説明

物質を表面上に堆積させるための方法と装置

【解決手段】 本発明の幾つかの実施形態は、物質を受動吸着により通過させる開口部(104)が形成された細長い梁部(102)から、物質を表面上に堆積させる装置と方法を提供している。細長い梁部は、実質的に全長に沿って実質的に平面状であり、堆積工程時には、表面に対して鋭角を成すように配置され、長さは約2mm以下である。幾つかの実施形態では、開口部は、細長くて、物質貯留部(106)から、細長い梁部の終端部手前の位置まで伸張するか、細長い梁部の終端部を貫通して伸張しており、且つ細長い梁部の厚さを貫通して伸張している部分を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概括的には、材料を表面上に堆積させるための方法と装置に関し、或る実施形態では、生体物質を表面上に堆積させるための方法と装置に関する。
【背景技術】
【0002】
2004年4月30日出願の米国仮特許出願第60/566,898号に対する優先権をここで主張すると共に、同出願の内容全体を参考文献としてここに援用する。
生体物質の配列又は他のパターンを表面に生成するための方法と装置は数多くある。そのような方法と装置の(並びに、一般的には微小配列技術の)好都合な点として、並列処理と試料処理に必要な物質と労力の量の削減とによってもたらされるスループットの増加が挙げられるが、これは生産性の向上と費用の削減につながる。各種物質を微量(数十ミクロン規模)に堆積させるための既存の装置と方法は、成功と失敗が入り混じっている。
【0003】
一般に、従来の堆積装置と方法の設計は、所望の分解能とスポットサイズに依存している。その様な堆積装置と方法の設計において変動させることのできるパラメータには、堆積処理に使用される装置の形状と大きさ、物質を堆積させる面に対する装置の向き、が含まれる。場合によっては、既存の堆積装置は、堆積工程を推進するため(例えば、起電又は電気浸透力で)エネルギー供給る。そのような装置は、一般には、比較的複雑及び/又は高価である。また或る場合(例えば、AFMプローブ)は、堆積装置は、物質を、堆積される表面に向けて送るために、装置の先端部又はその付近に隆起部を含んでいる。隆起部は、実質的に表面と直交に、又は表面に対して比較的急角度に、配置される。
【特許文献1】米国仮特許出願第60/566,898号
【発明の開示】
【課題を解決するための手段】
【0004】
本発明は、概括的には、材料を表面上に堆積させるための方法と装置に関し、或る実施形態では、生体物質を表面上に堆積させるための方法と装置に関する。物質を表面上に堆積させて、表面上に何らかの配置によるスポット、線、又は他の物質形状(例えば、配列や他のパターン、無作為な型や非パターン型、など)を作り出すことができる。実施形態に中には、物質をマイクロメーター及び/又はナノメーター尺度の配列又はパターンに堆積させるものもある。また、堆積される物質には生体物質が含まれるが、その場合、配列又は他の堆積型は、超小型化生体分析試験のために生成されることもある。
【0005】
本発明の幾つかの実施形態は、物質を表面上に堆積させるための装置を提供しており、この装置は、基部と;基部から伸張している近位部分と近位部分から離れた位置にある遠位部分とを有し、基部に対して片持ち梁を形成する実質的に平面状の細長い梁部であって、長さが約2mm以下である細長い梁部と;細長い梁部に形成された細長い開口部であって、受動吸着作用により細長い開口部に沿って液体を移動させる寸法に作られた内表面を少なくとも部分的には形成しており、遠位部を有していて、そこから物質を表面上に堆積させるようになっている、細長い開口部と、を備えている。
【0006】
幾つかの実施形態では、物質を表面上に堆積させるための装置が提供されており、この装置は、基部と;基部から片持ち梁形状に伸張している細長い梁部であって、実質的に全長に沿って実質的に平面状の上面と、実質的に全長に沿って実質的に平面状の下面と、基部から伸張している近位部分と、近位部分から離れた位置にある遠位部分とを有しており、前記表面に対して鋭角を成すように配置されている、梁部と;細長い梁部に形成された細長い開口部であって、受動吸着作用により細長い開口部に沿って液体が移動するのを促すようになっている内表面と、少なくとも1つの物質を細長い梁部へ装填すると共にその物質を細長い梁部から堆積させることができるようになっている遠位部分、とを少なくとも部分的には形成している、細長い開口部と、を備えている。
【0007】
本発明の幾つかの実施形態は、物質を表面上に堆積させるための方法を提供しており、この方法は、基部から伸張し、基部に隣接する近位部分と近位部分から離れた位置にある遠位部分とを有している、細長い梁部であって、長さに沿って実質的に平面状の細長い梁部を提供する段階と;細長い梁部に形成された細長い開口部であって、遠位部分を有しており、そこから物質を表面上に堆積させるように構成された細長い開口部に沿って、物質を、細長い梁部の遠位部分に向け受動吸着によって移動させる段階と;細長い梁部の遠位部分を表面に向けて移動させる段階と;物質を前記表面上に、基部から2mm以内の位置に堆積させる段階と、から成る。
【0008】
幾つかの実施形態では、物質を表面上に堆積させるための方法が提供されており、この方法は、基部を提供する段階と;基部から片持ち梁形状に伸張している細長い梁部であって、実質的に全長に沿って実質的に平面状であり、基部に隣接する近位部分と近位部分から離れた位置にある遠位部分とを有している、梁部を提供する段階と;細長い梁部に形成された細長い開口部であって、遠位部分を有していて、そこから物質を表面上に堆積させることができるようになっている、細長い開口部を提供する段階と;細長い梁部の遠位部分を前記表面に対して鋭角を成すように配置する段階と;細長い開口部に沿って、細長い開口部の遠位部分に向けて、受動吸着によって物質を移動させる段階と;細長い開口部の遠位部分から表面に向けて物質を堆積させる段階と、から成る。
【0009】
本発明のこの他の特徴と態様は、詳細な説明と添付図面から明らかとなるであろう。
【発明を実施するための最良の形態】
【0010】
本発明の実施形態を詳細に説明する前に、本発明は、その適用においては、以下の説明に記載し又は添付図面に示した構造の詳細及び構成要素の配置に限定されないことを理解しておいて頂きたい。本発明は、他の実施形態も可能であり、様々な様式で実用化又は実施することができる。ここで使用する表現及び用語は、説明を目的としたものであり、本発明に制限を課すものではないと理解されたい。「含んでいる」、「備えている」、又は「有している」、並びにそれらの派生型を使用する際は、これ以降に提示している項目又は項目類及びその等価物並びに付加的な項目を包含するものとする。特に指定又は限定しない限り、「取り付けられた」、「接続された」、「支持された」、及び「連結された」、並びにそれらの派生型は、広義に使用され、直接及び間接の両方の様式での取り付け、接続、支持、及び連結を包含する。また、「接続された」及び「連結された」は、物理的又は機械的な接続又は連結に限定されない。他にも、「前」、「後」、「上」、「下」、及び類似の語は、要素を相互に関係付けて説明する場合にのみ使用され、それだけで、装置の特定の方向配置を詳細に示すことも、必要な又は求められている装置の方向配置を示し又は示唆することも、ここで説明している発明をどの様に使用し、取り付け、表示し、又は使用時に配置するかを特定することも、意図してはいない。
【0011】
本発明は、概括的には、物質を表面上に堆積させるための方法と装置に関し、幾つかの実施形態では、生体物質を表面上に堆積させるための方法と装置に関する。物質を表面上に堆積させて、表面上に何らかの配置による、スポット、線、又は他の物質の形状(例えば、配列や他のパターン、無作為の型や非パターン型、など)を作り出す。本発明の方法と装置を使用して作成された、配列、パターン、又は他の堆積型は、限定するわけではないが、以下に記載の内の少なくとも1つを含む各種分析試験に使用され、即ち、1つ(又は幾つか)の細胞鑑別及び侵襲性を最小限に抑えた細胞試験;量が限られている場合(例えば、新生児の試験)の様な蛋白質の診断;環境試験;生物テロ防衛手段;科学捜査;及び、複合的化学ライブラリを使用して薬物を見つけ出す場合の様な高スループット鑑別(HTS)、に使用されることが考えられる。また、本発明の堆積装置と方法は、「チップ上実験室」の概念と一体化させて、物質を表面上に処理及び堆積させるための更に複雑な工具を作り出すことも考えられる。例えば、幾つかの実施形態では、本発明の堆積装置は、細胞試料を受け入れ、その試料を分留して分留成分に分別し、分留された成分を表面上に堆積させるという処理チップに組み込むことを考えている。
【0012】
本発明の堆積装置と方法を使用して作成された配列とパターンは、ピコリットル、フェムトリットル、及びアトリットルの範囲の滴量を生成することができる。例えば、実施形態の中には、生成される滴量が約4フェモリットルというものもある。生成される滴又はスポットが実質的に丸い形状であるという実施形態もある。また、本発明の堆積装置と方法は、平均スポット径が1つの分子から約100ミクロンまでの範囲で、物質のスポットの配列を生成するのに使用することができる。平均スポット径が、約0.01ミクロンから約100ミクロンの範囲という実施形態もある。また、生成される平均スポット径が、約0.25ミクロンから約6ミクロンの範囲という実施形態もある(5ミクロンが一般的な平均スポット径)。また、生成される平均スポット径が、約0.25ミクロンから約5ミクロンまでの範囲という実施形態もある。その様な平均スポット径は、スポット当たりの平均的大きさの蛋白質分子約1,000個から約6000,000個に相当する。別の例として、生成される平均スポット径が約2.2ミクロンという実施形態もある。
【0013】
上記のように、本発明の幾つかの実施形態による方法と装置は、1本又はそれ以上の物質の線を基板上に堆積させるようになっている。この様な実施形態では、線は、最小線幅が約0.2ミクロンから約100ミクロンの範囲の、一定の又は変化する厚さを有する。最小線幅が、約2ミクロンから約6ミクロンの範囲という実施形態もある(5ミクロンが一般的な最小線幅)。また、実施形態の中には、本発明の方法と装置により作り出される隣り合うスポット又は線間の距離を、約10ミクロン未満とする、例えば、隣り合うスポット又は線間の平均距離を約5ミクロンとする実施形態もある。
【0014】
本発明の方法と装置を使用して作成される配列とパターンは、限定するわけではないが、AFM、蛍光法、表面プラズモン共振(SPR)、質量分光分析法、干渉分光法、を含む広範なな技法を用いて、分析され又は調査されるように作られる。例えば、蛋白質対蛋白質相互作用配列は、従来の(例えば、蛍光)読み出し法を使用して読み出すことができる。これは、生成されるスポットの大きさが使用されている検査用の光の波長の半分未満であり、従って、使用されている光の回折限界を超えるものの、スポット同士の分離(即ち、ピッチ)が1ミクロン以上であるために、サブミクロンのスポットであれば従来の読み出し技法を使用して個別に解析することができることから、実施が可能である。
【0015】
既存のミクロンからサブミクロンの空間倍率での生体パターン作成実験の多くは、微小片持ち梁を基にした原子力顕微鏡検査(AFM)プローブを使用して実施されている。場合によっては、このやり方は、AFMプローブが容易に入手できることと、微小片持ち梁AFTプローブが一般的には堆積工具と表面の間の力を測定及び制御することができる装置とシステムにうまく適合化されていることから、魅力的である。しかしながら、AFMプローブは、画像化の目的に特化して設計されているため、その構造、材料、及び幾何学的形状は、物質のパターン作成、特に生体物質に対しては、最適化されていない。AFMプローブを用いると、堆積させる試料は、AFMプローブの先端面及び基部領域の周囲に薄い分子層を形成する。表面に接触させると、層の分子が先端部から表面に移動する。移された物質の量は、面接触の時間に直接的に相関する。つまり、この堆積処理は、拡散限定で時間依存性である。この堆積処理は、小さな有機種には適しているが、蛋白質の様な大きな生体分子、大きな核酸、及び他の生体分子集合体にとっては問題がある。更に、堆積させる物質の貯留器は上記表面層に限定されるため、資料が枯渇し、長引くパターン作成の間にAFMプローブに再充填する必要が生じる。最後に、鋭利なAFM先端部の幾何学的形状は、マクロ分子を基部領域から面接触が形成される先端部の端に輸送するには適していない。結果として、AFMプローブで作成される生体分子配列では、スポットの中心部にパターン作成物質を欠いたスポットが出来上がってしまうことになる。
【0016】
他の既存の堆積装置には、最小スポット径が数十又は数百ミクロン程度のマイクロ配列を作成するのに使用される、金属又はシリコンから製作されたピン工具が含まれる。従来のピン工具の中には、ピン工具に深い(例えば、約500ミクロン)流体流路を製作するために、深部反応性イオンエッチング(DRIE)を使用して、シリコンから製作される工具もある。ピン工具は、物質が、物質を堆積させる表面と実質的に直交する配置か比較的急角度を成すその様な流路に沿って流れることができるようにして、操作するのが一般的である。ピン工具は、表面と実質的に直交して配置されるので、ピン工具の表面に対する接触力を測定するのに、力のフィードバック機構を適用するのは困難である。また、上記のように、本発明の堆積装置の幾つかでは、細長い梁部と物質を堆積させる面の間の力のフィードバックを測定するのに、細長い梁部の曲がり又は撓みを利用している。しかしながら、ピン工具が曲がるのは一般には望ましくなく、堆積性能を阻害しかねない。
【0017】
また、従来のピン工具は、一般的に前方装填式なので、各ピン工具は一度に1種類の物質しか装填できない。従って、複数の物質の印刷を行うため、複数のピン工具がピンホルダに取り付けられている。各ピン工具の間隔は、一般にはピンホルダの幾何学的形状により制限され、通常は少なくも約2mmである。これは、一部には、従来の各ピン工具が通常は1.4mm幅であることによる。また、従来の各ピン工具は、通常、長さが4cmから5cmであり、尖ったピン先端部は長さが数ミリメートルである。
【0018】
本発明の堆積装置と方法は、信頼性の高い堆積と大きな分子種のパターン作成、装填要件の緩和、及び/又は特色のある後方装填、将来的な工程の並行化をやり易くする工程と洗浄工程の排除を配慮している。また、本発明の堆積装置と方法は、拡散工程ではなく分与工程によって、非常に大きな分子(分子量が数百又は数線ダルトンの分子)の堆積とパターン作成に配慮している。即ち、本発明の堆積装置と方法は、実質的に時間依存性の物質堆積法に配慮している。
【0019】
図1は、本発明の或る実施形態による堆積装置100を示している。図示の堆積装置100は、物質(生体物質を含む)を表面101上に堆積させるのに使用される。図1に示す堆積装置100は、長さlの大部分が実質的に平面状の細長い梁部102を含んでおり、この梁部102の或る位置から、物質を表面101上に堆積させる。細長い梁部102は、幅wと厚さtにより更に画定されている。これも図1に示すように、細長い梁部102には、1つ又は複数の開口部104が形成されている。本明細書及び特許請求の範囲で使用する場合、用語「開口部」104には、限定せずに、流路、間隙、窪み、溝、盲孔、貫通孔、導管など、及びその組み合わせが含まれる。例えば、細長い開口部104は、図1では、細長い梁部102の上面103に形成されたものとして示されている。
【0020】
引き続き図1を参照するが、幾つかの実施形態では、細長い開口部104は、細長い梁部102の長さの少なくとも一部分に沿って、貯留部106まで伸張しており、貯留部106と流体連通している。幾つかの実施形態では、堆積装置100は、基部105を更に含んでおり、この基部105から細長い梁部120が伸張している。貯留部106及び/又は細長い開口部104は、少なくとも部分的には、幅Wと厚さTを有する基部105内に位置している。幾つかの実施形態では、細長い梁部102の幅w及び/又は厚さtは、それぞれ、基部105の幅Wと厚さTよりも小さい。しかしながら、細長い梁部102の幅w及び/又は厚さtが、それぞれ、基部105の幅Wと厚さTと同じという実施形態もある。
【0021】
図2と図3に分かり易く示しているが、細長い開口部104は、深さdと幅bを有している。図1では、貯留部106は、幅X、長さY、及び深さDを有している。図1から図3に示す堆積装置100の実施形態では、貯留部106は、形状が略方形で、従って貯留部106の幅Xと長さYは略等しい。しかしながら、貯留部106は、この他所望のどの様な形状でもよく、そのような形状には、本発明の精神と範囲から逸脱すること無く、限定するわけではないが、矩形、三角形、円形、楕円形、星形、不規則形状、又はの他の形状(及びそれらの組み合わせ)が含まれるものと理解されたい。
【0022】
細長い開口部104の深さdと貯留部106の深さDが略同じの実施形態もある。代わりに、細長い開口部104の深さdが、貯留部106の深さDよりも深いか浅い実施形態もある。更に図1に示すように、細長い開口部104の幅bは、細長い梁部102の幅wの3分の1未満である。しかしながら、細長い開口部104の幅bについては、本発明の精神と範囲から逸脱すること無く、細長い梁部102の幅wに占める割合はこれもよりも大きくても小さくてもよいと理解されたい。
【0023】
本明細書及び特許請求の範囲で使用する場合、「近位の」及び「遠位の」という用語は、基点に対する相対的な場所又は位置を指すのに使用される。即ち、「近位の」という用語は、基点により近いあらゆる場所又は位置を記述するのに使用され、一方、「遠位の」という用語は、基点からより遠いあらゆる場所又は位置を記述するのに使用される。例えば、図1から図3に示す実施形態では、細長い梁部102は、基部105に連結された近位部分107と、物質を堆積装置100から出して表面101上に堆積させる箇所である遠位部分109とを含んでいる。更に、これも図1から図3に示すように、細長い開口部104は、細長い梁部102の近位部分107に隣接している(及び、実施形態によっては、貯留部106と連通している)近位部分111と、細長い梁部102の遠位部分109に隣接している遠位部分113と、を含んでいる。幾つかの実施形態では(例えば、図1から図3の実施形態を参照)、細長い開口部104の遠位部113は、図1から図1に示すように、細長い梁部102の終端部114を突き抜けている。
【0024】
図1から図3に示す堆積装置100は、細長い梁部102の長さlに沿って伸張する1つの細長い開口部104を有している。他の実施形態では、堆積装置100は、それぞれが細長い梁部102の長さlの少なくとも一部に沿って細長い梁部102の終端部114に向かって伸張している、複数の細長い開口部104を有している。2つ又はそれ以上の細長い開口部104が各細長い梁部102に設けられている実施形態では、細長い開口部104は、それらの全長又は長さの一部に沿って互いに平行又はほぼ平行である。その様な実施形態では、細長い開口部104は、細長い梁部102の遠位部分113で一点に合流していてもよいし、又は細長い梁部102の終端部114まで実質的に全体に亘って互いに離間したままでもよい。何れの場合も、各細長い開口部104は、細長い梁部102の遠位部分113において、幅bが一定でも一定でなくともよい(例えば、図1から図3には、先細の幅bを示している)。
【0025】
本明細書及び特許請求の範囲で使用する場合、「基部」105という用語は、細長い梁部102の近位部分107が連結される基板、プラットフォーム、他の支持構造を指す。実施形態によっては、「基部」105は、細長い梁部102が連結される構造体であると共に、堆積装置100が他の堆積ハードウェア(例えば、図示していないが、米国アイオワ州エームズのBioForce Nanoscience, Inc.から入手可能なNANOARRAYERTM堆積システム)に連結される箇所であるものもある。その様な堆積ハードウェアは、堆積工程の間、表面101に対する細長い梁部102の移動を制御する。「基部」105が、堆積ハードウェアの一部を含んでいる実施形態もある。換言すると、本発明の幾つかの実施形態では、細長い梁部102は、堆積ソフトウェアの一部に直接連結されており、堆積ハードウェアの当該部分は、堆積装置100の「基部」105として機能するわけである。
【0026】
本発明の幾つかの実施形態では、堆積装置100が連結される堆積ハードウェア(例えば、図示しないNANOARRAYERTM堆積システム)は、精密動作システムを含んでいる。この様なシステムは、表面パターン作成用として環境的に調整されているチャンバに配置されている。幾つかの実施形態では、面接触力は、後に説明するように光学レバー検知システムを介して制御される。試料装填及び堆積工程を監視するのに、高倍率視覚システムが使用される。堆積工程の任意の一部工程又は実質的に全工程は、自動化してもよいし、特注設計のソフトウェア(例えば、図示していないが、米国アイオワ州エームズのBioForce Nanoscience, Inc.から入手可能なNANOWARETM)及び/又はグラフィカルユーザーインターフェース(GUI)を使用して手動で制御してもよい。
【0027】
図1から図3の図示の実施形態を再度参照するが、細長い梁部102は、基部105から伸張して片持ち梁となっている。即ち、幾つかの実施形態では、基部105は、細長い梁部102よりも実質的に肉厚及び/又は幅広(即ち、厚さTは厚さtよりも厚く、及び/又は幅Wは幅wよりも広い)なので、貯留部106を細長い開口部104よりも深く及び/又は幅広に(即ち、深さDは深さdよりも深く、及び/又は幅Xは幅wよりも広い)構成することができる。更に、細長い梁部102と基部105の間のこの様な関係は、片持ち梁型の細長い梁部102に構造的な支持と剛性を提供する。しかしながら、基部105と細長い梁部102とは、均一の厚さ(即ち、厚さTは厚さtに等しい)及び/又は均一の幅(即ち、幅Wは幅wに等しい)を有してもよいことに留意されたい。
【0028】
図1から図3の様な幾つかの実施形態では、貯留部106の少なくとも一部は、堆積装置100の基部105に配置されている。また、幾つかの実施形態では、貯留部106の少なくとも一部は、細長い梁部102(例えば、細長い梁部102の近位部分107)に配置されている。
【0029】
貯留部106と細長い開口部104は、協同で、堆積させる物質に露出する細長い梁部102の内面108を画定している。内面108の材料特性(例えば、親水性、疎水性、及び他の特性)は、堆積させる物質の装填及び/又は堆積を制御する。更に、細長い梁部102及び/又は基部105は、外面116(一般に、基部105と細長い梁部102の、細長い梁部102の上面103も含めた、その他の面をいう)を含んでおり、その材料特性は、物質が貯留部106又は細長い開口部104から外面116に沿って流出するのを実質的に防止することにより、物質の装填及び/又は堆積を制御する。
【0030】
本明細書及び特許請求の範囲で使用する場合、内面108の「材料特性」は、内面108を形成している材料の固有の材料特性、又は各種表面改質処理(例えば、オゾン処理などの様な化学的処理)を含む各種製造工程から得られた材料特性を指す。
【0031】
更に、本明細書及び特許請求の範囲で使用する場合、「上流」及び「下流」いう用語は、一般的には、堆積装置100を通って基部105から終端部114に向かう、流体移動の全体的な方向を指す。即ち、「上流」という用語は、堆積時の流体の移動方向に対して言及されている点又は領域に先行して生じるあらゆる場所、要素、又は工程を記述するのに使用され、一方、「下流」という用途は、堆積時の流体移動に対して言及されている点又は領域に続いて生じるあらゆる場所、要素、又は工程を記述するのに使用される。例えば、貯留部106を採用している実施形態では、貯留部106は細長い開口部104の上流である。
【0032】
更に、本明細書及び特許請求の範囲で使用する場合、「装填」という用語は、堆積装置100の前方装填又は後方装填を指す。「前方装填」という用語は、細長い梁部102の遠位部分109の少なくとも一部を、堆積させる物質を含んでいる液体に浸して、これにより、細長い開口部104の遠位部分113を、前記物質を含んでいる液体と流体連通状態に置くことを指す。物質は、液中に溶解又は懸濁している。次いで、受動吸着工程によって、物質を含んでいる液体を細長い開口部104の少なくとも一部に引き入れる。幾つかの実施形態では、物質を、(例えば、乾燥状態で)表面(例えば、マイクロ配列スポット)上に配置してから、堆積装置100の前方装填を円滑にするため一時的に湿らせる。前方装填の一例を図28に示しており、後に説明する。
【0033】
「後方装填」という用語は、堆積させる物質(例えば、堆積させる物質を含んでいる液体)を、貯留部106及び/又は細長い梁部102の終端部114の上流位置に位置する細長い開口部104に受け入れることを指す。例えば、幾つかの実施形態では、物質は、細長い開口部104の近位部111の中に又はこれに隣接して装填される。即ち、物質は、細長い開口部104の近位部分111又は細長い開口部104の近位部分111が流体的に接続されている貯留部106に入れられるか又は送り込まれる。幾つかの実施形態では、物質は、貯留部106及び/又は細長い開口部104に、ピペット、ピン工具スポッター、ピエゾ噴流、音響リフターなどで、又はその様な方法を組み合わせたやり方で、送り込まれる。後方装填式堆積装置100では、堆積装置100を補充するために、堆積工程を中断する必要が少なくなる。例えば、幾つかの実施形態では、堆積装置100を一回装填すれば、少なくとも約3000スポット(例えば、30の10列X10段)分を作成するのに使用でき、一方、堆積工程は、幾つかの用途では1時程度かかる。
【0034】
前方装填及び/又は後方装填の採用如何に関わらず、堆積装置100は、細長い開口部104及び/又は貯留部106の大部分が堆積させるべき物質で満たされたとき、「装填された」と見なされる。また、貯留部106及び/又は細長い開口部104の装填に前方装填及び/又は後方装填を使用する如何に関わらず、堆積装置100は、1つ又はそれ以上の環境パラメータの制御(湿度、温度、圧力など、及び、特に、細長い梁部102の遠位部分109の周囲の局所的環境の制御)、堆積装置100の内面108及び/又は外面116の少なくとも一部の材料特性の選択(例えば、内面108及び/又は外面116の疎水性/親水性、内面108及び外面116の相対的特性)、細長い梁部102及び/又は基部105の材料特性の選択(例えば、細長い梁部102の剛性、細長い梁部102の力定数k、基部105の剛性など)、細長い梁部102の幾何学的形状の選択、細長い開口部104の幾何学的形状の選択、毛管作用の制御、及びそれらの組み合わせ、が関与する受動吸着工程により装填される。
【0035】
図1から図3の実施形態を再度参照すると、幾つかの実施形態では、細長い梁部102の遠位部分113は、細長い梁部102の終端部114に向けて先細になり、ペン先部122を画定している、少なくとも2つのアーム120を含んでいる。その様な実施形態では、堆積装置100から堆積させた物質のスポットの大きさは、少なくとも一部には、アーム120の側部の間の角度(即ち、細長い梁部102の遠位部分109の傾斜角度)と、細長い梁部102の終端部114でのアーム120の間の距離(即ち、細長い開口部104の幅)によって決まる。
【0036】
幾つかの実施形態では、細長い開口部104は、或る深さを有する上向きに開口した流路(即ち、少なくとも一方の側が開口し、他方の側は細長い梁部102の面によって画定されている)を含んでいる第1部分110と、細長い梁部102の厚さtを貫通して伸張している(即ち、深さがtに等しい)細長い梁部102の分割部を含んでいる第2部分112と、を含んでいる。その様な実施形態では、細長い開口部104は、物質を、複数の側面(例えば、図1から図3に図示している実施形態では3つの側面)によって画定された内面108を有する第1部分110から、より少ない側面(例えば、図1から図3に図示している実施形態では2つの側面)によって画定された内面108を有する第2部分112に向かわせる。
【0037】
作動時、堆積させる物質は、(例えば、1つ又は複数の環境パラメータの制御、1つ又は複数の内面108、外面116、梁部102、及び基部105の材料特性の選択、などにより)毛管作用を介してペン先部122に送り込まれる。細長い開口部の深さd及び幅b(即ち、第1部分110及び/又は第2部分112に沿う)、細長い梁部の遠位部分109の形状、及び細長い梁部102の先細(該当する場合)の角度は、所望の物質の堆積を強化するように選択される。堆積物質のスポット形状と大きさは、少なくとも部分的には上記パラメータに依存する。
【0038】
細長い梁部102は、物質を堆積させる表面101に対してどの様な向きに配置してもよい。幾つかの実施形態では、この配置方向は、少なくとも一部には、基部105に対する細長い梁部102の配置方向によって決まる。細長い梁部102が、表面101に対して鋭角αを成すように配置される実施形態もある。また、細長い梁部120が、表面101に対して45度よりも小さい角度αを成すように配置される実施形態もある。例えば、細長い梁部102は、表面101に対して約12度で配置される。
【0039】
細長い梁部102の力定数kは、堆積装置の作動品質に影響を与える。力定数kが大き過ぎると、堆積時に表面101を引っ掻く確率が大きくなり過ぎる。反対に、力定数kが小さ過ぎると、細長い梁部102は、静電又は毛管力により表面101に貼りついてしまう。幾つかの実施形態では、細長い梁部102の力定数kは、約0.03N/mから約0.3N/mの範囲にある。代わりに、幾つかの実施形態では、細長い梁部102の力定数kは、約0.1N/mから約1N/mの範囲にある。ヤング率E、長さl、幅w、及び厚さtの片持ち梁式の細長い梁部102の力定数kは以下の式で計算される。

従って、細長い梁部102の厚さtと長さlを操作して、所望の力定数kを実現することができる。所望の力定数kを実現するため、幾つかの実施形態では、細長い梁部102は(上記の関係式に基づき)比較的長くなるように大きさが決められている。しかしながら、細長い梁部102の長さlが増すと、液体輸送距離(例えば、細長い開口部104の長さl)が延びる。液体輸送距離が延びると、結果的に、閉塞又はその他の形態の制約の可能性が増して、細長い開口部104に沿う流体流量の低下を引き起こしかねない。その結果、細長い梁部102の幾何学的形状は、所与の物質が所望の力定数kを実現できるように最適化される。
【0040】
細長い梁部102と細長い開口部104の上記大きさの関係に鑑みて、本発明の幾つかの実施形態は、長さlが約2mm以下の細長い梁部102を採用している。幾つかの実施形態では、細長い梁部102の長さlは、約100nmから約1mmまでの範囲にある。更に、幾つかの実施形態では、細長い梁部の長さlを約200ミクロンから約300ミクロンに設定することで、性能上良好な成果が得られる。他の実施形態では、細長い梁部の長さlを約50ミクロンから約200ミクロンに設定することで、性能上良好な成果が得られる。
【0041】
本発明の幾つかの実施形態では、細長い梁部102の幅wは、約20ミクロンから約40ミクロンの範囲にある。また、細長い梁部102の厚さtが、約10ミクロン未満(例えば、約2ミクロンから約3ミクロン)の実施形態もある。
【0042】
幾つかの実施形態では、細長い開口部104の幅bは、約1ミクロンから約10ミクロンまでの範囲にある。引き続き図1から図3の実施形態を参照してゆくが、幾つかの実施形態では、細長い開口部104の少なくとも一部は、幅bへと先細になっている。図1から図3に示す細長い開口部104(例えば、分割部)の第2部分112は、第1の開口部部分110の遠位部分付近の約10ミクロンから細長い梁部102の終端部114付近の約1ミクロンまで先細になってゆく幅bを有している。図1から図3に示す実施形態では、第2部分112の長さは約40ミクロンであるが、必要に応じて、これよりも長い又は短い長さを採用してもよい。更に、図1から図3に示す実施形態では、第2部分112の長さは、細長い梁部102の先細部分の長さf(即ち、細長い梁部102が細くなり始める箇所と細長い梁部102の終端部114の間の距離)にほぼ等しい。しかしながら、必ずしもそうでなくともよく、というのも、細長い開口部104の第2部分112(即ち、細長い梁部102の厚さtに等しい深さを有する、細長い開口部104の部分)は、細長い開口部104のどの部分に沿って伸張していてもよいし、細長い梁部102の先細部分に対応している必要もないからである。次に、例えば、図4から図5に示す堆積装置200を参照しながら説明する。
【0043】
幾つかの実施形態では、貯留部106は、約10ミクロンの深さDを含んでいるが、必要に応じて、これよりも深い又は浅い深さDを使用してもよい。幾つかの実施形態では、貯留部106の深さDは、貯留部106のほぼ全域に亘って一定である。しかしながら、他の実施形態では、貯留部106の深さDは、貯留部106の位置によって変動してもよい。幾つかの実施形態では、細長い開口部104の深さは約1ミクロンであり、細長い開口部104の長さl’に沿って実質的に一定であってもよいし、この長さl’の任意部分又は全部に沿って変動してもよい。
【0044】
幾つかの実施形態では、各アーム120の先端部は丸くなっている。例えば、図1から図3に示すアーム先端部の曲率半径は約1ミクロンであるが、別の実施形態では、他の曲率半径を採用している。
【0045】
図示の実施形態並びに他の実施形態を参照しながら、堆積装置100の様々な寸法をここで説明する。しかしながら、寸法は、他の考えられる寸法に比較して、性能上良好な成果を提供するものとして提示されており、一例として提示したものに過ぎないと理解されたい。また、所望の物質の滴量(例えば、ピコリットル、フェムトリットル、又はアトリットル)及び所望のスポットの大きさを生成するため、細長い梁部102の所望の力定数kを実現するのに、多種多様な寸法及び寸法範囲を使用してもよいと理解されたい。
【0046】
堆積性能は、以下のパラメータ、即ち、細長い開口部104の寸法(細長い開口部104の第2部分112の寸法を含む)、細長い梁部102の材料特性(例えば、ばね定数、ヤング率、硬度、頑強性、降伏強さなど)、細長い梁部102の長さl、及び細長い梁部102の形状、並びに他のパラメータ、の内の1つ又はそれ以上を変えることにより改善される場合が多い。
【0047】
幾つかの実施形態では、堆積装置100の少なくとも一部(例えば、細長い梁部102)又は全部が、フォトリソグラフィー、UVフォトリソグラフィー、化学エッチング、プラズマエッチング、電子線リソグラフィー、位相シフトマスキング、及び/又は当業者には既知の他の方法、を含む標準的な微細加工法により製作される。堆積装置100に使用される材料としては、例えば、シリコン(Si)、窒化ケイ素(Si3Ni4)、及び二酸化ケイ素(SiO2)が挙げられる。シリコンは、ヤング率Eが約190GPaであり、二酸化ケイ素は、ヤング率Eが約70GPaであり、窒化ケイ素は、ヤング率Eが約385GPaである。
【0048】
先ほど述べたように他の材料も使用可能であるが、幾つかの実施形態では、堆積装置100の少なくとも一部は、ヤング率が比較的小さいこと(これにより、所望の力定数kの実現に必要な細長い梁部102の長さlを短くできる)と、熱成長二酸化ケイ素の内部応力が低いこと、を根拠として、二酸化ケイ素(熱成長二酸化ケイ素)を備えている。細長い梁部102内の低い内部応力と最小の応力勾配は、反りや曲がりが最小の又は全く無い実質的に平らな細長い梁部102の製造に都合がよい。また、二酸化ケイ素は、生体適合性があり親水性が高い。堆積装置100の一部又は全部を構成するのに、親水性の高い材料を採用すれば、細長い開口部104の装填と物質の堆積を行いやすくなる。また、二酸化ケイ素は、実質的に可視光に対し透過性なので、光学的視覚化を介した現場での試料装填制御能力が高まることになる。更に、二酸化ケイ素を使用すれば、最終切り出し工程時(KOHエッチングによる製作時)に、そのような工程では臨界時間厚さ制御又はホウ素ドーピングが必ずしも必要無いので、細長い梁部102の厚さtの制御がやり易くなる。
【0049】
上に掲載したものに代えて又は加えて、他の堆積装置材料を使用してもよく、そのような材料としては、限定するわけではないが、プラスチック、金属、ピエゾセラミック、複合材、ナノチューブ、ナノワイヤ、生体材料、エラストマー、ガラス、又は他の適した材料、及びそれらの組み合わせが挙げられる。幾つかの実施形態では、使用される材料は、適切な剛性、展性、及び堆積性能を高めるために化学的又は生体的特性を有する特定の材料を添加することを含む以降の改質工程との適合性、を有するように選択される。本発明による堆積装置100を製作する場合、上記材料にとって適していればどの様な構造技法を採用してもよい。
【0050】
物質を堆積装置100に装填する際のやり方と同じように、物質は、1つ又はそれ以上の環境パラメータの制御(湿度、温度、圧力など、及び、特に、細長い梁部102の遠位部分109の周囲の局所的環境の制御)、堆積装置100の内面108及び/又は外面116の少なくとも一部の材料特性の選択(例えば、内面108及び/又は外面116の疎水性/親水性、内面108及び外面116の相対的特性)、細長い梁部102及び/又は基部105の材料特性の選択(例えば、細長い梁部102の剛性、細長い梁部102の力定数k、基部105の剛性など)、細長い梁部102の幾何学的形状の選択、細長い開口部104の幾何学的形状の選択、毛管作用の制御、及びそれらの組み合わせ、が関与する受動吸着工程で堆積させることができる。その様な制御は、(例えば、動電力、電気浸透力などの形態で)装置に供給されるパワーを使用して、物質を流路に沿って移動させるか、又は堆積させる物質を他の方式で移動させる従来の堆積装置に勝る利点を提供する。
【0051】
幾つかの実施形態では、物質を表面上に堆積させる処理は、実質的に平面状の梁部102を表面101に接触させる段階(即ち、「接触印刷」又は「接触堆積」)、又は実質的に平面状の細長い梁部102を表面101の近くに配する段階(即ち、「非接触印刷」又は「非接触堆積」)を含んでいる。湿度、温度、圧力、及び/又は局所的環境の他の環境パラメータを制御することにより、物質の堆積及びスポットの大きさが制御される。幾つかの実施形態では、細長い梁部102の終端部114を、表面101に隣接する比較的鋭利な先端部を画定する形状にして、終端部114に、表面101に接触させるかほぼ接触させて、物質の滴を表面101上に分注するための比較的小さな領域を画定する。非接触印刷又は堆積システムに採用されている本発明の幾つかの実施形態では、物質の滴が分注されようとしているとき、又は細長い梁部102の終端部114から出ようとしている過程で、堆積装置100に連結されている従来の力フィードバック機構(後で詳述)は、細長い梁部102の動作を停止させる。この様な実施形態では、物質の滴は、終端部114が表面101に直接触れることなく、表面101に分注される。
【0052】
本発明による堆積装置100は、細長い梁部102(又は、細長い梁部102が連結されている他の堆積ハードウェア)を振動させて、細長い梁部102から表面101への物質の送出をやり易くするシステムに利用される。細長い梁部102の発振は、接触及び非接触堆積法に使用される。例えば、幾つかの実施形態では、細長い梁部102は、物質を堆積させる表面101に接触する。この様な場合、細長い梁部102を、物質を表面101上に堆積させるために、表面に一度接触させるてもよいし、(例えば、細長い梁部102の共振周波数又は別の周波数で)振動させて表面101に複数回接触させてもよい。
【0053】
幾つかの実施形態では、堆積装置100の一部(例えば、細長い梁部102)と表面101の間、又は(上記の)正に堆積しようとしている物質と表面101の間、の接触を感知することができるようになっており好都合である。この能力は、細長い梁部102が表面101に沿って滑動するのを減らすので、表面101及び/又は細長い梁部102が損傷する可能性が小さくなる。その様な損傷は、スポットの大きさと再現性を含む、堆積性能を危うくする。従って、本発明の幾つかの実施形態は、力感知性能力を含んでいる。力感知を達成するための1つの方法は、従来の「光学的レバー」システムの使用によるものである。このシステムでは、レーザーは、堆積装置100の背面から分割光検出器上に反射する。この様なシステムは、実質的に頑丈で、本発明の様々な実施形態に合わせて修正することができる。しかしながら、一体型ピエゾ抵抗要素の様な代わりの方法を使用してもよい。力フィードバック装置とシステムは、個々の堆積装置100を、単純な細長い梁部102よりも更に複雑にするが、最終生成物は、光学感知システムにおいてしばしば必要とされる手動調整を必要としない比較的単純な感知システムとなる。その結果、堆積装置100は、ピエゾ抵抗要素、歪みゲージ、容量装置、又は表面101との(即ち、堆積装置100と表面101の間の、又は物質と表面101の間の)接触を検出するための類似の装置又は方法、を採用することができる。
【0054】
幾つかの実施形態では、本発明による堆積装置100の少なくとも一部は、交換可能及び/又は使い捨てである。例えば、幾つかの実施形態では、堆積装置100の少なくとも一部は、印刷装置において多色プリンタカートリッジを交換及び/又は処分する方式と同じ方式で交換可能及び/又は使い捨て可能である。堆積装置100全体が交換可能及び/又は使い捨て可能である実施形態もある。他の実施形態では、細長い梁部102は、交換可能及び/又は使い捨て可能であり、基部105は実質的に永久的である。何れの場合も、堆積装置100は、多種多様な物質を表面101上に堆積させることができるようになっている。
【0055】
図4と図5は、本発明による別の堆積装置200を示しており、図中、同様の番号は同様の要素を表している。図4と図5に示す堆積装置200は、図1から図3に示した実施形態に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、200番台の同一番号を付した。図4と図5に示す実施形態の特性と要素(及び、その様な特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0056】
図4と図5に示す堆積装置200は、細長い梁部202の上面203に画定された細長い開口部204を有する実質的に平面状の細長い梁部202を含んでいる。細長い開口部204は、内面208を画定している。細長い梁部202と細長い開口部204は、それぞれ、近位部分(図示せず)と遠位部分209、213それぞれを含んでいる。図4と図5は、細長い梁部202と細長い開口部204の遠位部分209と213をそれぞれ詳細に示している。図4と図5に示すように、細長い梁部204は、深さdを有する第1部分210と、細長い梁部102の厚さtを貫通して伸張している第2部分212とを含んでおり、第2部分212の深さは実質的に厚さtに等しくなる。その結果、内面208の、細長い開口部204の第1部分210を画定している部分は、複数の側面(例えば、図4と図5に図示の実施形態では3つの側面)により形成され、内面208の、細長い開口部204の第2部分212を画定している部分は、それよりも少ない側面(図4と図5に示す実施形態では2つの側面)により形成される。
【0057】
図1から図3に示す実施形態と同様に、細長い梁部202の遠位部分209は、細長い梁部202の終端部214に向けて先細になってペン先部222を画定している少なくとも2つのアーム220を含んでいる。図4と図5に示すように、細長い開口部104の第2部分212の長さは、細長い梁部202の遠位部分209の先細部分の長さfよりも短い。幾つかの実施形態では、第2部分212の長さは、約0.2ミクロンから約10ミクロンの範囲にある。例えば、幾つかの実施形態では、第2部分212の長さは、約5ミクロンから約7ミクロンの範囲にある。
【0058】
図5に分かり易く示すように、細長い開口部204の幅bは、細長い梁部202が細くなり始める位置(即ち、細長い梁部202の終端部214から距離fだけ離れた位置)で細くなり始める。しかしながら、幾つかの実施形態では、細長い開口部204の幅bは、細長い開口部204の第1部分210と第2部分212の間の接合部では、先細になるのを停止して、略一定となっている。即ち、細長い開口部204の第2部分212に対応している細長い開口部204の幅bは、略一定である。幾つかの実施形態では、細長い開口部204の第2部分212の幅bは、約0.2ミクロンから約100ミクロンの範囲にある。また、幾つかの実施形態では、細長い開口部204の第2部分212の幅bは、約1ミクロンから約50ミクロンの範囲にある。更に、幾つかの実施形態では、細長い開口部204の第2部分212の幅bは、約1ミクロンから約3ミクロンの範囲にある。即ち、図4と図5に示す実施形態では、細長い開口部204の幅bは、細長い開口部204の第1部分210の近位部分に沿って実質的に一定であり、細長い開口部204の第1部分210の遠位部分に沿って徐々に狭くなり、細長い開口部204の第2部分の長さaに沿って再度実質的に一定になっている。
【0059】
図6と図7は、本発明による別の堆積装置300を示しており、図中、同様の番号は同様の要素を表している。堆積装置300は、図1から図3に示した実施形態に関連して上に説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した実施形態の要素と特性に対応している要素と特性は、300番台の同一番号を付した。図6と図7に示す実施形態の特性と要素(及び、その様な特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0060】
図6と図7に示すように、図示の堆積装置300は、その細長い開口部304が第2部分を含んでいない点を除き、図4と図5に示す堆積装置200と同じである。即ち、細長い開口部304は、細長い開口部304の長さに沿って深さdを有し、細長い開口部304には細長い梁部302の厚さtを貫通して伸張している部分が実質的に無い。結果として、堆積装置300のアーム320は、互いから完全に分離されているのではなく、細長い梁部302の底部で接合されているので、部分アームとしかいえない。
【0061】
引き続き図6と図7を参照してゆくが、細長い開口部304の幅bは、細長い開口部304の近位部分に沿って略一定であり、細長い梁部302が細くなり始める箇所(即ち、細長い梁部302の終端部314からの長さf)に近いところから徐々に狭くなり、長さa(即ち、終端部314から距離aだけ離れた位置と終端部314との間)に沿って再度略一定になる。更に、図5と図6の実施形態に関して上に説明した幅bと長さaの寸法範囲と同じ寸法範囲を、図6と図7に使用してもよい。
【0062】
幾つかの実施形態では、堆積措置300の幅bは、細長い開口部304の長さに沿って再度略一定にはならずに、長さfに沿って又は実質的に長さfの全長に沿って(即ち、細長い梁部302が細くなり始める箇所から細長い梁部302の終端部314まで)引き続き先細になっている。
【0063】
更に、図6と図7の実施形態では、細長い梁部302の終端部314は、実質的に鈍くなっており、細長い梁部302の、細長い開口部304を画定している部分が、細長い梁部302の、アーム20が終端しているのと同じ箇所で終端し、細長い開口部304を画定している内面308は、細長い開口部304の長さ又は実質的に全長に沿って細長い梁部の同じ側面(即ち、図6と図7の実施形態では細長い梁部302の3つの側面)によって形成されている。
【0064】
図8と図9は、本発明による別の堆積装置400を示しており、図中、同様の番号は同様の要素を表している。堆積装置400は、図1から図3に示した実施形態に関して上に説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、400番台の同一番号を付した。図8と図9に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい
図6と図7に示す堆積装置300と同じように、図8と図9に示す堆積装置400は、図4と図5に示す第2部分212と同様な第2部分を含んではいない。即ち、細長い開口部404は、その長さに沿って深さdを有しており、細長い開口部404には、細長い梁部402の厚さtを貫通して伸張している部分が無い。細長い開口部404は、細長い開口部404の或る長さの部分に沿って略一定の幅bを有し、細長い梁部402が細くなり始める箇所(即ち、細長い梁部402の終端部414から長さfの位置)で徐々に細くなり始める。細長い開口部404は、細長い開口部404の終端部424まで先細りになり続けている。
【0065】
上記堆積装置100、200、300とは異なり、図8と図9に示す堆積装置400の細長い開口部404の終端部424は、細長い梁部402の終端部414と一致していない。即ち、細長い梁部402の終端部414は、細長い開口部404の終端部424から或る距離だけ離れた位置にある。換言すると、細長い梁部402の終端部414の部分は、細長い開口部404の終端部424を越えて伸張しており、細長い開口部404と流体連通している。幾つかの実施形態では、終端部414の、細長い開口部404の終端部424を越えて伸張している部分は先が尖っている(例えば、図8と図9を参照)。特にその様な実施形態では、終端414の、細長い開口部404の終端部424を越えて伸張している部分の大きさは、少なくとも部分的には、細長い開口部404の幅bと細長い梁部402の終端部414の角度(例えば、鋭さ)によって決まる。
【0066】
図10と図11は、本発明による別の堆積装置500を示しており、同様の番号は同様の要素を表している。堆積装置500は、図1から図3に示した実施形態に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、500番台の同一番号を付した。図10と図11に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0067】
図10と図11では、堆積装置500の細長い開口部504は、細長い梁部502の終端部514から或る距離だけ離れて設けられた終端部524を含んでいる。その様な実施形態では、毛管流、環境制御(例えば、湿度、温度、圧力など)、細長い開口部504の内面の材料特性の選択(例えば、細長い開口部504の内面の疎水性/親水性)、及びそれらの組み合わせを使って、細長い開口部504に沿う物質の移動を制御することができる。これに関連して、物質は、細長い開口部504の終端部524に向かう方向に、そして細長い開口部504の終端部524から細長い梁部502の終端部514まで、移動する。更に、環境制御及び/又は細長い梁部502の、終端部514付近の材料特性の選択によって(例えば、細長い梁部502の外面516の疎水性/親水性)、物質の堆積を制御することができる。
【0068】
更に、図10と図11に示すように、堆積装置500の細長い開口部504の幅bは、細長い開口部504の長さに沿って、細長い開口部504の終端部524まで、実質的に一定である。また、細長い開口部504の深さbは、細長い開口部504の長さに沿って実質的に一定である。また、細長い開口部504は、図4と図5に関連して上で説明した第2部分212と同様の第2部分を有している必要はない。即ち、細長い開口部504は、細長い開口部504の長さに沿って深さdを有しており、細長い開口部504には、細長い梁部502の厚さを貫通して伸張している部分は無い(又は、実質的に無い)。また、細長い梁部504は、上記の他の堆積装置100、200、300、400のものと同様の先細形状の遠位部分509を含んでいる。
【0069】
図12と図13は、本発明による別の堆積装置600を示しており、同様の番号は同様の要素を表している。堆積装置600は、図1から図3に図示した実施形態に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、600番台の同一番号を付した。図12と図13に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0070】
図12と図13に示すように、図示の堆積装置600は、実質的に鈍い終端部614を備えた細長い梁部602を有している。また、細長い開口部604は、細長い梁部602の終端部614を貫通して伸張している。上記特性の何れか又は両方を有する幾つかの実施形態では、細長い開口部604の幅bは、細長い開口部604の長さに沿って実質的に一定であり、深さdは、細長い開口部604の長さに沿って実質的に一定である(が、代わりの実施形態では、一定でない幅bと深さdも可能である)。その結果、図12と図13の図示の実施形態の細長い開口部604は、図4と図5に関連して上で説明した第2部分212と同様の第2部分を含んでいない。即ち、幾つかの実施形態では、細長い開口部604には、細長い梁部602の厚さtを貫通して伸張している部分が無いか実質的に無い。
【0071】
図14と図15は、本発明による別の堆積装置700を示しており、図中、同様の番号は同様の要素を表している。堆積装置700は、図1から図3に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、700番台の同一番号を付した。図14と図15に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0072】
図14と図15に示すように、堆積装置700は、細長い梁部702の終端部714から或る距離だけ近位方向に離して、且つ終端部714と連通して、配置された終端部724を備えた細長い開口部704を有している。幾つかの実施形態では、細長い梁部702の遠位部分709は、先細になっている。その様な実施形態では、遠位部分709は、先が尖っていてもよいし(図14と図15参照)、鈍くなっていてもよい。幾つかの実施形態では、終端部714の、細長い開口部704の終端部724を越えて伸張している部分の大きさは、少なくとも部分的には、細長い開口部704の幅bと細長い梁部702の終端部714の角度(例えば、鋭さ)によって決まる。
【0073】
図14と図15に示すように、細長い開口部704の幅bは、細長い開口部704の長さに沿って実質的に一定であり、その深さdは、細長い開口部704の長さに沿って実質的に一定である(が、代わりの実施形態では、一定でない幅bと深さdも可能である)。その結果、細長い開口部704は、図4と図5に関連して上で説明した第2部分212と同様の第2部分を含んでいない。即ち、細長い開口部704の、細長い梁部702の厚さtを貫通して伸張している部分は無いか実質的に無い。
【0074】
図16から図20は、それぞれ、本発明による別の堆積装置800、900、1000、1100、1200を示しており、図中、同様の番号は同様の要素を表している。堆積装置800、900、1000、1100、1200は、図1から図3に示した実施形態に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、800、900、1000、1200番台の同一番号を付した。図16から図20に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。図20には、20ミクロン(「20μm」)を示す尺度標示を示しているが、これは図16から図20の全てに適用される。
【0075】
図16に示す堆積装置800は、図1から図5の実施形態に関連して上で説明した第1及び第2部分110、112と同様の第1及び第2部分810、812を有する細長い開口部804を含んでいる。幾つかの実施形態では、第1部分810は、深さdを有しており、第2部分812は、細長い梁部802の厚さを貫通して伸張していて、第2部分812の深さが細長い梁部802の厚さに等しいか実質的に等しくなっている。細長い開口部804の第2部分812は、第2部分812の長さ又は実質的に全長に沿って、実質的に一定の幅bを有している。同様に、細長い開口部804の第1部分810は、第1部分810の長さ又は実質的に全長に沿って、実質的に一定の幅bを有しており、幾つかの実施形態では、第1部分810の長さに沿って、第1部分810と第2部分812の間の接合部まで先細になっている。
【0076】
引き続き図16を参照してゆくが、幾つかの実施形態では、細長い梁部802の遠位部分809は先細である。細長い開口部804の長さに沿った、細長い開口部804の幅bが狭くなり始める箇所は、細長い梁部802の長さに沿った、細長い梁部802が細くなり始める箇所と同じである必要はない(が、代わりの実施形態では、同じである)。また、第1及び第2部分810、812が、上記の細長い開口部804の先細になった部分で接合されている実施形態では、細長い開口部804の傾斜角度は、細長い梁部802の傾斜角度と同じでも異なっていてもよい(図16参照)。図16に示す実施形態では、例えば、細長い開口部804の先細になった部分を画定している側面部は、細長い梁部802の先細になった外壁と平行ではない。
【0077】
図17に示す堆積装置900は、図16に示す堆積装置800と同様である。しかしながら、図17に示す堆積装置900の細長い開口部904は、図4と図5の実施形態に関連して説明した第2部分212と同様の第2部分を含んでいない。即ち、細長い開口部904は、その長さに沿って実質的に一定の深さdを有し、細長い開口部904には、細長い梁部902の厚さを貫通して伸張する部分が無いか実質的に無い。或る実施形態では、細長い開口部904の幅bは、細長い開口部部904の長さの近位部分に沿って実質的に一定であり、細長い開口部部904の長さの或る部分に沿って、細長い梁部102の終端部914に向けて徐々に狭くなり、その後、細長い開口部904の長さの遠位部分に沿って再度実質的に一定になっている。更に、幾つかの実施形態では、細長い開口部904の幅bは、細長い開口部904の近位部分911で最大であり、細長い開口部904の遠位部分913では狭くなっている。
【0078】
図16に示す堆積装置800とは異なり、細長い開口部904の長さに沿う、細長い開口部904が細くなり始める箇所は、細長い梁部902が細くなり始める箇所と一致している。しかしながら、細長い開口部904の先細になった部分を画定している側面部は、細長い梁部902の先細になった部分の外壁と平行ではないが、他の実施形態では、そのような関係も可能である。
【0079】
図18に示す堆積装置1000は、図17に示す堆積装置900と同様である。しかしながら、図18に示す堆積装置1000では、細長い開口部1004の遠位部分1013の、細長い開口部1004の幅bが一定である長さは、堆積装置900の場合より長い。更に、細長い開口部904の先細になった部分を画定している側面部は、細長い梁部902の先細になった部分の外壁と実質的に平行である。
【0080】
図19に示す堆積装置1100は、細長い梁部1102の全長に亘って伸長しておらず且つ追加的な貯留部と連通していない、細長い開口部1104を有している。代わりに、細長い開口部1104の近位部分1111は、堆積装置1100の貯留部1106として機能する。更に、図19では、細長い梁部1102は、その長さの一部分又は全長に沿って先細になっている。例えば、図19に示す細長い梁部1102は、他の実施形態の場合よりも長い長さfに沿って先細になっている。
【0081】
上記の幾つかの実施形態と同様に、細長い開口部1104の幅bは、その長さの少なくとも一部に沿って実質的に一定であり、細長い梁部1102の終端部1114に向けて先細になり、その後に、細長い開口部1104の長さの遠位部分に沿って実質的に一定である部分が続いている。更に、細長い開口部1104は、或る深さを有する第1部分1110と、細長い梁部1102の厚さを貫通して伸張していて細長い梁部1102の厚さに等しいか実質的に等しい深さを有している第2部分111と、を含んでいる。
【0082】
幾つかの実施形態では、細長い開口部1104は、その長さに沿って細くなり始める箇所が、細長い梁部1102が細くなり始める箇所と一致していないが、代わりの実施形態では、それら位置が一致している関係も可能である。更に、細長い開口部1104の先細になっている部分を画定している側面部は、図19に示すように細長い梁部1102の先細になっている部分の外壁と実質的に平行であるが、他の実施形態では、この関係は求められていない。
【0083】
図20に示す堆積装置1200は、図19に示す堆積装置1100と同様である。しかしながら、図20に示す堆積装置では、細長い開口部1024は、上流の貯留部(図示せず)と流体連通している。即ち、細長い開口部1204の近位部分1213は、細長い梁部1202及び/又は所持部(図示せず)に画定されている貯留部(図示せず)と流体連通している。図20に示す細長い開口部1204の近位部分1213は、堆積装置1200の貯留部としては機能しない。
【0084】
図21と図22は、本発明による別の堆積装置1300を示しており、図中、同様の番号は同様の要素を表している。堆積装置1300は、図1から図3に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、1300番台の同一番号を付した。図21と図22に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0085】
本発明の幾つかの実施形態で、図21に示す実施形態では、堆積装置1300は、支持部1305を含んでおり、ここから2つ又はそれ以上の細長い梁部1302が伸張している。一例として、図21に示す細長い梁部1302は、図14と図15に示す細長い梁部702の場合と同じ幾何学的形状を含んでいる。従って、ここに開示している細長い梁部102から1020は、どれでも堆積装置1330で使用することができ、また細長い梁部1032は、必ずしも全て同一でなくてもよいものと理解されたい。幾つかの実施形態では、様々な幾何学的形状の細長い梁部を、堆積装置1300に採用することができる。また、幾つかの実施形態では(図21を参照)、支持部1305は、複数の貯留部1306を含んでおり、各貯留部は、1つ又は複数の細長い梁部1032に画定された細長い開口部1305と流体連通している。2つ又はそれ以上の細長い梁部1302を採用している本発明の幾つかの実施形態では、支持部1305は、対応している細長い梁部1302の2つ又はそれ以上の細長い開口部1304と流体連通している貯留部1306を含んでいる。更に、幾つかの実施形態では、1つ又は複数の細長い梁部1302は、少なくとも部分的には細長い梁部1302内に配置された貯留部1306を有している。
【0086】
一例として、図21と図22に示す堆積装置1300は、合計6つの細長い梁部1302を含んでおり、各群が3つの細長い梁部1302から成る2群の細長い梁部が、支持部1305の両縁部1330から外向きに伸張している。従って、支持部1305には、支持部1305が対称になるように、同一の半部2つが背中合わせに配置されている。他の実施形態では、任意の数の細長い梁部が、何れかの縁部又は両方の縁部1330から伸張して、対称的又は非対称的な堆積装置1300を画定している。再度、図21と図22を参照すると、貯留部1306は、各セットの貯留部1306の内の1つの貯留部1306(例えば、中間貯留部1306)が隣接する貯留部とオフセットするように構成されている。換言すると、複数の貯留部1306は、1つの貯留部が、堆積装置1300の同じ縁部1330から伸張している細長い梁部1032に物質を供給している隣接する貯留部よりも、支持部1305の縁部1330から更に遠くに位置するように、配置されている。従って、前記1つの細長い梁部1302の細長い開口部1304は、堆積装置1300の同じ縁部1330から伸張している1つ又は複数の隣接する細長い梁部1302の細長い開口部1304よりも長い。従って、物質は、オフセットしている貯留部1306から対応する細長い梁部1302の遠位部分1309に達するまでの移動距離の方が、他の細長い梁部1302の場合よりも長くなる。その結果、幾つかの実施形態では(例えば、図21参照)、オフセットしている貯留部1306と流体連通している細長い開口部1304の近位部分は、1つ又はそれ以上の隣接している細長い開口部1304よりも幅が広くなっている(即ち、幅bが大きい)。必要であれば、堆積装置1300の貯留部1306は、全てが互いに実質的に同じ形状及び大きさであってもよい。しかしながら、幾つかの実施形態では、貯留部1306は、異なる大きさ及び/又は形状をしている。
【0087】
幾つかの実施形態では、2つ又はそれ以上の細長い梁部1302が、堆積装置1300から実質的に平行に伸張している。また、複数の細長い梁部1302は、実質的に同一平面内に在りながら、互いに或る角度を成すように配置されている。更に、複数の細長い梁部1302は、物質を堆積させる表面101に向かう方向及び離れる方向に、互いに対して様々な角度を成すように配置してもよい(即ち、細長い梁部1302の長さlは、全てが同一面内に在るわけではない)。これに関して、細長い梁部1302は、表面101及び互いに対して様々な角度を成すように配置されていてもよい。
【0088】
図23と図24は、本発明による別の堆積装置1400を示しており、図中、同様の番号は同様の要素を表している。堆積装置1400は、図1から図3に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3に示した要素と特性に対応する要素と特性には、1400番台の同一番号を付した。図23と図24に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3に付随する上記説明を参照されたい。
【0089】
図23と図24に示す堆積装置1400は、支持部材1405から伸張する6つの細長い梁部1402を含んでいるが、その様なやり方で伸張させる細長い梁部1402は、必要に応じてそれよりも多くても少なくてもよい。一例として、細長い梁部1402は、図17に示した細長い梁部902と同じ幾何学的形状を有するものとして示されている。しかしながら、ここに開示している細長い梁部102−1202は、どれでも堆積装置1400で使用することができ、また細長い梁部1402は、必ずしも全て同一でなくてもよいものと理解されたい。幾つかの実施形態では、様々な幾何学的形状の細長い梁部を、堆積装置1400に採用することができる。
【0090】
図23と図24に示す細長い梁部1402は、細長い梁部1402を互いに接近させて並べた配置で設けられている(例えば、支持部1405よりも実質的に小さい箇所に物質を堆積させる場合)。幾つかの実施形態では、細長い梁部1402は、互いに20ミクロン以下の間隔で配置されている。例えば、細長い梁部1402は、約10ミクロンの間隔を空けて配置されている。
【0091】
図23と図24に示す6つの細長い梁部1402aから1402fは、それぞれ、貯留部1406a―1406fと流体連通している細長い開口部1404a−1404fそれぞれを含んでいるので、堆積装置1400は、支持部1405に6つの貯留部1406a−1406fを含んでいる。図23に示すように、2つの前方貯留部1406aと1406bは、形状が略矩形であるが、他の4つの貯留部1406c−1406fは、形状が略方形である。前方貯留部1406aと1406bの矩形形状は、他の細長い開口部1404c−140fそれぞれの、支持部1405内に画定されている部分を収容するための余裕を、支持部1405内に提供している。しかしながら、貯留部1406a−1406fは、各種他の形状及び大きさのものを含んでいてもよいし、本発明の精神と範囲から逸脱すること無く、どの様な大きさ及び形状の相互関係を有していてもよい。
【0092】
引き続き図23と図24に示す実施形態を参照してゆくが、前方貯留部1406a及び1406bは、支持部1405の、細長い梁部1402a−1402fが伸張し始める縁部分1430に最も接近して、従って細長い梁部1402a−1402fに最も接近して配置されている。後方貯留部1406eと1406fは、支持部1405の縁部1430及び細長い梁部1402a−1402fから最も遠い位置に配置されているので、後方貯留部1406eと1406fから対応する細長い梁部1402eと1402fまで流れる物質は、最も長い距離を移動することになる。堆積させる物質の流量を、細長い開口部1404a−1404fの間でうまく整合させるために、細長い開口部1404eと1404fの近位部分1411eと1411fは、細長い開口部1404cと1404dの近位部分1411cと1411dよりも幅が広く、更に、それら近位部分1411cと1411dは、細長い開口部1404aと1404bの近位部分1411aと1411bよりも幅が広くなっている。
【0093】
隣接する貯留部1406及び/又は隣接する細長い開口部1404の間での交差汚染を防止するために、堆積装置1400は、物質が支持部14504の上面を横切って移動しないようにする1つ又は複数の造形を有している。その様な造形としては、1つの溝、リブ、壁、陥凹などを、その様な造形がその様な物質の移動を防止する位置に配置することが考えられる。一例として、図23と図24に示す堆積装置1400は、支持部1405の上面の様々な位置に形成されるか、支持部1405の外面に又は外面の他の部分の上に形成された、複数の溝1432を有している。幾つかの実施形態では、溝1432はV字型ノッチで、溝1432の断面は略三角形になっている。しかしながら、他の断面形状を有する溝1432を採用してもよい。溝1432は、それぞれ内面1434を画定しており、幾つかの実施形態では、その材料特性(例えば、疎水性/親水性)は、物質が1つの貯留部1406又は細長い開口部1404から別の貯留部1406又は細長い開口部1404にこぼれないように制御される。幾つかの実施形態では、内面1434は、支持部1405の1つ又は複数の外面よりも疎水性が高い。例えば、幾つかの実施形態では、内面1434はシリコンを備えており、外面1416の隣接する部分は二酸化ケイ素を備えている。別の例では、内面1434と外面1416の隣接する部分はシリコンを備えており、隣接する貯留部1406又は細長い開口部1404は二酸化ケイ素を備えている。
【0094】
引き続き図23と図24に示す実施形態を参照してゆくが、幾つかの実施形態では、1つ又は複数の貯留部1406は、貯留部1406の底面から伸張する突起部1436を含んでいる。各突起部1406の高さは、対応する貯留部1406の深さと同じであってもよいし、対応する貯留部1406の深さDよりも大きくても小さくてもよい。突起部1436は、例えば、ピペット(図示せず)を用いた後方装填操作時などで、貯留部1406を充填し易くするために使用される。その様な実施形態では、突起部1436は、ピペット先端の端部内に嵌る大きさに作られていて、ピペット先端部から貯留部1406内へ流体を流し込めるようになっている。充填時にピペット先端部が滑って堆積装置1400の諸部分を損傷することのないようにするために、突起部1436は、更に、貯留部1406を充填する際に、ピペット先端部を堆積装置1400に対して正しい位置に維持する。
【0095】
図25と図26は、本発明による別の堆積装置1500を示しており、図中、同様の番号は同様の要素を表している。堆積装置1500は、図1から図3並びに図23と図24に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3及び図23と図24に示した要素と特性に対応する要素と特性には、1500番台の同一番号を付した。図25と図26に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3及び図23と図24に付随する上記説明を参照されたい。
【0096】
図25と図26に示す実施形態では、堆積装置1500は、支持部1505から伸張する5つの細長い梁部1502を含んでいる。一例として、細長い梁部1502は、図12と図13に示す細長い梁部602と同じ幾何学的形状を有するものとして示している。しかしながら、ここに開示している細長い梁部102−1202は、どれでも堆積装置1500で使用することができ、また細長い梁部1502は、必ずしも全て同一でなくてもよいものと理解されたい。幾つかの実施形態では、様々な幾何学的形状の細長い梁部を、堆積装置1500に採用することができる。
【0097】
図25と図26に示す5つの細長い梁部1502a−1502eは、それぞれ、貯留部1506a−1506eそれぞれと流体連通している細長い開口部1504a−1504eを含んでいるので、堆積装置1500は、支持部1505に5つの貯留部1506a−1405fを含んでいる。図25に示すように、2つの前方貯留部1506aと1506bは、形状が略矩形であるが、中間の貯留部1506c−1506dは、形状が略方形であり、後方の貯留部1506eは、形状が略矩形である。前方貯留部1506aと1506bの矩形形状は、支持部1505に、他の細長い開口部1504c−1504eの支持部1505内に画定されている部分を収容するための余裕を提供している。しかしながら、貯留部1506a−1506eは、様々な他の形状及び大きさを含んでいてもよく、本発明の精神と範囲から逸脱すること無く、互いにどの様な大きさと形状の相互関係を有していてもよい。
【0098】
図示の堆積装置1500の前方貯留部1506aと1506bは、支持部1505の、細長い梁部1502a−1502eが伸張し始める縁部分1530に最も接近して、従って細長い梁部1502a−1502eに最も接近して配置されている。後方貯留部1506eは、縁部1530及び細長い梁部1502a−1502eから最も遠い位置に配置されているので、後方貯留部1506eから対応する細長い梁部1502eまで流れる物質は、最も長い距離を移動することになる。堆積させる物質の流量を、細長い開口部1504a−1504e間でうまく整合させるために、細長い開口部1504eの近位部分1511eは、細長い開口部1504cと1504dの近位部分1511cと1511dよりも幅が広く、更に、それら近位部分1511cと1511dは、細長い開口部1504aと1504bの近位部分1511aと1511bよりも幅が広くなっている。また、後方貯留部1506eの位置(例えば、支持部1505内の実質的に垂直方向の中心)は、対応する細長い開口部1504eが、曲がらずに細長い梁部1502まで到達できるようにしているが、一方、他の細長い開口部1504a−1504dは、全て、堆積させる物質が通過する少なくとも1つの曲がり又は曲げ部を含んでいる。図25に示す支持部1505の上部は、図25の支持部1505の底部と実質的に対称である。しかしながら、支持部1505の縁部1530(貯留部1506a−eからの物質が供給される箇所)から様々な距離に貯留部1506a−eを配置できるようにする、貯留部1506a−eと細長い開口部1504a−eの他の配置も、可能であることを注記しておく。
【0099】
図27は、本発明による別の堆積装置1600を示しており、図中、同様の番号は同様の要素を表している。堆積装置1600は、図1から図3及び図23と図24に関連して上で説明したものと同じ要素と特性を数多く共有している。従って、図1から図3及び図23と図24に示した要素と特性に対応する要素と特性には、1600番台の同一番号を付した。図27に示す実施形態の特性と要素(及び、そのような特性と要素に代わるもの)についての更に詳しい説明は、図1から図3及び図23と図24に付随する上記説明を参照されたい。
【0100】
図27と図28に示す堆積装置1600は、支持部1605から伸張する10個の細長い梁部1602を含んでいる。一例として、細長い梁部1602は、概ね、図1から図3に示す細長い梁部102と同じ幾何学的形状を有するものとして示している。しかしながら、ここに開示している細長い梁部102−1202は、どれでも堆積装置1600で使用することができ、また細長い梁部1602は、必ずしも全て同一でなくてもよいものと理解されたい。幾つかの実施形態では、様々な幾何学的形状の細長い梁部を、堆積装置1600に採用することができる。
【0101】
10個の細長い梁部1602は、それぞれ、貯留部1606と流体連通している細長い開口部1604を含んでいるので、堆積装置1600は、それぞれが少なくとも部分的には支持部1605内に配置されている10個の貯留部1606を含んでいる。図27に示すように、貯留部1606は、5つの前方貯留部1606aと5つの後方貯留部1606bを含んでおり、それらは全て形状が略方形である。しかしながら、貯留部1606は、様々な形状と大きさを含んでいてもよいし、本発明の精神と範囲から逸脱すること無く、互いにどの様な大きさと形状の相互関係を有していてもよい。
【0102】
前方貯留部1606aは、それぞれ、支持部1605の前方縁部1630から或る距離だけ離れており、後部貯留部1606bは、後部貯留部1606bが支持部分1605の前方縁部1630から前方貯留部16060aよりも更に遠くに配置されるように、それぞれ、前方貯留部1606aから或る距離だけ離れている。従って、後方貯留部1606bを対応する細長い梁部1602bに流体接続する細長い開口部1604bは、先に図21から図26の堆積装置1300、1400、1500に関連して詳しく説明したように、前方貯留部1606aの近位部分よりも幅が広い近位部分を有している。
【0103】
図28は、複数の細長い梁部を備えている(図25と図26に示し上に説明した堆積装置1500の様な)堆積装置にどの様に前方装填するかの一例を示している。図28に示すように、修正を加えた堆積装置1500’は、細長い梁部を含んでいない。従って、堆積装置1500’の支持部1505’に画定されている細長い開口部1504’は、支持部1505’の縁部1530’と流体連通している。別の堆積装置1500の細長い梁部1502の遠位部分1509は、修正された堆積装置1500’の縁部1530’と流体連通する状態に動かすことができる。毛管作用、1つ又は複数の環境パラメータの制御、及び修正された堆積装置1500’及び堆積装置1500の材料特性の制御により、堆積装置1500の細長い各開口部に、修正された堆積装置1500’の細長い各開口部1504’から同時に前方装填することができる。
実施例1−本発明の細長い梁部の製作
開始材は、3インチ両面研磨n型[100]シリコンウェーハであった。ウェーハの両面に、2から3ミクロンのSiO2を熱成長させた(湿式酸化)。表面のSiO2層を、細長い梁部の製作に使用した。裏面のSiO2層は、最終的なシリコン異方性エッチング工程で、細長い梁部を切り出すためのマスクとして使用した。表面のSiO2層に、細長い梁部、細長い開口部、及び貯留部を画定するためパターン形成を施した。従来のUVフォトリソグラフィーを使用して、1ミクロンの面造形寸法と3:1の縦横比を備えたギャップを製作するのは並大抵のことではない。この処理を行うために、マスク電気鍍金により、負のフォトレジストパターンを500nm厚のニッケル正パターンに転写し、次いで、ニッケル金属層を、異方性RIE(反応性イオンエッチング)による下層SiO2エッチングのためのハードマスクとして用いた。反応ガスは、圧力50mトールのCHF3(50SCCM)とSF6(1SCCM)の混合気体であった。50WのRF電力を使用した。SiO2対ニッケルのエッチング選択性は、対フォトレジストの場合よりも遥かに高いので、厚いフォトレジストをSiO2エッチング用のマスクとして使用した場合よりも、細長い開口部の幾何学的形状を更に高い精度で制御することができた。細長い梁部を画定した後、オーバーレイ・フォトリソグラフィーに続いてRIEを施すことにより、深さ1ミクロンの細長い開口部を作成した。最後に、裏面のSiO2ウインドウを開けて、細長い梁部をKOH異方性エッチングにより切り出した。KOHの濃度は、水分中約35重量%であり、処理温度は約80℃であった。
実施例2−試料調製と物質堆積
グリセロール10%を含んだリン酸緩衝生理食塩水(PBS)中に、精製したCy3−ストレプタビジン(ペンシルベニア州ウエストグローブ、Jackson ImmunoResearch 研究所)を溶解して使用した。グリセロールは、蒸発を防ぎ蛋白質を水和及び生物活性状態に保つために添加した。Cy3フッカ物担体により、堆積又はパターン形成後、蛍光透視法によりストレプタビジンを監視することができた。Cy3−ストレプタビジンを装填する前に、堆積装置に対して、TIPCLEANERTM(アイオワ州エームズのBioForce Nanoscience, Inc.から入手可能)を使用してUV/O3で20分間、処理を施した。この処理により、細長い開口部の内面を洗浄すると共に内面を親水性にして、試料充填をやり易くした。Cy3−ストレプタビジン試料溶液(約1μl)を、マイクロピペットで片持ち梁の後側の貯留部に送給した。この送給によって、親水性毛管力により細長い開口部が自然に充填された。次いで、後方装填式堆積装置を、NANOARRAYERTM堆積システム上に搭載し、パターン作成を行った。ジチオビス−スクシンイミジル・ウンデカノエート(DSU)(日本、ドージンドー社)で処理した金の表面を、堆積基板として使用した。DSUは、イオウと金の間の化学反応並びにアルキル鎖の疎水パッキングを介して、金の表面上に自己集合単分子層を形成する。露出されたアミノ活性スクシンイミド基は、堆積基板に対するCy3−ストレプタビジンの共有結合を可能にした。
【0104】
全ての実験は、雰囲気条件を、相対湿度約35−40%、温度約23−24℃に設定して実行した。パターン形成後、40倍のオイル対物レンズとCy3TM(#41007a)用のChroma Technology(バーモント州)のフィルタのセットを装備したニコンTE2000U倒立顕微鏡を使用して、DSU/金の上にパターン形成されたCy3−ストレプタビジンを可視化した。浜松(日本)ORCA ER冷却CCDカメラで画像を撮影した。同様の処理を用いて、微細加工を施した堆積装置の細長い開口部内の蛍光試料を直接画像化した。Media Cybernetics(カリフォルニア州、カールズバッド)から入手できるArray Pro Analyzer v4.5ソフトウェアパッケージを用いて、蛍光配列画像を分析し、正味輝度、直径、面積、及び分散係数を求めた。
【0105】
上に説明し図面に示した実施形態は、一例として提示したものであり、本発明の概念及び原理を限定するものではない。従って、当業者には理解頂けるように、特許請求の範囲に記載する本発明の精神と範囲から逸脱すること無く、要素及びそれらの構成と配置には様々な変更を加えることができる。
【図面の簡単な説明】
【0106】
【図1】本発明の或る実施形態による堆積装置の斜視図である。
【図2】図1の堆積装置の詳細斜視図である。
【図3】図1と図2の堆積装置の上面図である。
【図4】本発明の別の実施形態による堆積装置の詳細斜視図である。
【図5】図4の堆積装置の上面図である。
【図6】本発明の別の実施形態による堆積装置の詳細斜視図である。
【図7】図6の堆積装置の上面図である。
【図8】本発明の別の実施形態による堆積装置の詳細斜視図である。
【図9】図8の堆積装置の上面図である。
【図10】本発明の別の実施形態による堆積装置の詳細斜視図である。
【図11】図10の堆積装置の上面図である。
【図12】本発明の別の実施形態による堆積装置の詳細斜視図である。
【図13】図12の堆積装置の上面図である。
【図14】本発明の別の実施形態による堆積装置の詳細斜視図である。
【図15】図14の堆積装置の上面図である。
【図16】本発明の更に別の実施形態による堆積装置の上面図である。
【図17】本発明の更に別の実施形態による堆積装置の上面図である。
【図18】本発明の更に別の実施形態による堆積装置の上面図である。
【図19】本発明の更に別の実施形態による堆積装置の上面図である。
【図20】本発明の更に別の実施形態による堆積装置の上面図である。
【図21】本発明の別の実施形態による堆積装置の上面図である。
【図22】図21の堆積装置の詳細上面図である。
【図23】本発明の別の実施形態による堆積装置の上面図である。
【図24】図23の堆積装置の詳細上面図である。
【図25】本発明の別の実施形態による堆積装置の上面図である。
【図26】図25の堆積装置の詳細上面図である。
【図27】本発明の別の実施形態による堆積装置の斜視図である。
【図28】図25及び図26の堆積装置の上面図であり、前方装填工程を示している。

【特許請求の範囲】
【請求項1】
表面上に物質を堆積させるための装置において、
基部と、
前記基部から伸張している近位部分と前記近位部分から離れた位置にある遠位部分とを有し、前記基部に対して片持ち梁を形成する実質的に平面状の細長い梁部であって、長さが約2mm以下である細長い梁部と、
前記細長い梁部に形成された細長い開口部であって、受動吸着作用により前記細長い開口部に沿って液体を移動させる大きさに作られた内表面を少なくとも部分的には形成しており、遠位部を有していて、そこから物質を表面上に堆積させるようになっている、細長い開口部と、を備えている装置。
【請求項2】
前記細長い梁部の長さは、約100nm以上で且つ約1mm以下である、請求項1に記載の装置。
【請求項3】
前記細長い開口部の近位部分と流体連通している貯留部を更に備えており、前記貯留部は堆積させる前記物質を保持するようになっている、請求項1に記載の装置。
【請求項4】
前記貯留部は、前記細長い梁部よりも幅が広く、前記基部に配置されている、請求項3に記載の装置。
【請求項5】
前記細長い開口部の少なくとも一部は、前記細長い開口部の少なくとも一部に沿って幅が先細になっている、請求項1に記載の装置。
【請求項6】
前記細長い開口部は、前記細長い梁部の終端部から或る距離だけ離れた位置まで伸張して終端している、請求項1に記載の装置。
【請求項7】
前記細長い開口部は。前記細長い梁部の終端部まで伸張して貫通している、請求項1に記載の装置。
【請求項8】
前記細長い梁部は、上面と下面を含んでおり、
前記上面と前記下面は、前記細長い梁部の長さに沿って、実質的に平行、平坦、及び平面状である、請求項1に記載の装置。
【請求項9】
前記細長い梁部は、少なくとも1つの物質を前記表面上に堆積させ易くするために前記基部から伸張している複数の細長い梁部の1つである、請求項1に記載の装置。
【請求項10】
前記細長い梁部は或る厚さを有しており、
前記細長い開口部は、前記細長い梁部の厚さよりも浅い深さを有する第1部分を含んでおり、
前記細長い開口部は、前記細長い梁部の厚さにほぼ等しい深さを有する第2部分を含んでいる、請求項1に記載の装置。
【請求項11】
物質を表面上に堆積させるための装置において、
基部と、
前記基部から片持ち梁形状に伸張している細長い梁部であって、
実質的に全長に沿って実質的に平面状の上面と、
実質的に全長に沿って実質的に平面状の下面と、
前記基部から伸張している近位部分と、
前記近位部分から離れた位置にある遠位部分と、を有しており、前記表面に対して鋭角を成すように配置されている、細長い梁部と、
前記細長い梁部に形成された細長い開口部であって、前記物質を前記細長い開口部に沿って受動吸着作用により移動させ易くするようになっている内表面と、少なくとも1つの物質を前記細長い梁部へ装填すると共に前記物質を前記細長い梁部から堆積させるようになっている遠位部分と、を少なくとも部分的には形成している、細長い開口部と、を備えている装置。
【請求項12】
前記細長い梁部は或る厚さを有しており、
前記細長い開口部の少なくとも一部は、前記細長い梁部の前記厚さを貫通して伸張している、請求項11に記載の細長い梁部。
【請求項13】
前記細長い開口部の少なくとも一部は、前記細長い梁部の終端部に向けて先細になっている、請求項11に記載の装置。
【請求項14】
前記細長い梁部の少なくとも一部は、前記細長い梁部の終端部に向けて先細になっている、請求項13に記載の装置。
【請求項15】
前記細長い梁部は、長さが約2mm以下であり、
前記細長い梁部の厚さは、約2ミクロン以上で且つ3ミクロン以下である、請求項11に記載の装置。
【請求項16】
前記細長い開口部の前記遠位部分は、幅が約1ミクロン以下である、請求項11に記載の装置。
【請求項17】
前記細長い梁部の前記遠位部分と前記細長い開口部の前記遠位部分は、直径が約2ミクロン以上で且つ約3ミクロン以下のスポットを生成する形状に作られている、請求項11に記載の装置。
【請求項18】
前記基部に、前記細長い開口部と流体連通状態に配置されており、前記物質を保持するようになっている貯留部を、更に備えている、請求項11に記載の装置。
【請求項19】
物質を表面上に堆積させるための方法において、
基部から伸張し、前記基部に隣接する近位部分と前記近位部分から離れた位置にある遠位部分とを有している、細長い梁部であって、長さに沿って実質的に平面状である、前記細長い梁部を提供する段階と、
前記細長い梁部に形成された細長い開口部であって、遠位部分を有しており、そこから材料を表面上に堆積させるように構成されている、前記細長い開口部に沿って、前記物質を、前記細長い梁部の遠位部分に向けて、受動吸着作用によって移動させる段階と、
前記細長い梁部の前記遠位部分を前記表面に向けて移動させる段階と、
前記物質を、前記表面上の、前記基部から約2mm以内の位置に堆積させる段階と、から成る方法。
【請求項20】
前記表面を、前記細長い梁部の前記遠位部分に接触させる段階を更に含んでいる、請求項19に記載の方法。
【請求項21】
前記細長い梁部の前記遠位部分に隣接する少なくとも1つの環境パラメータを制御する段階と、前記物質を、前記細長い開口部に沿って毛管作用により移動させる段階と、の内の少なくとも1つの段階を更に含んでいる、請求項19に記載の方法。
【請求項22】
前記細長い梁部を、前記表面に対して鋭角を成すように配置する段階を更に含んでいる、請求項19に記載の方法。
【請求項23】
前記細長い梁部は或る厚さを有しており、
前記物質を、細長い開口部に沿って移動させる前記段階は、
前記物質を、前記細長い梁部の厚さよりも浅い深さを有する前記細長い開口部の第1部分に沿って移動させる段階と、
前記物質を、前記細長い梁部の厚さにほぼ等しい深さを有する前記細長い開口部の第2部分に沿って移動させる段階と、を含んでいる、請求項19に記載の方法。
【請求項24】
前記物質を、細長い開口部に沿って移動させる前記段階は、前記物質を、前記細長い開口部の長さの前記少なくとも一部に沿って幅が先細になっている前記細長い開口部の一部に沿って移動させる段階を含んでいる、請求項19に記載の方法。
【請求項25】
前記物質を、前記細長い梁部の終端部を貫通して移動させる段階を更に含んでいる、請求項19に記載の方法。
【請求項26】
物質を表面上に堆積させるための方法において、
基部を提供する段階と、
前記基部から片持ち梁形状に伸張している細長い梁部であって、実質的に全長に沿って実質的に平面状であり、前記基部に隣接する近位部分と前記近位部分から離れた位置にある遠位部分とを有している、前記細長い梁部を提供する段階と、
前記細長い梁部に形成された細長い開口部であって、遠位部分を有していて、そこから前記物質を前記表面上に堆積させるようになっている、前記細長い開口部を提供する段階と、
前記細長い梁部の前記遠位部分を前記表面に対して鋭角を成すように配置する段階と、
前記物質を、前記細長い開口部に沿って、前記細長い開口部の遠位部分に向けて、受動吸着によって移動させる段階と、
前記物質を、前記細長い開口部の前記遠位部分から前記表面に向けて堆積させる段階と、から成る方法。
【請求項27】
前記物質を前記細長い開口部に沿って移動させる前記段階は、電気力とは無関係に前記物質を移動させる段階を含んでいる、請求項26に記載の方法。
【請求項28】
前記物質は、少なくとも部分的には、
少なくとも1つの環境パラメータを制御することと、
毛管作用と、
の内の少なくとも一方によって、前記細長い開口部に沿って動かされる、請求項26に記載の方法。
【請求項29】
前記物質を、前記細長い開口部の前記遠位部分から前記表面に向けて堆積させる前記段階は、前記物質を、前記表面上の、前記基部から約2mm以内の位置に堆積させる段階を含んでいる、請求項26に記載の方法。
【請求項30】
前記細長い開口部に前記物質を後方装填する段階を更に含んでいる、請求項26に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公表番号】特表2007−535681(P2007−535681A)
【公表日】平成19年12月6日(2007.12.6)
【国際特許分類】
【出願番号】特願2007−511029(P2007−511029)
【出願日】平成17年4月29日(2005.4.29)
【国際出願番号】PCT/US2005/014899
【国際公開番号】WO2005/115630
【国際公開日】平成17年12月8日(2005.12.8)
【出願人】(506363584)バイオフォース・ナノサイエンシィズ・インコーポレーテッド (2)
【Fターム(参考)】