説明

生体リズムの乱れ度算出装置、生体リズムの乱れ度算出システム、生体リズムの乱れ度算出方法、プログラム、及び記録媒体

【課題】生体リズムの乱れ度を定量的に評価する。
【解決手段】生体リズムの乱れ度算出装置は、被験者の生体信号から算出された生理指標時系列データを取得する生理指標時系列データ取得部と、通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定する算出期間決定部と、前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出する算出部と、前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する乱れ度決定部と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、生体リズムの乱れ度算出装置、生体リズムの乱れ度算出システム、生体リズムの乱れ度算出方法、プログラム、及び記録媒体に関する。
【背景技術】
【0002】
生体に関するあらゆるパラメータは、生体リズムと呼ばれる特定の周期を有するリズムに従って変動している。この生体リズムを解析する手法の代表的なものとしては、例えば非特許文献1に記載されたコサイナー法が挙げられる。このコサイナー法は、最小二乗法を用いてコサイン曲線に時系列データを当てはめ、このコサイン曲線の周期、振幅、水準を生体リズムの特性とするものである。コサイナー法は、時系列データが正弦波的変動をしている場合には有効な解析手法である。
【0003】
また、この生体リズムの乱れは、生体の健康状態に重大な影響を与えると言われている。このため、生体リズムの乱れが身体にどのような変調をおよぼすかについての研究が行われてきた(例えば、非特許文献2)。この非特許文献2では、マウスの脳の視交叉上核(SCN:SupraChiasmatic Nucleus)と呼ばれる部分の組織を調べることによって、生体リズムの乱れが身体に及ぼす影響を調べている。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】時間生物学事典(朝倉書店)石田直理雄・本間研一 編
【非特許文献2】Nagano, M. et al. (2003). An abrupt Shift in the Day/Night Cycle Causes Desynchrony in the Mammalian Circadian Rhythm, Journal of Neuroscience 23: 6141−6151
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、非特許文献2の方法では、生体リズムの乱れについて定性的なことしかわからなかった。また、生体リズムが乱れているときには、変動周期や振幅も変動しており、生理指標の時系列データは正弦波的変動をしていないことが多い。このため、上述のコサイナー法などの定常的な変動を前提とした解析手法は、生体リズムが乱れている場合には用いることができなかった。
そこで、本開示では、生体リズムの乱れの度合いを定量的に評価することのできる生体リズムの乱れ度算出装置、生体リズムの乱れ度算出システム、生体リズムの乱れ度算出方法、プログラム、及び記録媒体を提案する。
【課題を解決するための手段】
【0006】
本開示によれば、被験者の生体信号から算出された生理指標時系列データを取得する生理指標時系列データ取得部と、通常時の上記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定する算出期間決定部と、上記算出期間において、検査時の上記生体信号から算出された検査時生理指標時系列データと、上記通常時生理指標時系列データとの位相のずれ量を算出する算出部と、
上記位相のずれ量に基づいて、上記被験者の上記検査時における生体リズムの乱れ度を決定する乱れ度決定部と、を有する生体リズムの乱れ度算出装置が提供される。
【0007】
また、本開示によれば、複数の被験者について、通常時の生体信号から算出された生理指標の時系列データの平均値と、上記平均値に基づいた第1の基準時点及び第2の基準時点とを取得する情報取得部と、上記情報取得部により取得された情報に基づいて、特定の被験者の生体リズムを朝型、夜型、及び平均型のいずれかに分類する分類部と、を有する分類装置が提供される。
【0008】
また、本開示によれば、活動時間帯のずれ時間、及び当該活動時間帯のずれの原因を含む推定条件を入力する推定条件入力部と、上記推定条件をサーバに送信する送信部とを有するユーザ装置と、
通常時の生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間において、検査時の上記生体信号から算出された検査時生理指標時系列データと、上記通常時生理指標時系列データとの位相のずれ量に基づいて算出された生体リズムの乱れ度を複数の被験者について取得する取得部と、上記複数の被験者についての上記乱れ度を用いて、上記推定条件のときの上記乱れ度を推定する推定部と、推定された上記乱れ度の情報を含む表示画面を生成して上記ユーザ装置に提供する表示画面生成部とを有する上記サーバと、を含む生体リズムの乱れ度算出システムが提供される。
【0009】
また、本開示によれば、被験者の生体信号から算出された生理指標時系列データを取得し、通常時の上記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、上記算出期間において、検査時の上記生体信号から算出された検査時生理指標時系列データと、上記通常時生理指標時系列データとの位相のずれ量を算出し、上記位相のずれ量に基づいて、上記被験者の上記検査時における生体リズムの乱れ度を決定する、生体リズムの乱れ度算出方法が提供される。
【0010】
また、本開示によれば、コンピュータに、被験者の生体信号から算出された生理指標時系列データを取得し、通常時の上記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、上記算出期間において、検査時の上記生体信号から算出された検査時生理指標時系列データと、上記通常時生理指標時系列データとの位相のずれ量を算出し、上記位相のずれ量に基づいて、上記被験者の上記検査時における生体リズムの乱れ度を決定する、生体リズムの乱れ度算出方法を実行させるためのプログラムが提供される。
【0011】
また、本開示によれば、コンピュータに、被験者の生体信号から算出された生理指標時系列データを取得し、通常時の上記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、上記算出期間において、検査時の上記生体信号から算出された検査時生理指標時系列データと、上記通常時生理指標時系列データとの位相のずれ量を算出し、上記位相のずれ量に基づいて、上記被験者の上記検査時における生体リズムの乱れ度を決定する、生体リズムの乱れ度算出方法を実行させるためのプログラムを記憶した、コンピュータに読取り可能な記録媒体が提供される。
【発明の効果】
【0012】
以上説明したように本開示によれば、生体リズムの乱れの度合いを定量的に評価することができる。
【図面の簡単な説明】
【0013】
【図1】脈波から算出されるAI値についての説明図である。
【図2】AI値の特徴についての説明図である。
【図3】本開示の第1の実施形態に係る生体リズムの乱れ度算出装置の構成を示すブロック図である。
【図4】基準情報についての説明図である。
【図5】事前情報入力画面の一例を示す説明図である。
【図6】位相のずれ量の一例についての説明図である。
【図7】位相のずれ量の他の一例についての説明図である。
【図8】10時間の時差を伴う西方向への移動による位相のずれ量の経時変化の一例を示すグラフである。
【図9】6時間の時差を伴う東方向への移動による位相のずれ量の経時変化の一例を示すグラフである。
【図10】10時間の時差を伴う西方向への移動による位相のずれ量の経時変化の一例を位相のずれ量の種別に分離して示したグラフである。
【図11】6時間の時差を伴う東方向への移動による位相のずれ量の経時変化の一例を位相のずれ量の種別に分離して示したグラフである。
【図12】基準情報算出処理の全体の流れを示すフローチャートである。
【図13】脈波からの生理指標導出処理の流れを示すフローチャートである。
【図14】体温からの生理指標導出処理の流れを示すフローチャートである。
【図15】乱れ度算出処理の全体の流れを示すフローチャートである。
【図16】位相のずれ量抽出処理の流れを示すフローチャートである。
【図17】乱れ度決定処理の流れを示すフローチャートである。
【図18】本開示の第2の実施形態に係る生体リズムの乱れ度算出装置の構成を示すブロック図である。
【図19】履歴情報の一例を示す説明図である。
【図20】情報収集サーバにより記憶される履歴情報の一例を示す説明図である。
【図21】情報収集サーバにより記憶される基準情報の一例を示す説明図である。
【図22】情報収集サーバにより記憶される基準情報の他の一例を示す説明図である。
【図23】予測情報生成処理の流れを示すフローチャートである。
【図24】情報収集サーバからの履歴情報取得の流れを示すシーケンス図である。
【図25】本開示の第3の実施形態に係る生体リズムの乱れ度を利用するシステムの構成を示す説明図である。
【図26】朝型−夜型分類処理の流れを示すフローチャートである。
【図27】本開示の第4の実施形態に係る生体リズムの乱れ度を利用するシステムの構成を示す説明図である。
【図28】同実施形態において提供される分類情報を表示する画面の一例を示す説明図である。
【図29】同実施形態において提供される分類情報を表示する画面の他の一例を示す説明図である。
【図30】同実施形態において提供される分類情報を表示する画面の他の一例を示す説明図である。
【図31】同実施形態において提供される分類情報を表示する画面の他の一例を示す説明図である。
【図32】同実施形態において提供される分類情報を表示する画面の他の一例を示す説明図である。
【図33】同実施形態において提供される乱れ度の情報を表示する画面の一例を示す説明図である。
【図34】同実施形態において提供される乱れ度の情報を表示する画面の他の一例を示す説明図である。
【発明を実施するための形態】
【0014】
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0015】
なお、説明は以下の順序で行うものとする。
1.概要
2.第1の実施形態
2−1.構成
2−2.基準情報算出処理
2−3.乱れ度算出処理
2−4.効果の例
3.第2の実施形態(回復度予測機能を有する例)
3−1.構成
3−2.予測情報生成処理
3−3.効果の例
4.第3の実施形態(収集した複数ユーザのデータを利用したサービスの例)
4−1.構成
4−2.朝型−夜型分類処理
4−3.効果の例
5.第4の実施形態(サーバ側で乱れ度算出を行うシステムの例)
【0016】
<1.概要>
生体信号より導出される生理指標は、様々な周期により変動している。この生理指標の変動のリズムは生体リズムとも呼ばれる。この生体リズムのうち、概日周期の生体リズムは、本来24時間よりやや長い周期をもっている。この24時間よりやや長い周期をもっている生体リズムは、通常、様々な環境要因により約1日に調整されており、外部の環境リズムと同調している。生体リズムを調整する環境要因として代表的なのは太陽光である。ところが、不規則な生活を送っている場合や、時差を伴う移動をした場合には、生体リズムが光などの環境リズムと大きくずれて調節がうまくいかず、ずれた状態となる。時差を伴う移動により生体リズムと環境リズムとにずれが生じ、身体に起こる変調は「時差症候群」と呼ばれる。
【0017】
このように、生体リズムと環境リズムとにずれが生じた場合には、短期的症状としては、睡眠障害、日中眠気増大、パフォーマンス低下、消化器系異常などが引き起こされると言われている。また、長期的症状としては、癌、糖尿病、肥満などが引き起こされるとも言われている。環境リズムに合わせた生活を続けることによって、生体リズムと環境リズムは次第に同調する。しかし、この同調時間は、個人差、年齢差、及び時差移動の場合には東西の移動方向による差があると言われる。
【0018】
このような生体リズムの乱れについては、上述のような健康への影響があること、時差を伴う移動が原因の場合には西へ移動するよりも東へ移動する場合の方が生体リズムが環境リズムに同調するまでの同調時間が長いことなど、定性的な評価が主に行われてきた。しかし、それぞれの被験者が実際にどの程度乱れが生じているのかを把握することはできなかった。そこで、潜在的にこの乱れの度合いを知りたいという要求があると考えられる。また、この乱れ度を蓄積することによって、乱れ度の推移を知ることができるだろう。さらに乱れ度を乱れの原因や環境リズムと生体リズムのずれ時間などの情報と共に蓄積しておくことによって、乱れ度の推定に用いてもよい。
【0019】
このように生体リズムの乱れを定量的に示す乱れ度を生体信号から導出された生理指標の時系列データから算出する。ここで用いられる生理指標としては、例えば鼓膜体温、口内体温、直腸温を含む深部体温、脈波から導出される脈拍数又はAI(Augmentation Index)値、血圧値、血中のメラトニン又はコルチゾールの量などが挙げられる。これらの値は、いずれも概日周期を有することが知られている。生体リズムの乱れについて継続的に評価するためには、ある程度の期間継続的に、又は定期的に生理指標が検出される。このため、口内や鼓膜から検出される深部体温や、脈波などを用いると、侵襲を伴わず、被験者にとって負担が少ないという利点がある。
【0020】
ここで、AI値について図1及び図2を参照しながら説明する。図1は、脈波から算出されるAI値についての説明図である。図2は、AI値の特徴についての説明図である。AI値は、脈波データから導出することのできる生理指標のひとつである。AI値は、主に動脈の硬さや心臓への負荷を示す指標として用いられる。脈波には、心臓が血液を全身に送り込むために収縮することによって発生する「駆出波P1」と、駆出波P1が全身に行きわたる際に末梢動脈や動脈分岐部などで反射することによって発生する「反射波P2」の2種類がある。AI値は、駆出波P1に対する反射波P2の割合として定義される。血管が硬くなると、反射波P2が大きくなるため、AI値は大きくなる。AI値は加齢に応じて変化することが知られており、例えば図2に示されるように、21歳では反射波P2は駆出波P1と比較して十分小さいのに対し、48歳では駆出波P1と反射波P2の差が小さくなっている。また、86歳の例に示されるように、反射波P2が駆出波P1よりも大きくなることもある。
【0021】
以下の各実施形態においては、概日周期を有する生理指標について乱れ度を算出する場合について説明する。しかし、生理指標としては、周期性を持って変動する様々な指標を用いることができ、以下の例に限定されない。
【0022】
<2.第1の実施形態>
(2−1.構成)
ここで本開示の第1の実施形態に係る乱れ度算出装置10の構成について図3〜図11を参照しながら説明する。図3は、本開示の第1の実施形態に係る生体リズムの乱れ度算出装置の構成を示すブロック図である。図4は、基準情報についての説明図である。図5は、事前情報入力画面の一例を示す説明図である。図6は、位相のずれ量についての説明図である。図8は、10時間の時差を伴う西方向への移動による位相のずれ量の経時変化の一例を示すグラフである。図9は、6時間の時差を伴う東方向への移動による位相のずれ量の経時変化の一例を示すグラフである。図10は、10時間の時差を伴う西方向への移動による位相のずれ量の経時変化の一例を位相のずれ量の種別に分離して示したグラフである。図11は、6時間の時差を伴う東方向への移動による位相のずれ量の経時変化の一例を位相のずれ量の種別に分離して示したグラフである。
【0023】
乱れ度算出装置10は、被験者の生体信号に基づいて、生体リズムの乱れの度合いを示す乱れ度Rを算出する機能を有する情報処理装置である。乱れ度算出装置10は、例えば携帯電話、携帯用音楽再生装置、携帯用映像処理装置、携帯用ゲーム機器、PC(Personal Computer)、家庭用映像処理装置(DVDレコーダ、ビデオデッキなど)、PDA(Personal Digital Assistants)、家庭用ゲーム機器、家電機器などの情報処理装置であってもよい。また、乱れ度算出装置10は、被験者の生体信号又はこの生体信号から導出された生理指標を取得して乱れ度Rを算出するサーバであってもよい。
【0024】
まず図1を参照すると、乱れ度算出装置10は、生体信号計測部101と、記録部103と、生体信号解析部105と、外乱判定部107と、生理指標導出部109と、 基準情報生成部111と、事前情報取得部113と、ずれ量算出部115と、生体リズム乱れ度決定部117と、出力部119とを主に有する。
【0025】
生体信号計測部101は、被験者の生体信号を計測する機能を有する。生体信号計測部101は、例えば、生体信号の一例である深部体温を計測することができる。このとき生体信号計測部101は、例えば深部体温を計測する温度計のようなセンサであってよい。生体信号計測部101は、深部体温を連続で計測し続けてもよいし、一定間隔毎に計測を実行してもよい。例えば生体信号計測部101は、耳の内部(外耳道)に挿入して鼓膜体温を計測するセンサであってもよい。或いは生体信号計測部101は、口内に挿入して口内体温を計測するセンサであってもよい。
【0026】
また、生体信号計測部101は、生体信号の一例である脈波を計測する計測することができる。このとき生体信号計測部101は、例えば光や圧力で脈波を計測するセンサであってよい。例えば生体信号計測部101は、耳朶、指先、手首などから脈波を計測することができる。また、生体信号計測部101は、加速度センサなどの動きセンサであって、被験者の身体の動きを計測してもよい。
【0027】
なお、ここでは生体信号計測部101は、乱れ度算出装置10の一部である例が示されたが、本技術はかかる例に限定されない。例えば、生体信号計測部101は、乱れ度算出装置10と別体のセンサであってもよい。このとき生体信号計測部101は、有線又は無線の通信路を介して乱れ度算出装置10に生体信号を供給してもよい。生体信号計測部101が乱れ度算出装置10と別体のセンサである場合には、このセンサが生体信号を計測する部位に装着できることが望ましい。例えばセンサ自体がウェアラブルな形状であってもよいし、センサを計測部位に装着するためのアクセサリが用いられてもよい。また生体信号計測部101が乱れ度算出装置10の一部である場合には、乱れ度算出装置10自体が生体信号を計測する部位に装着できることが望ましい。例えば乱れ度算出装置10はウェアラブルな形状であってもよいし、乱れ度算出装置10を計測部位に装着するためのアクセサリが用いられてもよい。生体信号計測部101は、計測した生体信号を記録部103に供給することができる。
【0028】
記録部103は、生体信号計測部101により供給された生体信号を記録する機能を有する。記録部103は、例えばフラッシュメモリ、MRAM(Magnetoresistive Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)、PRAM(Phase change Random Access Memory)、及びEEPROM(Electronically Erasable and Programmable Read Only Memory)などの不揮発性メモリや、HDD(Hard Disk Drive)などの磁気記録媒体などの記憶媒体に生体信号を記録してよい。
【0029】
生体信号解析部105は、生体信号計測部101により取得された生体信号に各種の解析処理を実行する機能を有する。生体信号解析部105は、例えば生体信号にフィルタをかけることによってノイズを除去することができる。
【0030】
外乱判定部107は、入力された信号が被験者の生体信号であるか外乱であるかを判定し、外乱と判定した信号を出力せず削除する機能を有する。外乱が入り込んだ場合には、生体リズムの乱れと関係なく、生理指標のリズムに乱れが生じることがある。外乱判定部107は、この外乱による影響を低減することができる。
【0031】
生理指標導出部109は、被験者の生体信号から生理指標を導出する機能を有する。生体信号が深部体温である場合には、生理指標導出部109は、深部体温をy秒間測定した平均値を生理指標としてもよい。このときyの値としては、例えば数十秒から1〜2分程度が望ましい。生理指標導出部109は、生体信号計測部101が連続で深部体温を計測し続けた場合には、深部体温の連続データをy秒毎に区切り、このy秒間の平均値を算出してもよい。或いは、生理指標導出部109は、生体信号計測部101が一定間隔でy秒間断続的に深部体温を計測した場合には、このy秒間の平均値を算出してもよい。
【0032】
また、生体信号が脈波である場合には、生理指標導出部109は、脈拍数又はAI値を生理指標としてもよい。脈拍数を導出する場合には、生理指標導出部109は、まずy秒間の脈波データから1波形毎のピークを抽出する。そして生理指標導出部109は、計測期間y秒間中のピークの回数を数え、1分当たりの回数に変換することにより脈拍数を導出することができる。AI値を導出する場合には、生理指標導出部109は、まず脈波1波形の二次微分を計算する。例えば生理指標導出部109は、脈波の隣同士のサンプル点の差分或いは近傍複数サンプルで重みをつけて差分を計算することによって二次微分を計算することができる。そして、生理指標導出部109は、この二次微分が2番目に正から負に変化する点を反射点として抽出する。次に生理指標導出部109は、脈波1波形毎に、ピーク点の高さと上記反射点の高さとを抽出して、反射点の高さをピーク点の高さで除算することによってAI値を導出することができる。
【0033】
また、生体信号が動き量である場合に、生理指標導出部109は、y秒間毎の活動量を生理指標としてもよい。生理指標導出部109は、加速度センサーが被験者の動きを検出した回数をy秒間毎でカウントすることによって活動量を導出することができる。
【0034】
なお、導出された深部体温、脈拍数、AI値、及び活動量は、生理指標が導出された時刻と関連づけて記憶されることによって、生理指標時系列データとすることができる。生理指標導出部109は、導出した生理指標を導出した時刻と関連づけて記憶させることによって生理指標時系列データを生成してもよい。すなわち、生理指標導出部109は、生理指標時系列データ取得部の一例である。なお活動量は、被験者が活動している時間帯を推定するために用いられてよい。或いは、この活動量は、被験者の睡眠時間を推定するために用いられてよい。以下、通常時の生体信号から導出された生理指標時系列データを通常時生理指標時系列データという。また、検査時の生体信号から導出された生理指標時系列データを検査時生理指標時系列データという。ここで通常時とは、生体リズムに乱れが生じていない状態をいい、例えば時差を伴う移動、シフトワーキング、不規則な生活などを行っておらず、環境リズムと生体リズムとが同調している状態を指す。
【0035】
基準情報生成部111は、通常時における生理指標時系列データから基準情報を生成すると共にずれ量算出部115がずれ量を算出する算出期間を決定する機能を有する。つまり、基準情報生成部111は、算出期間決定部の一例として機能することができる。基準情報生成部111は、生成する基準情報のうち、第1の基準時刻tを開始時点とし、第2の基準時刻tを終了時点とする算出期間TPを決定することができる。この算出期間TPは、通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となるように決定されることが望ましい。
【0036】
ここで生成される基準情報について、図4を参照しながら説明する。図4には、通常時における生理指標時系列データSが示される。基準情報は、通常時における生理指標時系列データSの平均値Mと、第1の基準時刻tと、第2の基準時刻tとを含むことができる。第1の基準時刻tは、正常時の生理指標時系列データSの値が平均値M以下から平均値M以上に切替わる凡その時刻である。また、第2の基準時刻tは、正常時の生理指標時系列データSの値が平均値M以上から平均値M以下に切替わる凡その時刻である。第1の基準時刻tから第2の基準時刻tまでの期間を第1の算出期間TP1とし、第2の基準時刻tから第1の基準時刻tまでの期間を第2の算出期間TP2とする。例えば基準情報生成部111は、生理指標時系列データSのピーク時刻tを抽出して、ピーク時刻tの6時間前を第1の基準時刻tとすることができる。また、基準情報生成部111は、生理指標時系列データSのピーク時刻tの6時間後を第2の基準時刻tとすることができる。第1の基準時刻tと第2の基準時刻tとは、生理指標の変動における1周期を、通常時における生理指標が概ね平均値以上となる第1の算出期間TP1と通常時における生理指標が概ね平均値を下回る第2の算出期間TP2とを2分する時刻となる。ここで用いられる生理指標は概日周期で変動する。このため、第1の基準時刻tと第2の基準時刻tとの間の時間差長は、12時間とする。なお、ここでは概日周期の生理指標について扱うため、第1の基準時刻tと第2の基準時刻tとは、2つの時点を時刻で求めれば、毎日同じ時刻を基準時点とすることができる。
【0037】
事前情報取得部113は、生体リズムが乱れる原因についての事前情報を取得する機能を有する。事前情報は、例えば生体リズムの乱れの原因となる被験者の活動時間帯のずれ時間、及び活動時間帯のずれの原因の情報を含む活動時間帯情報であってよい。事前情報取得部113は、例えば図5に示す事前情報入力画面71に対して入力された情報を事前情報として取得してもよい。例えば、生体リズムの乱れの原因が時差を伴う移動である場合には、事前情報取得部113は、移動前後の時差(出発地と到着地の時差)を事前情報入力画面71に対して入力された情報から取得することができる。このとき事前情報取得部113は、移動の方向(西または東)に関する情報を取得してもよい。また生体リズムの乱れの原因がシフトワークである場合には、事前情報取得部113は、勤務時間のずれ量を事前情報入力画面71に対して入力された情報から取得することができる。また、生体リズムの乱れの原因が不規則な睡眠である場合には、事前情報取得部113は、睡眠時間のずれ量を事前情報入力画面71に対して入力された情報から取得することができる。
【0038】
また、事前情報取得部113は、被験者について検知された情報から事前情報を推定することもできる。例えば、事前情報取得部113が被験者の位置情報を取得することができるとき、事前情報取得部113は、取得した位置情報の変化から移動前後の時差を推定してもよい。例えば出発地が東京であり、到着地がロンドンである場合には、事前情報取得部113は、被験者が西方向に9時間移動したと推定することができる。また、事前情報取得部113が被験者の動き検知情報を取得することができるとき、シフトワークにおける勤務時間のずれ量、又は不規則な睡眠における睡眠時間のずれ量を推定してもよい。例えば事前情報取得部113は、加速度センサの出力値を取得し、勤務時間又は睡眠時間のずれ量を推定してもよい。
【0039】
ずれ量算出部115は、決定された算出期間において、検査時生理指標時系列データと、通常時生理指標時系列データとの位相のずれ量を算出する機能を有する。この位相のずれを算出する方法は様々考えられるが、ここでは、ずれ量算出部115は、通常時生理指標時系列データの平均値Mより大きい値をとる検査時生理指標時系列データに対応する第1の特徴量と、平均値Mより小さい値をとる検査時生理指標時系列データに対応する第2の特徴量との比率に基づいて位相のずれ量を算出する。以下、この位相のずれ量について2つの具体的な例を挙げて説明する。
【0040】
まず、ずれ量算出部115が算出する位相のずれ量の一例について、図6を参照しながら説明する。図6には、生体リズムの乱れが生じているときの生理指標時系列データSが示される。ずれ量算出部115は、基準情報生成部111により生成された基準情報を用いて、生理指標時系列データSについての位相のずれ量を算出することができる。ずれ量算出部115は、第1の基準時刻tと第2の基準時刻tとの間の期間(第1の算出期間TP1又は第2の算出期間TP2)において、生理指標時系列データSの波形と平均値Mとにより囲まれる面積のうち、生理指標時系列データSの値が平均値Mより大きい第1の面積UPと、生理指標時系列データの値が平均値Mより小さい第2の面積DNとの比率に基づいたずれ量を算出する機能を有する。つまり、このとき第1の特徴量は、平均値Mより大きい値をとる検査時生理指標時系列データの波形と平均値Mを示す直線とにより囲まれる面積UPであり、第2の特徴量は、平均値Mより小さい値をとる検査時生理指標時系列データの波形と平均値Mを示す直線とにより囲まれる領域の面積DNである。
【0041】
なお、生理指標時系列データSのうち、通常時生理指標時系列データSと表され、検査時生理指標時系列データSと表される。しかし、この両者を区別する必要のないときには生理指標時系列データSと表される。また、生理指標時系列データSの値が平均値Mより大きい第1の面積UPのうち、第1の算出期間TP1において算出されるものは、第1の面積UP1と表され、第2の算出期間TP2において算出されるものは、第1の面積UP2と表される。しかし、両者を特に区別する必要のないときには、第1の面積UPと表される。同様に、第2の面積DNのうち、第1の算出期間TP1において算出されるものは、第2の面積DN1と表され、第2の算出期間TP2において算出されるものは、第2の面積DN2と表される。しかし、両者を特に区別する必要のないときには、第2の面積DNと表される。
【0042】
ここでずれ量算出部115の算出するずれ量についてより具体的に説明する。ずれ量算出部115は、期間TP1において第1のずれ量UP_ratioを算出し、期間TP2において第2のずれ量DN_ratioを算出することができる。第1のずれ量UP_ratioは、第1の基準時刻tから第2の基準時刻tの間の期間である第1の算出期間TP1において、生理指標時系列データSの波形と平均値Mを示す直線とにより囲まれる面積のうちの第1の面積UPの割合を示す。この第1のずれ量UP_ratioは、図6の記号を用いて以下の数式(1)により示される。また、第2のずれ量DN_ratioは、第2の基準時刻tから第1の基準時刻tまでの期間である第2の算出期間TP2において、生理指標時系列データSの波形と平均値Mを示す直線とにより囲まれる面積のうちの第2の面積DNの割合を示す。この第2のずれ量DN_ratioは、図6の記号を用いて以下の数式(2)により示される。
【0043】

【0044】
なお、ずれ量算出部115は、通常時における生理指標時系列データSについてもずれ量を算出することができる。図4に示したように、第1の基準時刻tと第2の基準時刻tとが平均値Mとなる時刻を正確に抽出できている理想的な場合には、第1のずれ量UP_ratioと第2のずれ量DN_ratioとの値は共に1となる。
【0045】
次に、図7を参照しながら、ずれ量算出部115の算出するずれ量の他の一例について説明する。ここで、第1の特徴量は、検査時生理指標時系列データが平均値Mより大きい値をとる期間の時間長LUPであり、第2の特徴量は、検査時生理指標時系列データが平均値Mより小さい値をとる期間の時間長LDNである。ずれ量は、このLUPとLDNとの値の比率に基づいて算出される。
【0046】
ここでずれ量算出部115の算出するずれ量についてより具体的に説明する。ずれ量算出部115は、期間TP1において第1のずれ量UP_ratioを算出し、期間TP2において第2のずれ量DN_ratioを算出することができる。第1のずれ量UP_ratioは、第1の基準時刻tから第2の基準時刻tの間の期間である第1の算出期間TP1の時間長に対する、検査時生理指標時系列データが平均値Mより大きい値をとる期間の時間長LUP1の割合を示す。この第1のずれ量UP_ratioは、図7の記号を用いて以下の数式(3)により示される。また、第2のずれ量DN_ratioは、第2の基準時刻tから第1の基準時刻tまでの期間である第2の算出期間TP2の時間長に対する、検査時生理指標時系列データが平均値Mより小さい値をとる期間の時間長LDN2の割合を示す。この第2のずれ量DN_ratioは、図7の記号を用いて以下の数式(4)により示される。
【0047】

【0048】
乱れ度決定部117は、ずれ量算出部115により算出されたずれ量に基づいて、被験者の検査時における生体リズムの乱れ度Rを決定する機能を有する。乱れ度決定部117は、第1のずれ量UP_ratio、第2のずれ量DN_ratio、及び第1のずれ量UP_ratioと第2のずれ量DN_ratioとの平均値のいずれかを乱れ度Rと決定することができる。例えば、乱れ度決定部117は、第1の算出期間TP1における乱れ度Rを第1のずれ量UP_ratioとし、第2の算出期間TP2における乱れ度Rを第2のずれ量DN_ratioとすることができる。或いは、第1の算出期間TP1と第2の算出期間TP2とを合わせた24時間における乱れ度Rを第1のずれ量UP_ratioと第2のずれ量DN_ratioとの平均値とすることもできる。特に、乱れ度決定部117は、活動時間帯のずれの原因が東方向への時差を伴う移動である場合には、第1のずれ量UP_ratioと第2のずれ量DN_ratioとの平均値を乱れ度Rとすることが好ましい。この点について、次に図8〜図11を参照しながら説明する。
【0049】
図8を参照すると、10時間の時差を伴う西方向への移動によるずれ量(UP_ratio又はDN_ratio)の経時変化の一例が示される。横軸は経過時間を示す。例えば横軸の値が1のとき、特定の日の第1の算出期間TP1における第1のずれ量が縦軸の値で示される。横軸の値が2のとき、上記特定の日の第1の算出期間TP1に続く第2の算出期間TP2における第2のずれ量が縦軸で示される。図8によれば、時差を伴う西方向への移動後のずれ量は、移動の直後に大幅に減少した後、時間の経過と共に徐々に通常時の値1に近づいていく。このずれ量の値は、生理指標時系列データSの値が平均値Mとなる時刻と、第1の基準時刻t及び第2の基準時刻tとの差が大きくなるほど小さくなる。また、生理指標時系列データSの値が平均値Mとなる時刻と、第1の基準時刻t及び第2の基準時刻tとの差が小さくなるに従ってずれ量の値は「1」に近づく。例えば時差変化の後、6つ目のずれ量の値が約0.7であることから、時差を伴う移動の後、3日目には70%程度回復していることがわかる。
【0050】
これに対して、図9を参照すると、6時間の時差を伴う東方向への移動によるずれ量の経時変化の一例が示される。図9によれば、時差を伴う東方向への移動後のずれ量は、値が上下変動を繰り返しながら徐々に1に近づいていく。
【0051】
図8及び図9のグラフの縦軸はUP_ratio又はDN_ratioの値であったが、これらのサンプルを第1の算出期間TP1のときと第2の算出期間TP2のときとに分けて示したグラフが図10及び図11に示される。図10を参照すると、時差を伴う西方向への移動によるずれ量の経時変化の様子は、第1の算出期間TP1のときと第2の算出期間TP2のときとで傾向に差異が見られない。ところが、図11に示されるように時差を伴う東方向への移動によるずれ量の経時変化の様子は、第1の算出期間TP1のときと第2の算出期間TP2のときとで傾向に差異がある。
【0052】
このため、乱れ度決定部117は、活動時間帯のずれの原因に応じて異なるずれ量を用いて乱れ度Rを決定してもよい。例えば乱れ度決定部117は、時差を伴う東方向への移動の場合には、UP_ratioの値及びDN_ratioの値の平均値を乱れ度Rとすることが望ましい。これに対して、時差を伴う西方向への移動の場合、シフトワークの場合、および不規則な睡眠習慣の場合には、乱れ度決定部117は、第1のずれ量UP_ratio、第2のずれ量DN_ratio、及び第1のずれ量UP_ratioと第2のずれ量DN_ratioとの平均値のいずれかを乱れ度Rとしてよい。
【0053】
出力部119は、乱れ度Rの算出結果などの情報を被験者等に提供する機能を有する。出力部119は、例えば生成された表示画面を表示部に表示させることにより乱れ度Rの算出結果を提供してもよい。或いは出力部119は、音声出力により乱れ度Rの算出結果を提供してもよい。出力部119が表示画面を用いて乱れ度Rの算出結果を提供する場合には、出力部119は、例えば図8に示されるグラフを含む表示画面を提供してもよい。或いは、出力部119は、出力時における最新の乱れ度Rの値を数字で示した表示画面を提供してもよい。
【0054】
以上、本実施形態に係る乱れ度算出装置10の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU(Central Processing Unit)などの演算装置がこれらの機能を実現する処理手順を記述した制御プログラムを記憶したROM(Read Only Memory)やRAM(Random Access Memory)などの記憶媒体から制御プログラムを読出し、そのプログラムを解釈して実行することにより行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
【0055】
また、本実施形態において上述された乱れ度算出装置10の各機能は、複数の装置により実現されてもよい。例えば、被験者の生体信号を取得するセンサと、乱れ度Rを算出する装置と、乱れ度Rの算出結果を出力する装置とは、それぞれ別体の装置であってもよい。また、生体信号計測部101、記録部103、及び出力部119の機能を有する端末装置が無線通信路を介して、生体信号解析部105、外乱判定部107、生理指標導出部109、基準情報生成部111、事前情報取得部113、ずれ量算出部115、及び乱れ度決定部117の機能を有する別体のサーバに取得した生体信号を送信してもよい。このとき、サーバは解析結果を端末装置に送信する。端末装置は、携帯型、腕時計型、又は据え置き型のいずれであってもよい。また生体信号を取得するセンサはこの端末装置に内蔵されていてもよく、別体の装置であってもよい。端末装置とセンサとが別体である場合には、センサは無線又は有線の通信路を介して取得した生体信号を端末装置に送信する。また、サーバの各機能が1つのサーバにて実現される形態のみならず、複数のサーバを用いた分散処理によって上述の各機能が実現される形態も本技術の範囲内に含まれる。
【0056】
なお、上述のような本実施形態に係る乱れ度算出装置10の各機能を実現するためのコンピュータプログラムを作成し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
【0057】
次に、乱れ度算出装置10の動作の一例について説明する。乱れ度算出装置10の動作は、事前に被験者毎の基準情報を取得するための基準情報算出処理と、この基準情報を用いた乱れ度算出処理とを含む。以下、これらの動作についてそれぞれ説明する。
【0058】
(2−2.基準情報算出処理)
まず、基準情報の準備動作について図12〜図14を参照しながら説明する。図12は、基準情報算出処理の全体の流れを示すフローチャートである。図13は、脈波からの生理指標導出処理の流れを示すフローチャートである。図14は、体温からの生理指標導出処理の流れを示すフローチャートである。
【0059】
まず、生理指標導出部109は、通常時の生体信号から導出された生理指標の時系列データを取得する(S101)。ステップS101の生理指標時系列データ取得処理は、次に図13及び図14を用いて説明される生理指標導出処理により導出される生理指標が取得時刻と共に記憶されることによって生理指標時系列データを取得する処理である。
【0060】
ここで、ステップS101により取得された生理指標時系列データSの生理指標の種類が生理指標導出部109により判断される(S103)。ここで取得された生理指標が活動量である場合には、基準情報生成部111は、生理指標時系列データSから被験者の睡眠時間を推定する(S105)。一方、生理指標が体温、脈拍数、AI値などの場合には、次に基準情報生成部111は、生理指標時系列データSから生理指標時系列データSの24時間の平均値M、第1の基準時刻t、第2の基準時刻tをそれぞれ導出する(S107)。ここで、第1の基準時刻tは、生理指標時系列データSの24時間のピーク時刻の6時間前とし、第2の基準時刻tは、生理指標時系列データSの24時間のピーク時刻の6時間後とすることができる。
【0061】
また、ずれ量算出部115は、ステップS107において算出された基準情報を用いて通常時のずれ量を算出してもよい(S109)。ここで算出されるずれ量は、第1の基準時刻tから第2の基準時刻tの第1の算出期間TP1おいて生理指標時系列データSの値が平均値M以上となる部分の面積UPの割合である第1のずれ量UP_ratioと、第2の基準時刻tから第1の基準時刻tの第2の算出期間TP2において生理指標時系列データSの値が平均値M以下となる第2のずれ量DN_ratioとである。
【0062】
ここで、ステップS101における生理指標時系列データ取得処理のうち、生理指標の導出について図13及び図14を参照しながら説明する。図13には、生体信号が脈波である場合の生理指標導出処理の一例が示されている。このとき、まず生体信号計測部101は、脈波をy秒間測定する(S111)。そして、生体信号解析部105は、取得された生体信号をフィルタ(ローパスフィルタLPF又はバンドパスフィルタBPF)にかけて所望の帯域の信号を抽出する(S113)。次に生理指標導出部109は、脈波1波形毎のピークを抽出する(S115)。そして、生理指標導出部109は、計測期間(y秒間)中のピーク数から1分間毎のピーク数を脈拍数として算出する(S117)。
【0063】
次に、生理指標導出部109は、脈波1波形の二次微分を計算する(S119)。そして、生理指標導出部109は、1波形内での二次微分が2番目に正から負に変化する時点を反射時点として抽出する(S121)。そして、生理指標導出部109は、1波形毎にAI値を算出する(S123)。このとき、AI値は、反射時点における脈波の高さをピーク時点における脈波の高さで除算することによって1波形毎のAI値を算出することができる。また生理指標導出部109は、導出したAI値の計測期間における平均値を算出してこの値を平均のAI値という生理指標とする(S125)。そして、生理指標導出部109は、算出した生理指標(脈拍数及びAI値)のノイズを除去する(S127)。
【0064】
次に図14には、生体信号が体温である場合の生理指標導出処理の一例が示されている。このとき、まず生体信号計測部101は、体温をy秒間測定する(S131)。このとき測定する体温は、深部体温であることが望ましい。そして生理指標導出部109は、y秒間の体温の平均値を算出する(S133)。そして、例えばy秒毎の体温の平均値が前後の値と比較して急に大きく変動した場合の値を削除するノイズ除去が行われる(S135)。そして、ノイズが大きい場合にはさらにフィルタ(ローパスフィルタLPF)がかけられる(S137)。
【0065】
なお、図示されていないが、生体信号が活動量である場合には、加速度センサーなどのモーションセンサの出力に基づいて、y秒間毎の活動量が計算される。
【0066】
(2−3.乱れ度算出処理)
次に、図13〜図17を参照しながら、本実施形態に係る乱れ度算出処理の一例が説明される。図15は、乱れ度算出処理の全体の流れを示すフローチャートである。図16は、ずれ量抽出処理の流れを示すフローチャートである。図17は、乱れ度決定処理の流れを示すフローチャートである。
【0067】
まず図15を参照すると、生理指標導出処理が実行される(S141)。ステップS141の生理指標導出処理は、基準情報算出処理において説明したように、取得された生体信号の種類に応じた処理がなされる(図13及び図14参照)。次に、ずれ量算出部115はずれ量算出処理を実行する(S143)。ここで、図16を参照しながらステップS143のずれ量算出処理の詳細の一例について説明する。
【0068】
まずずれ量算出部115は、生理指標時系列データSを取得する(S151)。そしてずれ量算出部115は、事前情報取得部113により取得されたずれの原因の情報を参照することによって、被験者が時差を伴う移動をしたか否かを判断する(S153)。そして、被験者が時差を伴う移動をしている場合には、移動先の時刻を用いてずれ量を算出する(S155)。一方、被験者が時差を伴う移動をしていない場合には、現在位置の時刻を用いてずれ量を算出する(S157)。
【0069】
再び図15に戻って説明を続けると、次に乱れ度決定部117が生体リズムの乱れ度決定処理を実行する(S145)。ここで図17を参照しながら、ステップS145の乱れ度決定処理の詳細の一例について説明する。乱れ度決定部117は、まず東方向に時差を伴なう移動をしたか否かを事前情報取得部113により取得された事前情報に基づいて判断する(S161)。ここで、東方向に時差を伴う移動をしたと判断されると、乱れ度決定部117は、24時間測定で、第1のずれ量UP_ratioと第2のずれ量DN_ratioの平均値を乱れ度Rとする(S163)。一方、時差を伴う西方向への移動の場合、シフト勤務の場合、及び不規則な生活などの場合には、乱れ度決定分117は、12時間測定でUP_ratio又はDN_ratioのいずれかを乱れ度Rとすることができる(S165)。なお、上述の通りここでは時差を伴う東方向への移動の場合にのみ24時間測定としたが、本技術はかかる例に限定されない。ずれの原因に関わらず、24時間測定が行われても良い。また、ずれの原因に関わらず、12時間測定が行われてもよい。この場合には、時差を伴う東方向への移動の場合に、上述の通りずれ度が上下の変動を繰り返しながら回復することとなる。
【0070】
ここで再び図15にもどると、乱れ度Rが決定された後、出力部119は算出された乱れ度Rを出力する(S147)。ここでの乱れ度Rの出力は、上述の通り表示画面を用いて行われてもよいし、音声出力により行われてもよい。
【0071】
(2−4.効果の例)
以上、本開示の第1の実施形態にかかる乱れ度算出装置10について説明してきた。本実施形態によれば、生体リズムの乱れについて定量的に評価することができるようになる。このとき、第1の基準時刻tと第2の基準時刻tとの間の期間TPにおいて、生体信号から導出された生理指標(例えば深部体温)の時系列データの波形と、通常時における生理指標時系列データの平均値を示す直線とにより囲まれる領域の面積のうち、生理指標時系列データSの値が平均値Mより大きい第1の面積と、生理指標時系列データSの値が平均値Mより小さい第2の面積との比率に基づいて乱れ度が決定される。ここで第1の基準時刻tと第2の基準時刻tとを、通常時において生理指標が平均値Mとなると推定される時刻とすることによって、通常時のずれ量を1とし、生体リズムの乱れの度合いが大きいほどずれ量の値を小さくすることができる。これによりずれ量の値をそのまま、或いはずれ量の平均値をそのまま乱れ度Rの値として用いることができる。なお、第1の基準時刻tと第2の基準時刻tとを、通常時において生理指標が平均値Mとなると推定される時刻としない場合には、通常時のずれ量と検査時のずれ量との差異を乱れ度Rとして用いてもよい。
【0072】
また、第1の基準時刻tを生理指標時系列データSのピーク時刻の6時間前とし、第2の基準時刻tを上記ピーク時刻の6時間後とすることによって、少ない演算量で基準時点を求めることができる。なお被験者が東方向への時差を伴う移動をした場合に、第1のずれ量UP_ratioと第2のずれ量DN_ratioの平均値を乱れ度Rとすることによって、生体リズムの乱れ度合いをより正確に表すことができる。
【0073】
<3.第2の実施形態(回復度予測機能を有する例)>
(3−1.構成)
次に、本開示の第2の実施形態にかかる乱れ度算出装置20の構成について図18〜図22を参照しながら説明する。図18は、本開示の第2の実施形態に係る生体リズムの乱れ度算出装置の構成を示すブロック図である。図19は、履歴情報の一例を示す説明図である。図20は、情報収集サーバにより記憶される履歴情報の一例を示す説明図である。図21は、情報収集サーバにより記憶される基準情報の一例を示す説明図である。図22は、情報収集サーバにより記憶される基準情報の他の一例を示す説明図である。
【0074】
まず図18を参照すると、乱れ度算出装置20は、生体信号計測部101と、記録部103と、生体信号解析部105と、外乱判定部107と、生理指標導出部109と、基準情報生成部111と、事前情報取得部113と、ずれ量算出部115と、生体リズム乱れ度決定部117と、出力部119と、履歴情報記録部121と、予測情報生成部123とを主に有する。
【0075】
つまり、乱れ度算出装置20は、本開示の第1の実施形態にかかる乱れ度算出装置10の構成に加えて、履歴情報記録部121と、予測情報生成部123とをさらに有する。また、乱れ度算出装置20は、基準情報及び乱れ度Rについての履歴情報を情報収集サーバ50に記録する構成を有する点において乱れ度算出装置10と異なる。なお、以下第1の実施形態にかかる乱れ度算出装置10と同様の構成要素については説明を省略し、乱れ度算出装置10との差異について主に説明する。
【0076】
履歴情報記録部121は、被験者の乱れ度Rについての履歴情報を記録する機能を有する。履歴情報記録部121は、例えば乱れ度算出装置20内部の記憶部(図示せず)に乱れ度Rについての履歴情報22を記録させることができる。例えば履歴情報22は、乱れ原因と、ずれ時間と、(乱れ原因が生じてからの)経過時間と、乱れ度Rとを含むことができる。また、履歴情報記録部121は、履歴情報22に被験者を識別するためのユーザIDを加えて、ネットワークを介して通信することのできる情報収集サーバ50に記録させてもよい(履歴情報52)。なお、この情報収集サーバ50は、複数の被験者の乱れ度Rについての履歴情報52と、基準情報54とを収集することができる。
【0077】
予測情報生成部123は、事前情報取得部113により取得された、活動時間帯のずれ時間、及び当該活動時間帯のずれの原因に基づいて履歴情報を抽出し、抽出された履歴情報に基づいて乱れ度Rを予測する機能を有する。このとき、予測情報生成部123は、乱れ度算出装置20内部の記憶部に記憶された履歴情報22から履歴情報を抽出してもよい。また、予測情報生成部123は、情報収集サーバ50に記憶された履歴情報52から履歴情報を抽出してもよい。このとき予測情報生成部123は、被験者本人の履歴情報が記憶されていない場合に、他の被験者の履歴情報を用いることができる。他の被験者の履歴情報を用いる場合には、予測情報生成部123は、被験者本人と通常時の生体リズムが類似する他の被験者の履歴情報を用いることが好ましい。このとき予測情報生成部123は、被験者本人と基準情報が類似する他の被験者の履歴情報を用いることができる。この予測情報生成部123は、例えば被験者の生理指標時系列データが経過時間1日までしか存在しない場合に、2日目以降の乱れ度Rの予測情報を生成してもよい。このとき出力部119は、1日目の乱れ度Rは乱れ度決定分117から供給される値を用い、2日目以降の予測情報を加えて乱れ度Rの情報を出力することができる。
【0078】
例えば情報収集サーバ50が記憶する基準情報54は、図21に示されるように基準時点を含んでもよい。この場合、基準情報54aは、ユーザIDと、平均値Mと、第1の基準時刻tと、第2の基準時刻tとを含むことができる。また情報収集サーバ50が記憶する基準情報54は、図22に示されるように基準時点を固定した場合のずれ量を含んでもよい。このとき基準情報54bは、ユーザIDと、平均値Mと、第1のずれ量UP_ratioと、第2のずれ量DN_ratioと、t時点における生理指標の正負の情報とを含むことができる。なお、この正負の情報はt時点における生理指標の正負の情報であってもよい。
【0079】
(3−2.予測情報生成処理)
次に乱れ度算出装置20の動作のうち、予測情報生成処理について図23及び図24を参照しながら説明する。図23は、予測情報生成処理の流れを示すフローチャートである。図24は、情報収集サーバからの履歴情報取得の流れを示すシーケンス図である。
【0080】
予測情報生成部123は、まず事前情報取得部113により取得された事前情報を予測条件として取得する(S201)。そして、予測情報生成部123は、取得した予測条件に基づいて、被験者本人についての予測条件に適した履歴情報が存在するか否かを判断する(S203)。被験者本人についての予測条件に適した履歴情報が存在する場合には、被験者本人の履歴情報を用いて、予測条件に基づいた乱れ度Rの予測情報を生成する(S205)。一方、ステップS203において、被験者本人についての予測条件に適した履歴情報が存在しない場合には、予測情報生成部123は、サーバから平常時の生理指標時系列データSの特徴が類似する他の被験者の履歴情報を取得する(S207)。
【0081】
このステップS207における処理の詳細を図24を参照しながら説明する。乱れ度算出装置20は、情報収集サーバ50に対して基準情報(M,t,t)と、事前情報取得部113により取得された予測条件とを送信する(S211)。情報収集サーバ50は、受信した基準情報に基づいて、記憶している基準情報54aの中から最も基準情報が類似する被験者のユーザIDを抽出する。そして、情報収集サーバ50は、抽出したユーザIDの被験者についての履歴情報52の中から、予測条件に適した履歴情報を取得する(S213)。そして、情報収集サーバ50は、取得した履歴情報を乱れ度算出装置20に送信する(S215)。なお、ここでは基準情報に基準時点を含む例について説明したが、本技術はかかる例に限定されない。例えば、基準情報はずれ量を含んでもよい。基準情報がずれ量を含む場合には、予測情報生成部123は、t時点生理指標の正負情報と共にずれ量及び平均値Mを情報収集サーバ50に送信する。情報収集サーバ50は、ずれ量、平均値Mが類似し、t時点生理指標の正負情報が一致する被験者の履歴情報を抽出することができる。
【0082】
このように情報収集サーバ50から履歴情報を取得した予測情報生成部123は、取得した履歴情報を用いて、予測条件に基づいた乱れ度Rの予測情報を生成する。例えば取得した履歴情報が1件の場合には、取得した履歴情報の乱れ度Rをそのまま予測情報としてもよい。また、取得された履歴情報が複数存在する場合には、取得した履歴情報の乱れ度Rの平均値を予測情報としてもよい。
【0083】
(3−3.効果の例)
以上説明した本開示の第2の実施形態にかかる乱れ度算出装置20によれば、現時点の生体リズムの乱れ度Rのみならず、未来の乱れ度Rを予測することができる。生体リズムの回復の度合いは、個人差がある。このため、被験者本人の履歴情報が存在する場合には、被験者本人の履歴情報を用いる方が予測の精度が高まる可能性が高い。ところが、必ずしも被験者本人の履歴情報が存在するとは限らない。このため、乱れ度算出装置20は、他の被験者の履歴情報を用いる事の出来る構成を有する。このとき乱れ度算出装置20は、他の被験者のうち、通常時の生体リズムの特徴が類似する被験者の履歴情報を用いることができる。上述の通り、生体リズムの回復の度合いは個人差がある。通常時の生体リズムの特徴が類似する被験者は、生体リズムが乱れたときの回復度合いも類似すると考えられる。このため、他の被験者のうち通常時の基準情報が類似する被験者の履歴情報を用いることによって、比較的予測の精度を高めることができる。
【0084】
<4.第3の実施形態(収集した複数ユーザのデータを利用したサービスの例)>
次に、本開示の第3の実施形態について説明する。本実施形態は、上記に説明してきた乱れ度算出装置10又は乱れ度算出装置20により取得することのできる基準情報を用いたサービスの一例である。
【0085】
(4−1.構成)
ここで図25を参照しながら本実施形態において提供されるサービスについて説明する。図25は、本開示の第3の実施形態に係る生体リズムの乱れ度を利用するシステムの構成を示す説明図である。まずここで説明するサービスは、サービスサーバ60により提供される。サービスサーバ60は、分類装置の一例であり、ユーザの端末装置(ここでは乱れ度算出装置10)からの分類要求を受けて、ユーザを朝型、夜型、又は通常型に分類する機能を有する。このときサービスサーバ60は、情報収集サーバ50により収集された基準情報54を用いる。サービスサーバ60は、分類要求の送信元であるユーザの端末装置に分類結果を送信することができる。
【0086】
(4−2.朝型−夜型分類処理)
次に図26を参照しながら朝型−夜型分類処理について説明する。図26は、朝型−夜型分類処理の流れを示すフローチャートである。サービスサーバ60は、まず乱れ度算出装置20から分類要求を受信する(S221)。そして、サービスサーバ60は、対象のユーザの第1の基準時刻tは、複数の被験者についての第1の基準時刻tBの平均値と比較して所定の範囲内であるか否かを判断する(S223)。
【0087】
ステップS223において、第1の基準時刻tが所定の範囲内であると判断された場合には、サービスサーバ60は、このユーザを「平均型」に分類する(S225)。一方、ステップS223において、第1の基準時刻tが所定の範囲内でないと判断された場合には、サービスサーバ60は、この第1の基準時刻tが所定の範囲内よりも時刻が早い方にずれているのか否かを判断する(S227)。ステップS227において第1の基準時刻tが所定の範囲内よりも早い方にすれていると判断された場合には、サービスサーバ60はこのユーザを「朝型」に分類する(S229)。一方、ステップS227において第1の基準時刻tが所定の範囲内よりも遅いほうにずれていると判断された場合には、サービスサーバ60はこのユーザを「夜型」に分類する(S231)。
【0088】
(4−3.効果の例)
以上説明した本開示の第3の実施形態によれば、乱れ度算出装置10により取得される基準情報を用いて、ユーザを朝型、夜型、又は通常型に分類することができる。生体リズムには個人差がある。このため、ユーザの中には、自分の生体リズムが朝型であるのか、夜型であるのか、或いは平均的であるのか知りたいという潜在的な要求があると思われる。本実施形態によれば、ユーザにとって有益な分類情報を、複数の被験者の平均値に基づいて提供することができる。
【0089】
<5.第4の実施形態>
次に、図27を参照しながら、本開示の第4の実施形態に係る乱れ度算出システムの構成について説明する。例えば乱れ度算出システムは、ユーザ装置61と、基準情報生成サーバ62と、サービスサーバ63と、分類サーバ64と、乱れ度算出サーバ65とを有する。
【0090】
ユーザ装置61は、生体信号を取得する機能を有する情報処理装置である。ユーザ装置61は、例えば携帯電話、携帯用音楽再生装置、携帯用映像処理装置、携帯用ゲーム機器などの情報処理装置であってよい。ユーザ装置61は、通常時には生体信号を取得して基準情報生成サーバ62に取得した生体信号を送信するように設定されていてよい。この生体信号の送信は、定期的、継続的に行われるように設定されていてよい。或いは、ある程度の期間において定期的、継続的に生体信号を送信して、基準情報が生成された後は、生成された基準情報を用いるように設定されていてもよい。また、ユーザ装置61は、サービスサーバ63の提供するサービスを利用するときには、サービスの利用に必要な各種の情報をサービスサーバ63に送信することができる。
【0091】
基準情報生成サーバ62は、ユーザ装置61から受信した生体信号から基準情報を生成する機能を有する。なお、基準情報生成サーバ62は、複数のユーザ装置61から生体信号を受信して、それぞれのユーザについての基準情報を生成することができる。このとき、基準情報生成サーバ62は、生成した基準情報を各ユーザ(被験者)を識別する符号と共に記憶させることができる。基準情報生成サーバ62は、分類サーバ64又は乱れ度算出サーバ65の要求に応じて、特定のユーザの基準情報を提供することができる。
【0092】
サービスサーバ63は、ユーザ装置61に対して各種の情報を提供する機能を有する。サービスサーバ64は、後述する図28〜図34に示す表示画面をユーザ装置61に提供するとともに、この表示画面に対するユーザの操作に応じて表示画面内の情報を例えば分類サーバ64、乱れ度算出サーバ65などに生成させることにより表示内容を変更することができる。例えば、サービスサーバ64は、ユーザ装置61により指定された特定のユーザタイプの情報を分類サーバ64に送信することによって、当該ユーザタイプに属する複数のユーザについての基準情報などの平均値を含む分類情報を取得することができる。例えばサービスサーバ63は、図28に示すよう表示画面73において、ユーザが入力領域731でユーザタイプ(分類)を選択すると、選択されたユーザタイプについての分類情報を含む表示画面73をユーザ装置61に提供してもよい。或いは、図29に示されるように、ユーザタイプを選択する表示画面75において、ユーザが選択したユーザタイプ(複数選択可)についての分類情報を分類サーバ64から取得し、取得した分類情報を含む表示画面77(図30)を生成してユーザ装置61に提供してもよい。
【0093】
或いはサービスサーバ63は、分類サーバ64にユーザの識別子を送信することによって、当該ユーザの分類情報を取得することができる。このとき分類サーバ64は、ユーザの識別子に基づいて基準情報生成サーバ62から当該ユーザの基準情報を取得し、この基準情報に基づいてユーザがいずれのタイプに該当するか分類することができる。サービスサーバ63は、分類サーバ64から取得した、特定ユーザに関する分類情報を図31に示す表示画面79の形式でユーザ装置61に提供することができる。なお、ここではサービスサーバ63は、ユーザの識別子を送信して、分類サーバ64に基準情報制しえサーバ62から基準情報を取得させることとしたが、本技術はかかる例に限定されない。例えば、ユーザ装置61がユーザ自身の基準情報を保有している場合には、サービスサーバ63は、ユーザ装置61から基準情報を取得して分類サーバ64に転送してもよい。このとき分類サーバ64は、サービスサーバ63から取得した基準情報を用いて当該ユーザのユーザタイプを分類することができる。
【0094】
また、サービスサーバ63は、上述の機能を組み合わせて、例えば図32に示す表示画面81を生成することもできる。すなわち、サービスサーバ63は、特定のユーザを識別する情報から、当該ユーザの分類情報を取得し、さらに特定のユーザタイプに関する分類情報をあわせて提供する表示画面81を生成してもよい。かかる表示画面81によれば、ユーザは自身の情報と、その他のユーザタイプの人の情報とを比較することができる。ユーザは、表示画面81の入力領域811により比較したいユーザタイプを選択することにより、選択したユーザタイプの人の基準情報等を参照することができる。
【0095】
また、サービスサーバ63は、ユーザ装置61から取得した、少なくとも事前情報を含む情報を乱れ度算出サーバ65に対して送信し、乱れ度の算出結果を取得することができる。このときサービスサーバ63は、ユーザ装置61から検査時の生体信号を取得して乱れ度算出装置65に送信してもよい。乱れ度算出装置65は、取得した事前情報と生体信号とから、当該ユーザの乱れ度を実際に算出してもよい。或いは、乱れ度算出装置65は、事前情報に基づいて、ユーザの乱れ度を予測することもできる。
【0096】
サービスサーバ63は、例えば図33に示されるような表示画面83をユーザ装置61に提供することができる。このときサービスサーバ63は、事前情報選択領域831に対してユーザが選択又は入力した事前情報を乱れ度算出サーバ65に送信することによって、当該ユーザの乱れ度の予測結果を表示することができる。例えば乱れ度の予測結果は、グラフ835の形式でユーザに提供されてもよい。また、サービスサーバ63は、何日後にどの程度乱れ度が回復しているかと、回復率が概ね100%となるまでにかかる時間とを表示してもよい。このとき表示されるデータの条件は、予め決められたものであってもよい。或いは、サービスサーバ63は、概ね100%となるまでにかかる時間を領域834に表示し、領域832に入力された条件に従って領域833に表示する回復率の計算を行って表示しても良い。或いは、サービスサーバ63は、領域833に入力された条件に従って領域832に表示する日数の計算を行って表示してもよい。かかる表示画面83によれば、乱れの原因となる状況を選択して、ユーザが選択したユーザタイプの人の生体リズムの乱れ度合いについて知ることができる。
【0097】
或いは、サービスサーバ63は、図34に示されるような表示画面85をユーザ装置61に提供してもよい。この表示画面85は、特定のユーザについての乱れ度を表示することができる。このとき、サービスサーバ63は、ユーザ装置61からユーザを識別するための情報を取得して分類サーバ64に送信する。そして、サービスサーバ63は分類サーバ64から取得した、特定のユーザについてのユーザタイプの情報を含む表示画面85を生成することができる。この表示画面85によれば、ユーザは、ユーザ自身について、乱れの原因となる状況を選択してそのときの乱れ度合いを知ることができる。
【0098】
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
【0099】
例えば、上記第2及び第3の実施形態では、情報収集サーバ50と乱れ度算出装置10,20とは別体の装置であることとしたが、本技術はかかる例に限定されない。例えば、情報収集サーバ50と乱れ度算出装置10,20とは一体の装置により実現され、ユーザの端末装置から生体信号を受信して乱れ度算出処理を行ってもよい。
【0100】
なお、ここで示される各実施形態は一例を示したものであり、乱れ度算出装置の機能として説明された各機能は、複数の装置により実現することもできる。乱れ度算出装置10又は乱れ度算出装置20の各機能は、複数の装置により実現されてもよい。例えば、被験者の生体信号を取得するセンサと、乱れ度Rを算出する装置と、乱れ度Rの算出結果を出力する装置とは、それぞれ別体の装置であってもよい。また、生体信号計測部101、記録部103、及び出力部119の機能を有する端末装置が無線通信路を介して、生体信号解析部105、外乱判定部107、生理指標導出部109、基準情報生成部111、事前情報取得部113、ずれ量算出部115、及び乱れ度決定部117の機能を有する別体のサーバに取得した生体信号を送信してもよい。このとき、サーバは解析結果を端末装置に送信する。端末装置は、携帯型、腕時計型、又は据え置き型のいずれであってもよい。また生体信号を取得するセンサはこの端末装置に内蔵されていてもよく、別体の装置であってもよい。端末装置とセンサとが別体である場合には、センサは無線又は有線の通信路を介して取得した生体信号を端末装置に送信する。また、サーバの各機能が1つのサーバにて実現される形態のみならず、複数のサーバを用いた分散処理によって上述の各機能が実現される形態も本技術の範囲内に含まれる。
【0101】
尚、本明細書において、フローチャートに記述されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的に又は個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。
【0102】
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
被験者の生体信号から算出された生理指標時系列データを取得する生理指標時系列データ取得部と、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定する算出期間決定部と、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出する算出部と、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する乱れ度決定部と、
を備える、生体リズムの乱れ度算出装置。
(2)
前記算出部は、前記通常時生理指標時系列データの平均値より大きい値をとる前記検査時生理指標時系列データに対応する第1の特徴量と、前記平均値より小さい値をとる前記検査時生理指標時系列データに対応する第2の特徴量と、の比率に基づいて前記ずれ量を算出する、前記(1)に記載の生体リズムの乱れ度算出装置。
(3)
前記第1の特徴量は、前記平均値より大きい値をとる前記検査時生理指標時系列データの波形と前記平均値を示す直線とにより囲まれる領域の面積であり、
前記第2の特徴量は、前記平均値より小さい値をとる前記検査時生理指標時系列データの波形と前記平均値を示す直線とにより囲まれる領域の面積である、
前記(2)に記載の生体リズムの乱れ度算出装置。
(4)
前記第1の特徴量は、前記検査時生理指標時系列データが前記平均値より大きい値をとる期間の時間長であり、
前記第2の特徴量は、前記検査時生理指標時系列データが前記平均値より小さい値をとる期間の時間長である、
前記(2)に記載の生体リズムの乱れ度算出装置。
(5)
前記算出期間決定部は、前記通常時生理指標時系列データの値が平均値以下から前記平均値以上に切り替わる第1の基準時点と、前記通常時生理指標時系列データの値が前記平均値以上から前記平均値以下に切り替わる第2の基準時点との間の期間を前記算出期間とする、
前記(1)から(3)のいずれか1項に記載の生体リズムの乱れ度算出装置。
(6)
前記算出部は、
前記第1の基準時点から前記第2の基準時点の間の第1の算出期間においては、第1の特徴量の割合を前記位相のずれ量とし、
前記第2の基準時点から前記第1の基準時点の間の第2の算出期間においては、第2の特徴量の割合を前記位相のずれ量とする、
前記(5)に記載の生体リズムの乱れ度算出装置。
(7)
前記乱れ度決定部は、前記第1の算出期間における前記位相のずれ量、前記第2の算出期間における前記位相のずれ量、及び前記第1の算出期間における前記位相のずれ量と前記第2の算出期間における前記位相のずれ量との平均値のいずれかを前記乱れ度とする、前記(6)に記載の生体リズムの乱れ度算出装置。
(8)
前記生体リズムの乱れの原因となる前記被験者の活動時間帯のずれ時間、及び当該活動時間帯のずれの原因を取得する活動時間帯情報取得部、
をさらに備え、
前記乱れ度決定部は、前記活動時間帯のずれの原因が東方向への時差を伴う移動である場合に、前記第1の算出期間における前記位相のずれ量と前記第2の算出期間における前記位相のずれ量との平均値を前記乱れ度とする、前記(7)に記載の生体リズムの乱れ度算出装置。
(9)
前記乱れ度の履歴情報を取得する履歴情報取得部と、
前記ずれ時間及びずれの原因に基づいて抽出された前記履歴情報に基づいて乱れ度を予測する予測情報生成部と、
をさらに備える、前記(8)に記載の生体リズムの乱れ度算出装置。
(10)
前記履歴情報取得部は、前記被験者についての履歴情報の中に前記ずれ時間及びずれの原因が一致する履歴情報がないとき、前記基準情報が類似する他の被験者の前記履歴情報を取得する、前記(9)に記載の生体リズムの乱れ度算出装置。
(11)
前記活動時間帯情報取得部は、前記被験者の位置情報の変化に基づいて、前記活動時間帯のずれの原因が時差を伴う移動であること、及び当該時差を検知する、前記(8)または(9)のいずれかに記載の生体リズムの乱れ度算出装置。
(12)
前記活動時間帯情報取得部は、前記被験者の動きを検出する動きセンサの検出値に基づいて前記被験者の活動時間帯のずれ時間を推定する、前記(8)から(11)のいずれか1項に記載の生体リズムの乱れ度算出装置。
(13)
前記生体信号は、概日周期の生体リズムを有する信号であり、
前記算出期間決定部は、前記第1の基準時点を前記通常時生理指標時系列データのピー時刻の6時間前とし、前記第2の基準時点を前記ピーク時刻の6時間後とする期間を前記算出期間とする、前記(5)から(12)のいずれか1項に記載の生体リズムの乱れ度算出装置。
(14)
前記生体信号は、深部体温の値を示す信号である、前記(1)から(13)のいずれか1項に記載の生体リズムの乱れ度算出装置。
(15)
前記生体信号は、脈波を示す信号であり、前記生理指標は、脈拍数又はAI(Augmentation Index)値である、前記(1)から(14)のいずれか1項に記載の生体リズムの乱れ度算出装置。
(16)
複数の被験者について、通常時の生体信号から算出された生理指標の時系列データの平均値と、前記平均値に基づいた第1の基準時点及び第2の基準時点とを取得する情報取得部と、
前記情報取得部により取得された情報に基づいて、特定の被験者の生体リズムを朝型、夜型、及び平均型のいずれかに分類する分類部と、
を備える、分類装置。
(17)
活動時間帯のずれ時間、及び当該活動時間帯のずれの原因を含む推定条件を入力する推定条件入力部と、
前記推定条件をサーバに送信する送信部と、
を有するユーザ装置と、
通常時の生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量に基づいて算出された生体リズムの乱れ度を複数の被験者について取得する取得部と、
前記複数の被験者についての前記乱れ度を用いて、前記推定条件のときの前記乱れ度を推定する推定部と、
推定された前記乱れ度の情報を含む表示画面を生成して前記ユーザ装置に提供する表示画面生成部と、
を有する前記サーバと、
を含む、生体リズムの乱れ度算出システム。
(18)
被験者の生体信号から算出された生理指標時系列データを取得し、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出し、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する、
生体リズムの乱れ度算出方法。
(19)
コンピュータに、
被験者の生体信号から算出された生理指標時系列データを取得し、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出し、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する、
生体リズムの乱れ度算出方法を実行させるためのプログラム。
(20)
コンピュータに、
被験者の生体信号から算出された生理指標時系列データを取得し、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出し、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する、
生体リズムの乱れ度算出方法を実行させるためのプログラムを記憶した、コンピュータに読取り可能な記録媒体。
【符号の説明】
【0103】
10 乱れ度算出装置
101 生体信号計測部
103 記録部
105 生体信号解析部
107 外乱判定部
109 生理指標導出部
111 基準情報生成部
113 事前情報取得部
115 特徴量算出部
117 乱れ度決定部
119 出力部
121 履歴情報記録部
123 予測情報生成部


【特許請求の範囲】
【請求項1】
被験者の生体信号から算出された生理指標時系列データを取得する生理指標時系列データ取得部と、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定する算出期間決定部と、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出する算出部と、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する乱れ度決定部と、
を備える、生体リズムの乱れ度算出装置。
【請求項2】
前記算出部は、前記通常時生理指標時系列データの平均値より大きい値をとる前記検査時生理指標時系列データに対応する第1の特徴量と、前記平均値より小さい値をとる前記検査時生理指標時系列データに対応する第2の特徴量と、の比率に基づいて前記ずれ量を算出する、請求項1に記載の生体リズムの乱れ度算出装置。
【請求項3】
前記第1の特徴量は、前記平均値より大きい値をとる前記検査時生理指標時系列データの波形と前記平均値を示す直線とにより囲まれる領域の面積であり、
前記第2の特徴量は、前記平均値より小さい値をとる前記検査時生理指標時系列データの波形と前記平均値を示す直線とにより囲まれる領域の面積である、
請求項2に記載の生体リズムの乱れ度算出装置。
【請求項4】
前記第1の特徴量は、前記検査時生理指標時系列データが前記平均値より大きい値をとる期間の時間長であり、
前記第2の特徴量は、前記検査時生理指標時系列データが前記平均値より小さい値をとる期間の時間長である、
請求項2に記載の生体リズムの乱れ度算出装置。
【請求項5】
前記算出期間決定部は、前記通常時生理指標時系列データの値が平均値以下から前記平均値以上に切り替わる第1の基準時点と、前記通常時生理指標時系列データの値が前記平均値以上から前記平均値以下に切り替わる第2の基準時点との間の期間を前記算出期間とする、
請求項1に記載の生体リズムの乱れ度算出装置。
【請求項6】
前記算出部は、
前記第1の基準時点から前記第2の基準時点の間の第1の算出期間においては、第1の特徴量の割合を前記位相のずれ量とし、
前記第2の基準時点から前記第1の基準時点の間の第2の算出期間においては、第2の特徴量の割合を前記位相のずれ量とする、
請求項5に記載の生体リズムの乱れ度算出装置。
【請求項7】
前記乱れ度決定部は、前記第1の算出期間における前記位相のずれ量、前記第2の算出期間における前記位相のずれ量、及び前記第1の算出期間における前記位相のずれ量と前記第2の算出期間における前記位相のずれ量との平均値のいずれかを前記乱れ度とする、請求項6に記載の生体リズムの乱れ度算出装置。
【請求項8】
前記生体リズムの乱れの原因となる前記被験者の活動時間帯のずれ時間、及び当該活動時間帯のずれの原因を取得する活動時間帯情報取得部、
をさらに備え、
前記乱れ度決定部は、前記活動時間帯のずれの原因が東方向への時差を伴う移動である場合に、前記第1の算出期間における前記位相のずれ量と前記第2の算出期間における前記位相のずれ量との平均値を前記乱れ度とする、請求項7に記載の生体リズムの乱れ度算出装置。
【請求項9】
前記乱れ度の履歴情報を取得する履歴情報取得部と、
前記ずれ時間及びずれの原因に基づいて抽出された前記履歴情報に基づいて乱れ度を予測する予測情報生成部と、
をさらに備える、請求項8に記載の生体リズムの乱れ度算出装置。
【請求項10】
前記履歴情報取得部は、前記被験者についての履歴情報の中に前記ずれ時間及びずれの原因が一致する履歴情報がないとき、前記基準情報が類似する他の被験者の前記履歴情報を取得する、請求項9に記載の生体リズムの乱れ度算出装置。
【請求項11】
前記活動時間帯情報取得部は、前記被験者の位置情報の変化に基づいて、前記活動時間帯のずれの原因が時差を伴う移動であること、及び当該時差を検知する、請求項8に記載の生体リズムの乱れ度算出装置。
【請求項12】
前記活動時間帯情報取得部は、前記被験者の動きを検出する動きセンサの検出値に基づいて前記被験者の活動時間帯のずれ時間を推定する、請求項8に記載の生体リズムの乱れ度算出装置。
【請求項13】
前記生体信号は、概日周期の生体リズムを有する信号であり、
前記算出期間決定部は、前記第1の基準時点を前記通常時生理指標時系列データのピー時刻の6時間前とし、前記第2の基準時点を前記ピーク時刻の6時間後とする期間を前記算出期間とする、請求項5に記載の生体リズムの乱れ度算出装置。
【請求項14】
前記生体信号は、深部体温の値を示す信号である、請求項1に記載の生体リズムの乱れ度算出装置。
【請求項15】
前記生体信号は、脈波を示す信号であり、前記生理指標は、脈拍数又はAI(Augmentation Index)値である、請求項1に記載の生体リズムの乱れ度算出装置。
【請求項16】
複数の被験者について、通常時の生体信号から算出された生理指標の時系列データの平均値と、前記平均値に基づいた第1の基準時点及び第2の基準時点とを取得する情報取得部と、
前記情報取得部により取得された情報に基づいて、特定の被験者の生体リズムを朝型、夜型、及び平均型のいずれかに分類する分類部と、
を備える、分類装置。
【請求項17】
活動時間帯のずれ時間、及び当該活動時間帯のずれの原因を含む推定条件を入力する推定条件入力部と、
前記推定条件をサーバに送信する送信部と、
を有するユーザ装置と、
通常時の生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量に基づいて算出された生体リズムの乱れ度を複数の被験者について取得する取得部と、
前記複数の被験者についての前記乱れ度を用いて、前記推定条件のときの前記乱れ度を推定する推定部と、
推定された前記乱れ度の情報を含む表示画面を生成して前記ユーザ装置に提供する表示画面生成部と、
を有する前記サーバと、
を含む、生体リズムの乱れ度算出システム。
【請求項18】
被験者の生体信号から算出された生理指標時系列データを取得し、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出し、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する、
生体リズムの乱れ度算出方法。
【請求項19】
コンピュータに、
被験者の生体信号から算出された生理指標時系列データを取得し、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出し、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する、
生体リズムの乱れ度算出方法を実行させるためのプログラム。
【請求項20】
コンピュータに、
被験者の生体信号から算出された生理指標時系列データを取得し、
通常時の前記生体信号から算出された通常時生理指標時系列データが変動する周期の概ね2分の1の時間長となる算出期間を決定し、
前記算出期間において、検査時の前記生体信号から算出された検査時生理指標時系列データと、前記通常時生理指標時系列データとの位相のずれ量を算出し、
前記位相のずれ量に基づいて、前記被験者の前記検査時における生体リズムの乱れ度を決定する、
生体リズムの乱れ度算出方法を実行させるためのプログラムを記憶した、コンピュータに読取り可能な記録媒体。




【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate


【公開番号】特開2012−239799(P2012−239799A)
【公開日】平成24年12月10日(2012.12.10)
【国際特許分類】
【出願番号】特願2011−115666(P2011−115666)
【出願日】平成23年5月24日(2011.5.24)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】