力F(図2参照)が伝達される作用部21と、連結部23を介して作用部21を支持する支持部22と、作用部21と支持部22とを連結する連結部23と、を備えている。
【0021】
また、ベース部材20上の所定位置には、図3に示すように、外力Fの大きさや方向を検出する歪検出用抵抗素子Sと、歪検出用抵抗素子S近傍の環境温度をモニタする温度補償用抵抗素子27と、が配置されている。歪検出用抵抗素子S及び温度補償用抵抗素子27は、図4に示すように、配線28を介して信号電極パッド25及びGND電極パッド26と接続されている。
【0022】
また、ベース部材20上の所定位置には、図3に示すように、モニタ用抵抗素子Tが配置されている。モニタ用抵抗素子Tは、図4に示すように、配線28を介して信号電極パッド25及びGND電極パッド26と接続されている。
かかるモニタ用抵抗素子Tは、ベース部材20の支持部22上に配置されてもよいが、本実施形態においては、1個のモニタ用抵抗素子Tが、ベース部材20の連結部23上の貫通孔Hと、貫通孔Hから延設された貫通孔H1,H2と、に囲まれた開放端上に配置されているとともに、2個のモニタ用抵抗素子Tが貫通孔Lに囲まれた開放端上に配置されており、ベース部材20の変形の影響を受けないように構成されている。かかるモニタ用抵抗素子Tは、少なくとも1個設けられていればよい。
【0023】
ベース部材20は、力覚センサ用チップ2の土台となる部材である。ベース部材20は、図3に示すように、作用部21と、支持部22と、連結部23と、を有している。また、ベース部材20には、図3に示すように、貫通孔G,H,I,J,K,L,M,N及び貫通孔Hから延設された貫通孔H1,H2が形成されている。ベース部材20は、例えば、シリコン等の半導体基板で構成することができる。
ベース部材20の外周縁には、各辺に沿って所要の幅にてほぼ正方形リング状のGND(接地(GROUND))配線29が形成されている。このGND配線29には、後記するGND電極パッド26が接続されている。なお、正方形リング状のGND配線29は一例であり、一定電位にするものであれば、どのようなものでもよい。
【0024】
作用部21は、外力Fが印加される領域である。作用部21は、図3に示すように、力覚センサ用チップ2の中央部に形成されている。また作用部21は、前記したように、絶縁性を有する接合部19を介して減衰機構12の連結ロッド16と接合されている(図2(a)参照)。
【0025】
支持部22は、連結部23を介して作用部21を支持する領域である。支持部22は、図3に示すように、力覚センサ用チップ2の周縁部に形成され、四角枠状をなしている。また支持部22は、前記したように、その全部又は一部がガラス台座13及び接合層14を介して台座11のセンサチップ支持部11aと接合されている(図2(a)参照)。なお、支持部22の形状は、作用部21を支持できる形状であれば四角枠状に限られず、例えば円形枠状とすることもできる。
【0026】
連結部23は、作用部21と支持部22とを連結する領域である。連結部23は、図3に示すように、作用部21と支持部22の間に形成されている。また、連結部23には、後記するように、細長いスリット状の貫通孔G,H,I,J,K,L,M,Nが所定の箇所に形成されている。
【0027】
連結部23は、図3に示すように、弾性部23a1,23b1,23c1,23d1と、橋梁部23a2,23b2,23c2,23d2と、からなるT字梁状の領域23a,23b,23c,23dをそれぞれ備えている。弾性部23a1,23b1,23c1,23d1は、図3に示すように、長さ方向における両端部が支持部22の内周と接続され、中心部がそれぞれに対応する橋梁部23a2,23b2,23c2,23d2の一方の端部と接続されている。また、橋梁部23a2,23b2,23c2,23d2は、図3に示すように、長さ方向における一方の端部がそれぞれに対応する弾性部23a1,23b1,23c1,23d1と接続され、他方の端部が作用部21と接続されている。
【0028】
T字梁状の領域23a,23b,23c,23dは、図3に示すように、作用部21の中心に対して4回対称となるように、力覚センサ用チップ2の四辺に対応して形成することが好ましい。このように、作用部21を中心として4回対称となるようにT字梁状の領域23a,23b,23c,23dを形成することで、支持部22が4方向からバランス良く作用部21を支持することができる。
【0029】
また、弾性部23a1,23b1,23c1,23d1は、それぞれ剛性の低い物質で構成し、橋梁部23a2,23b2,23c2,23d2は、それぞれ剛性の高い物質で構成することが好ましい。また、剛性を大きくする他の方法としては、部材の厚みを大きくすることが挙げられる。
【0030】
このように、T字梁状の領域23a,23b,23c,23dを剛性の低い領域と剛性の高い領域とに分けて形成することで、作用部21に外力Fが印加された際に、弾性部23a1,23b1,23c1,23d1が、橋梁部23a2,23b2,23c2,23d2にかかる余分な歪みを吸収し、一方向への力又はモーメントの印加による力覚センサ用チップ2全体の歪みの発生を抑制することができる。従って、特定の方向の力又はモーメントに対応する歪検出用抵抗素子Sに選択的に歪みを発生させることができ、他軸干渉を大幅に抑制することができる。
【0031】
なお、他軸干渉とは、単一成分の力の入力があった際に、その他の成分の力の入力が「0」であるにも関わらず、ノイズ等の外乱によって測定結果が「0」とならない現象、すなわち、力又はモーメントの測定値が他軸の力又はモーメントによって変動する現象のことを指している。
【0032】
貫通孔(第1貫通孔)G,H,I,Jは、図3に示すように、ベース部材20の厚さ方向に貫通して形成された略直線状のスリット孔である。貫通孔G,H,I,Jは、前記した作用部21と支持部22と連結部23とを機能的に分離する役割を果たしている。力覚センサ用チップ2は、このような貫通孔G,H,I,Jを有することにより、作用部21に印加された外力Fを支持部22等に分散させずに、後記する歪検出用抵抗素子Sに集中させることができ、作用部21に印加された外力Fをより正確に検出することができる。
【0033】
貫通孔(第2貫通孔)K,L,M,Nは、図3に示すように、ベース部材20の厚さ方向に貫通して形成された鉤状のスリット孔である。貫通孔K,L,M,Nは、前記した剛性の低い領域とした弾性部23a1,23b1,23c1,23d1と、剛性の高い領域とした橋梁部23a2,23b2,23c2,23d2と、を機能的に分離する役割を果たしている。力覚センサ用チップ2は、このような貫通孔K,L,M,Nを有することにより、作用部21に印加された外力Fを支持部22等に分散させずに、後記する歪検出用抵抗素子Sに集中させることができ、作用部21に印加された外力Fをより正確に検出することができる。
【0034】
歪検出用抵抗素子Sは、力覚センサ用チップ2において、外力Fの大きさや方向を検出するための素子である。歪検出用抵抗素子Sは、変形に比例して抵抗値が変化する物質で構成されており、外力Fの印加による歪みを抵抗値の変化として検出する。歪検出用抵抗素子Sは、例えば、半導体製造工程においてベース部材20にボロン等の不純物をイオン注入することで形成することができる。歪検出用抵抗素子Sは、圧縮による歪みが発生した場合に抵抗値が減少し、引っ張りによる歪みが発生した場合に抵抗値が増加する。
【0035】
歪検出用抵抗素子Sは、図3に示すように、ベース部材20上に形成されるとともに、作用部21と連結部23との接続部分にあたる変形発生部に複数形成されている。ここで変形発生部とは、図3に示すように、作用部21に印加される外力Fによる歪みが最も発生する作用部21と橋梁部23a2,23b2,23c2,23d2との接続部分近傍のことを指している。歪検出用抵抗素子Sは、図3に示すように、橋梁部23a2,23b2,23c2,23d2の長軸方向に対して各々が平行となるように形成されている。
歪検出用抵抗素子Sは、図4に示すように、配線28を介して信号電極パッド25及びGND電極パッド26と接続されている。
【0036】
信号電極パッド25及びGND電極パッド26は、歪検出用抵抗素子S及び温度補償用抵抗素子27に対して所定周波数の電圧信号を印加するための電極パッドである。信号電極パッド25及びGND電極パッド26は、図4に示すように、配線28を介して、それぞれの歪検出用抵抗素子S及び温度補償用抵抗素子27と接続されている。
また、信号電極パッド25は、後記する信号入力部9(図5参照)と接続されている。
【0037】
温度補償用抵抗素子27は、歪検出用抵抗素子S近傍の環境温度をモニタするための素子である。温度補償用抵抗素子27は、環境温度の変化によって抵抗値が変化する物質で構成されており、環境温度の変化を抵抗値の変化として検出する。温度補償用抵抗素子27は、例えば、半導体製造工程においてベース部材20にボロン等の不純物をイオン注入することで形成することができる。
【0038】
温度補償用抵抗素子27は、歪検出用抵抗素子Sと温度条件が同じ素子で構成されている。また、温度補償用抵抗素子27は、図3に示すように、ベース部材20上に形成されるとともに、ベース部材20上の12個の歪検出用抵抗素子Sと対応させて、歪検出用抵抗素子Sの近傍である所定の位置に12個配置されている。
【0039】
温度補償用抵抗素子27は、図3に示すように、印加される外力Fによる歪みの影響を受けない場所に配置されている。すなわち、温度補償用抵抗素子27のそれぞれは、図3に示すように、対応する歪検出用抵抗素子Sの近傍であって、自由端となっている貫通孔K,L,M,Nの内側周縁部の近くに配置されている。力覚センサ用チップ2は、このように外力Fの影響を受けない場所に温度補償用抵抗素子27を配置することで、チップ周辺の環境温度のみを検出することができる。
温度補償用抵抗素子27は、図4に示すように、配線28を介して信号電極パッド25及びGND電極パッド26と接続されている。
【0040】
配線28は、図4に示すように、歪検出用抵抗素子Sと温度補償用抵抗素子27と、信号電極パッド25とGND電極パッド26と、を接続するための配線である。配線28は、歪検出用抵抗素子Sと温度補償用抵抗素子27とが後記するようなブリッジ回路を形成できるように、ベース部材20上で両者を接続している。
【0041】
次に、力覚センサ用チップ2における歪検出用抵抗素子Sと温度補償用抵抗素子27の電気接続関係について、図5を参照しながら簡単に説明する。図5は、歪検出用抵抗素子と温度補償用抵抗素子の電気接続関係を示す回路図である。
歪検出用抵抗素子Sと温度補償用抵抗素子27は、図5に示すように、力覚センサ用チップ2の内部において、フルブリッジ回路FBの下半分に対応するハーフブリッジ回路HBを構成している。
【0042】
歪検出用抵抗素子S及び温度補償用抵抗素子27の一端側(本図上の下側)は、図5に示すように、配線28を介して相互に連結されるとともに、グラウンド電位GND(GND配線29)に接続されている。また、歪検出用抵抗素子S及び温度補償用抵抗素子27の他端側(本図上の上側)は、それぞれ信号電極パッド25と接続されている。そして、信号電極パッド25の他端側(図5の上側)は、力覚センサ用チップ2の外部に設けられた外付抵抗31,32とそれぞれ接続された後に相互に連結され、同じくセンサ外部に設けられた信号入力部9に接続されている。
信号入力部9は、例えば交流電源で構成されており、歪検出用抵抗素子S及び温度補償用抵抗素子27に、所定電圧の初期信号を所定周波数Aで入力する機能を有している。
【0043】
このように構成したフルブリッジ回路FBにおいて、歪検出用抵抗素子S及び温度補償用抵抗素子27の他端側(信号電極パッド25側)は、図5に示すように、フィルタ部51と接続され、歪検出用抵抗素子S及び温度補償用抵抗素子27によって検出されるセンサ出力信号Vs及びモニタ出力信号Vmがフィルタ部51に出力されるように構成されている。
【0044】
ここで、本実施形態におけるセンサ出力信号Vsは、外力Fの変化に応じて歪検出用抵抗素子Sに生じた歪に対応した抵抗値の変化を、電圧値の変化として取り出した信号のことを指している。
【0045】
また、モニタ出力信号Vmとは、環境温度の変化に比例して温度補償用抵抗素子27に生じた歪に対応した抵抗値の変化を、電圧値の変化として取り出した信号のことを指している。モニタ出力信号Vmは、信号入力部9によって入力される初期信号の周波数成分を有している。
なお、温度補償用抵抗素子27は、前記したように、環境温度によってのみ抵抗値が変化する位置に配置されているため、モニタ出力信号Vmは、外力Fの影響を受けていない純粋な環境温度を示す値となる。
【0046】
力覚センサ用チップ2は、回路全体としてフルブリッジ回路FBに構成することで、歪検出用抵抗素子Sの抵抗値の変化から、環境温度の変化による抵抗値の変化をより適切にキャンセルし、歪検出用抵抗素子Sにおける外力Fによる抵抗値の変化のみを適切に取り出すことができる。従って、作用部21に印加された外力Fをより正確に検出することができる。
【0047】
なお、本実施形態では、力覚センサ用チップ2の外部に外付抵抗31,32を設ける構成としたが、外付抵抗31,32を力覚センサ用チップ2の内部に設けて、力覚センサ用チップ2の内部にフルブリッジ回路FBを構成してもよい。
【0048】
続いて、本実施形態に係る力覚センサの1の一例について、図6を参照して説明する。図6は、本実施形態に係る力覚センサの一例を示す回路図である。
【0049】
図6に示すように、信号入力部9は、フルブリッジ回路FBにパルス波形電圧を印加する交流電源からなる電圧印加部であって、コイル9aと、ドロッパ素子9bと、ツェナーダイオード9cと、電解コンデンサ9dと、コンデンサ9eと、コンデンサ9fと、を備えている。
【0050】
コイル9aは、68[μH]であり、その一端は、12Vの電圧が印加されるようになっており、その他端は、ドロッパ素子9bに電気的に接続されている。
【0051】
ドロッパ素子9bは、出力電圧の変動分を検出してその両端の電圧を変化させる素子である。
【0052】
ツェナーダイオード9cは、18[A]であり、その一端は、コイル9aの一端側に電気的に接続され、その他端は、接地されている。
【0053】
電解コンデンサ9dは、100[μF]/25[V]であり、その一端は、コイル9aの一端側に電気的に接続され、その他端は、接地されている。
【0054】
コンデンサ9eは、2.2[μF]/25[V]であり、その一端は、コイル9aの他端側とドロッパ素子9bの+Vinとの間に電気的に接続され、その他端は、ドロッパ素子9bの−Vinと接地との間に電気的に接続されている。
【0055】
コンデンサ9fは、1[μF]であり、その一端は、ドロッパ素子9bの+Voutとフルブリッジ回路FBとの間に電気的に接続されており、その他端は、ドロッパ素子9bの−Voutと接地との間に電気的に接続されている。
【0056】
かかる信号入力部9は、12Vの電圧を5Vに下げ、初期信号としてのパルス波形電圧(例えば、3kHz)をフルブリッジ回路FBへ出力する。
【0057】
フルブリッジ回路FBは、外付抵抗31,32、歪検出用抵抗素子S及び温度補償用抵抗素子27から構成されるホイートストンブリッジ回路であり、信号入力部9からパルス波形電圧が印加されると、センサ出力信号Vs及びモニタ出力信号Vmをフィルタ部51へ出力する。
【0058】
フィルタ部51は、センサ出力信号Vs及びモニタ出力信号Vmに含まれる不要な周波数成分(ノイズ)を取り除くものである。本実施形態において、フィルタ部51は、遮断周波数である約1.5kHz以上よりも高い周波数の帯域を減衰させるローパスフィルタであって、抵抗51a,51bと、コンデンサ51c,51d,51eと、を備えている。なお、フィルタ部51の遮断周波数は、パルス波形電圧の周波数Aよりも高い値に設定されており、パルス波形電圧の周波数に応じて適宜変更可能である。
【0059】
抵抗51aは、1[kΩ]であり、その一端は、フルブリッジ回路FBのセンサ出力信号Vs出力側に電気的に接続され、その他端は、バッファ部52に電気的に接続されている。
【0060】
抵抗51bは、1[kΩ]であり、その一端は、フルブリッジ回路FBのモニタ出力信号Vm出力側に電気的に接続され、その他端は、バッファ部52に電気的に接続されている。
【0061】
コンデンサ51cは、0.01[μF]であり、その一端は、抵抗51aの他端とバッファ部52との間に電気的に接続され、その他端は、接地されている。
【0062】
コンデンサ51dは、0.47[μF]であり、その一端は、抵抗51aの他端とバッファ部52との間に電気的に接続され、その他端は、抵抗51bの他端とバッファ部52との間に電気的に接続されている。
【0063】
コンデンサ51eは、0.01[μF]であり、その一端は、抵抗51bの他端とバッファ部52との間に電気的に接続され、その他端は、接地されている。
【0064】
かかるフィルタ部51aは、フルブリッジ回路FBからセンサ出力信号Vs及びモニタ出力信号Vmが入力されると、フィルタ済みセンサ出力信号Vs1及びフィルタ済みモニタ出力信号Vm1をバッファ部52へ出力する。
【0065】
バッファ部52は、フィルタ済みセンサ出力信号Vs1の電圧波形を増幅する増幅器であるバッファアンプ52aと、フィルタ済みモニタ出力信号Vm1の電圧波形を増幅する増幅器であるバッファアンプ52bと、を備えている。バッファアンプ52aの一端は、フィルタ部51の出力信号Vs1出力側に電気的に接続され、バッファアンプ52aの他端は、A/D変換部53に電気的に接続されている。バッファアンプ52bの一端は、フィルタ部51の出力信号Vm1出力側に電気的に接続され、バッファアンプ52aの他端は、A/D変換部53に電気的に接続されている。
【0066】
かかるバッファ部52は、フィルタ部51から出力信号Vs1,Vm1が入力されると、増幅済みセンサ出力信号Vs2及び増幅済みモニタ出力信号Vm2をA/D変換部53へ出力する。
【0067】
A/D変換部53は、連続量であるアナログ信号を、離散化されたデジタル信号に変換するものである。A/D変換部53は、例えば公知のA/Dコンバータ(ADS1256といったΔΣA/Dコンバータ等)で構成されており、バッファ部から出力信号Vs2,Vm2が入力されると、アナログ信号である出力信号Vs2,Vm2をアナログ/デジタル変換し、パルス波形電圧と同期したデジタル信号である出力信号Vs3,Vm3を演算部60(図6参照)へ出力する。
【0068】
これにより、センサ出力信号Vs及びモニタ出力信号Vmは、フィルタ部51においてノイズがカットされ、バッファ部52において増幅され、A/D変換部53においてアナログ信号からデジタル信号に変換されて、演算部60に出力されることとなる。
【0069】
演算部60は、歪検出用抵抗素子Sに係る出力信号Vs3と温度補償用抵抗素子27に係るモニタ出力信号Vm3との差を求め、環境温度の影響がキャンセルされたセンサ出力信号Vs’(=Vs3−Vm3)を出力する、いわゆる温度補償を行う装置である。演算部60は、例えば中央演算処理装置(CPU,Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置と、記憶装置に格納された機能プログラムと、で構成されている。
【0070】
なお、前記したモニタ用抵抗素子Tは、3つの抵抗素子とともにホイートストンブリッジ回路(温度モニタ用ブリッジ回路)を構成しており、信号入力部9が温度モニタ用ブリッジ回路にパルス波形電圧を印加した際の温度モニタ用ブリッジ回路からの出力が、フィルタ部、バッファ部及びA/D変換部を介して演算部60に入力され、演算部60が、温度モニタ用ブリッジ回路からの出力に基づいてセンサ出力Vs’を補正して出力する構成であってもよい。この場合には、演算部60には、センサ出力Vs’と温度との関係、及び、温度モニタ用ブリッジ回路からの出力と温度との関係を事前に計測することによって求められた、温度モニタ用ブリッジ回路からの出力とセンサ出力Vs’の補正値との関係が予め記憶されており、演算部60は、補正値に基づいてセンサ出力Vs’を補正することができる(例えば、補正後のセンサ出力=補正前のセンサ出力―補正値)。
【0071】
本実施形態に係る力覚センサ1によると、パルス波形電圧が印加されたフルブリッジ回路FBからの出力信号Vs,Vmが、フィルタ部51及びバッファ部52を介してA/D変換部53に入力されるので、A/D変換部53は、パルス波形電圧と同期した出力信号Vs3,Vm3を出力することができる。そのため、パルス波形電圧をkHzオーダーの高周波とすることが可能となる。
【0072】
ここで、本実施形態に係る力覚センサ1における、歪検出用抵抗素子Sに流れる電流値を変えた場合における、出力信号の経時変化について、図7を参照して説明する。図7(a)は、歪検出用抵抗素子に0.3[mA]の電流を流した場合における出力信号(出力信号Vs3,Vm3の電位差)の経時変化を示すグラフ、図7(b)は、歪検出用抵抗素子に1.17[mA]の電流を流した場合における出力信号の経時変化を示すグラフ、図7(c)は、歪検出用抵抗素子に3.5[mA]の電流を流した場合における出力信号の経時変化を示すグラフである。
【0073】
図7(a)〜(c)に示すように、歪検出用抵抗素子Sに流れる電流値が小さいほど、出力信号Vs3,Vm3が定常状態に達するまでの時間が短く、歪検出用抵抗素子Sに流れる電流値が大きい場合には、出力信号Vs3,Vm3が定常状態に達せず安定しない。
これは、通電によって歪検出用抵抗素子Sが自己発熱し、抵抗が変化すること、いわゆるドリフトによる影響である。
本実施形態に係る力覚センサ1によると、パルス波形電圧をkHzオーダーの高周波とすることができるため、歪検出用抵抗素子Sに流れる電流量を少なくし、自己発熱によるドリフトを抑え、出力信号Vs3,Vm3が定常状態に達するまでの時間を短くすることができる。
【0074】
以上、本発明の実施形態について図面を参照して詳細に説明したが、本発明はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能である。本実施形態では、図1に示すように、工場における自動作業装置Rを例にとって説明したが、本発明はこれに限られるものではなく、例えば人型ロボット等の多数の指(例えば五指)を備える把持部(図示省略)に適用してもよいことはいうまでもない。
【符号の説明】
【0075】
1 力覚センサ(物理量センサ)
9 信号入力部(電圧印加部)
21 作用部
22 支持部
23 連結部
51 フィルタ部
52 バッファ部
53 A/D変換部
FB フルブリッジ回路(ホイートストンブリッジ回路)
S 歪検出用抵抗素子

【特許請求の範囲】
【請求項1】
力又は加速度を検出する物理量センサであって、
外力又は慣性力が作用する作用部と、
前記作用部を支持する支持部と、
前記作用部及び前記支持部を連結する連結部と、
前記連結部に配置された歪検出用抵抗素子を含むホイートストンブリッジ回路と、
前記ホイートストンブリッジ回路にパルス波形電圧を印加する電圧印加部と、
前記パルス波形電圧が印加された前記ホイートストンブリッジ回路からの出力信号が入力され、当該出力信号をデジタル変換して出力するA/D変換部と、
を備えることを特徴とする物理量センサ。
【請求項2】
前記ホイートストンブリッジ回路からの前記出力信号が入力されるフィルタ部と、
前記フィルタ部からの出力信号が入力されるバッファ部と、
をさらに備え、
前記パルス波形電圧が印加された前記ホイートストンブリッジ回路からの出力信号は、前記フィルタ部及び前記バッファ部を介して前記A/D変換部に入力される
ことを特徴とする請求項1に記載の物理量センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−227015(P2011−227015A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【出願番号】特願2010−99433(P2010−99433)
【出願日】平成22年4月23日(2010.4.23)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】