説明

画像処理方法

【課題】繰返し画像の記録および画像の消去を行ない、記録材料の劣化、記録媒体表面に凹部が生じても、記録媒体の状態によらずも完全に画像を消去することができ、かつ画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止でき、濃度低下をも防止できる画像処理方法を提供すること。
【解決手段】レーザ光が照射され、熱可逆記録媒体に記録された画像を、レーザ光を照射し、消去する画像消去工程を含む画像処理方法であって、前記熱記録媒体は、支持体上に少なくとも、熱可逆記録層と保護層とを積層してなるものであり、前記熱可逆層は、第一の温度で第一の色の状態となり、該第一の温度よりも高温の第二の温度で第二の色の状態となるものであり、前記照射するレーザ光の発振波長を前記熱可逆記録層及び前記保護層の吸収領域にし、前記レーザ光のエネルギー密度を、画像消去可能なエネルギー密度範囲で且つ前記エネルギー密度範囲の中心値以下のエネルギー密度で画像消去を行なうことを特徴とする画像処理方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像消去時に消去可能エネルギー密度範囲の中心値以下の低エネルギー側で画像消去を行なうことにより、良好な繰返し耐久性が得られ、かつ画像消去の繰返しによる地肌カブリのない画像処理方法に関する。
【背景技術】
【0002】
現在まで、熱可逆記録媒体(以下、単に「記録媒体」、又は「媒体」と称することがある。)への画像形成及び画像消去は、加熱源を媒体に接触させて該媒体を加熱する接触式で行なわれている。該加熱源としては、通常、画像形成にはサーマルヘッドが用いられ、画像消去には熱ローラ、セラミックヒータ、ホットスタンプなどが用いられている。
【0003】
この熱可逆記録媒体は、例えば、サーマルヘッド等で画像を形成後、ホットスタンプ等で画像消去を行なう場合、通常、前記熱可逆記録媒体の消去可能温度は機械のバラツキや環境条件等を考慮し、消去可能温度範囲の中心付近で設定され、何度も繰返し使用される。
しかしながら、繰返し使用されるうちに、記録材料が劣化し、画像濃度が低下したり、消去可能温度範囲の高温側で消去しにくくなる問題があった。
【0004】
前記の問題を解決するために、消去可能温度範囲の中心値より低温側で消去する方法が特許文献1及び特許文献2に開示されている。
前記特許文献1には、熱可逆記録材料として支持体上に樹脂母材及び樹脂母材中に分散された2種類以上の有機低分子物質を主成分とする感熱層を設けたものを用いて、消去エネルギーを熱可逆記録材料の画像消去時の消去可能なエネルギー範囲の中の中心エネルギー値より低エネルギー側のエネルギーで画像消去を行なうことにより、感熱層中に分散されている2種類以上の有機低分子物質の共融化させて低融点側の有機低分子物質の白濁化を抑えて繰返しによる消去濃度低下を防止することが記載されている。
また、前記特許文献2には、ロイコ染料と顕色剤を含む記録層を備えた熱可逆記録媒体に形成された画像を消去する方法において、消去温度範囲の中心値の温度以下の温度で消去を行なうことにより、顕色剤の結晶成長を抑制することができ、繰返しによる発色濃度の低下を防止することが記載されている。
【0005】
しかしながら、上記のような方法では、接触式であるために、印字と消去を繰り返すと記録媒体表面が削れて凹凸が生じ、サーマルヘッドやホットスタンプ等の加熱源に接触しない部分が出てきて均一に加熱されないため、濃度低下や消去不良がおこるという問題がある。
特に消去時に上記のような消去可能温度範囲の低温側で消去すると、サーマルヘッドやホットスタンプと接触し難い部分は消去温度まで達しにくいので消去不良が起こりやすく、記録媒体表面に凹部が生じた場合には、高エネルギーで消去しなければならず、記録媒体の状態に応じて消去エネルギーを変えなければならない。
【0006】
また、非接触方式のレーザを用いた方法が提案されている(特許文献3参照)が、物流ラインに用いる搬送用容器に熱可逆記録媒体を使用し、非接触記録を行うものであり、書込みはレーザを用いて行い、消去は熱風、温水、赤外線ヒータなどを用いて行う行なうものであってレーザで行なうものではない。
【0007】
また、レーザを用いた記録方式としては、例えば、特許文献4、特許文献5、特許文献6、及び特許文献7などに開示されている。
【0008】
前記特許文献4に記載の技術は、熱可逆記録媒体上に、光熱変換シートを配置した後、該光熱変換シートにレーザ光を照射して、発生する熱により該熱可逆記録媒体上に、画像の形成及び消去のいずれかを行うことを含む、改良された画像記録消去方法であり、その明細書中には、レーザ光の照射条件を制御することにより、画像の形成と消去との両方を行うことが可能であることが開示されている。即ち、光照射時間、照射光量、焦点、及び光照射強度分布のうちの少なくとも一つを制御することにより、前記熱可逆記録媒体の第1の特定温度と第2の特定温度とに加熱温度を制御したり、加熱後の冷却速度を変化させることにより画像の形成及び消去を全面又は部分的に行うことが可能となることが記載されている。
【0009】
前記特許文献5には、2つのレーザ光を使用し、一方を楕円形や長円形レーザで消去を行い、他方を円形レーザで記録する方法、2つのレーザの複合として記録する方法、及び、2つのレーザをそれぞれ変形させてそれぞれの複合として記録する方法が記載されている。これらの方法によれば、2つのレーザを用いることで、1つのレーザで記録するよりも高濃度の画像記録が実現できるようになる。
【0010】
また、前記特許文献6に記載の技術は、レーザ記録時と消去時とにおいて、1つのミラーの表裏を利用し、光路差やミラー形状の違いによってレーザ光の光束形状を変更させるものである。これにより簡単な光学系で光スポットの大きさを変えることや焦点をぼかすことが可能となる。
更に、レーザを用いた消去方法としては、例えば、前記特許文献7には、レーザ光のエネルギー、レーザ光の照射時間、及びパルス幅走査速度を、レーザ記録時の25%以上65%以下となるようにして消去することにより、明瞭なコントラストの画像の高耐久性な可逆性感熱記録媒体への記録を実現する方法が検討されている。
【0011】
上述した方法によれば、レーザによる画像記録及び画像消去を行うことができるものの、レーザとしてCOレーザのような中〜遠赤外領域の波長を有するレーザ光を出射するレーザを用いた場合には、レーザ光は樹脂に吸収されることから、主に樹脂で構成される保護層等の表面層には過剰のエネルギーが加わり、多数回にわたって画像記録及び画像消去を繰り返していくと、図13のようにアブレーションにより記録した画像部分の保護層等の表面層が徐々に薄くなり、表面層で吸収されるレーザ光が減少するため、その部分では記録層でのレーザ光吸収量が増大して高感度となり、画像の消去を消去可能エネルギー範囲の高エネルギー側で繰返し行なうと徐々に発色が起こり、完全に消去できなくなるという問題があった。
特に、物流・配送システムにおいてレーザで画像記録及び消去を行なう場合、処理時間の短縮化が要求されることから、短時間でレーザ消去を繰返し行なうと、消去可能エネルギー範囲が狭くなるために、上記問題が起こりやすくなる。
さらに、COレーザを用いた場合、高出力で熱可逆記録媒体に繰り返し消去を行うと、地肌部にカブリが発生してしまい、その結果コントラストの低下を招いてしまうという問題があった。
したがって、繰返し画像の記録および画像の消去を行ない、記録材料の劣化、及び記録媒体表面に凹部が生じても、記録媒体の状態によらずも完全に画像を消去することができ、かつ画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止でき、濃度低下をも防止できる画像処理方法の提供が望まれている。
【0012】
【特許文献1】特許第3161199号公報
【特許文献2】特開平9−30118号公報
【特許文献3】特開2000−136022号公報
【特許文献4】特許第3350836号公報
【特許文献5】特許第3446316号公報
【特許文献6】特開2002−347272号公報
【特許文献7】特許第3790485号公報
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、繰返し画像の記録および画像の消去を行ない、記録材料の劣化、記録媒体表面に凹部が生じても、記録媒体の状態によらずも完全に画像を消去することができ、かつ画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止でき、濃度低下をも防止できる画像処理方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
前記課題を解決するための手段としては、以下の通りである。即ち、上記課題は本発明の(1)「レーザ光が照射され、熱可逆記録媒体に記録された画像を、レーザ光を照射し、消去する画像消去工程を含む画像処理方法であって、前記熱記録媒体は、支持体上に少なくとも、熱可逆記録層と保護層とを積層してなるものであり、前記熱可逆層は、第一の温度で第一の色の状態となり、該第一の温度よりも高温の第二の温度で第二の色の状態となるものであり、前記照射するレーザ光の発振波長を前記熱可逆記録層及び前記保護層の吸収領域にし、前記レーザ光のエネルギー密度を、画像消去可能なエネルギー密度範囲で且つ前記エネルギー密度範囲の中心値以下のエネルギー密度で画像消去を行なうことを特徴とする画像処理方法」、
(2)「前記レーザ光の発振波長が前記熱可逆記録層及び前記保護層に含有される樹脂の吸収領域であることを特徴とする前記第(1)項に記載の画像処理方法」、
(3)「前記レーザ光の発振波長が2.6〜18μmであることを特徴とする前記第(1)項または第(2)項に記載の画像処理方法」、
(4)「前記レーザ光の発振波長が7〜12μmであることを特徴とする前記第(1)項から第(3)項のいずれか1に記載の画像処理方法」、
(5)「前記レーザ光の出射手段がCOレーザであることを特徴とする前記第(1)項から第(4)項のいずれか1に記載の画像処理方法」、
(6)「前記画像消去工程で照射するレーザ光のエネルギー密度の変更手段として、レーザ光の走査線速度を変更することを特徴とする前記第(1)項から第(5)項のいずれか1に記載の画像処理方法」、
(7)「前記画像消去工程で照射するレーザ光のエネルギー密度の変更手段として、レーザ光の出力を変更することを特徴とする前記第(1)項から第(5)項のいずれか1に記載の画像処理方法」、
(8)「前記画像消去工程で照射するレーザ光のエネルギー密度の変更手段として、レーザ光の照射間隔を変更することを特徴とする前記第(1)項から第(5)項のいずれか1に記載の画像処理方法」、
(9)「熱可逆記録層が、樹脂及び有機低分子物質を含有する前記第(1)項から第(8)項のいずれか1に記載の画像処理方法。
(10)「熱可逆記録層が、樹脂、ロイコ染料及び可逆性顕色剤を含有する前記第(1)項から第(8)項のいずれか1に記載の画像処理方法」により解決される。
【発明の効果】
【0015】
本発明によると、従来における諸問題を解決することができ、画像記録及び画像消去の繰返しで熱可逆記録媒体の表面層が薄くなり、その部分が高感度になっても、画像消去時に発色することがなく、完全に画像を消去することができ、かつ画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止することが可能となる画像処理方法を提供することができる。
【発明を実施するための最良の形態】
【0016】
(画像処理方法)
本発明の画像処理方法は、画像記録工程及び画像消去工程を少なくとも含み、更に必要に応じて適宜選択したその他の工程を含む。
【0017】
<画像記録工程及び画像消去工程>
本発明の画像処理方法における前記画像記録工程は、支持体上に少なくとも、第一の特定温度で第一の色の状態となり、該第一の特定温度よりも高温の第二の特定温度で第二の色の状態となる熱可逆記録層と保護層を積層してなる熱可逆記録媒体に対し、発振波長が前記熱可逆記録層及び前記保護層の吸収領域であるレーザ光を照射して加熱することにより、前記熱可逆記録媒体に画像を記録する工程である。
本発明の前記画像処理方法における前記画像消去工程は、前記熱可逆記録媒体に対し、発振波長が前記熱可逆記録層及び前記保護層の吸収領域であるレーザ光を照射して加熱することにより該熱可逆記録媒体に記録された画像を消去する工程である。
前記熱可逆記録媒体に対し、前記レーザ光を照射することにより、前記熱可逆記録媒体に直接接触することなく、非接触の状態で画像の記録及び消去を行うことができる。
【0018】
本発明の画像処理方法においては、通常、前記熱可逆記録媒体の再使用時に初めて画像の更新(前記画像消去工程)を行い、その後、前記画像記録工程により画像の記録を行うが、画像の記録及び消去の順序はこれに限られるものではなく、前記画像記録工程により画像を記録した後、前記画像消去工程により画像を消去してもよい。
【0019】
本発明においては、支持体上に少なくとも、第一の特定温度で第一の色の状態となり、該第一の特定温度よりも高温の第二の特定温度で第二の色の状態となる熱可逆記録層と、保護層とを、積層してなる熱可逆記録媒体に対し、発振波長が、前記熱可逆記録層及び前記保護層の吸収領域であるレーザ光を照射することにより、熱可逆記録媒体に画像を記録する画像記録工程、及び、発振波長が前記熱可逆記録層及び前記保護層の吸収領域であるレーザ光を照射することにより熱可逆記録媒体に記録された画像を消去する画像消去工程を含み、前記画像消去工程において、照射するレーザ光のエネルギー密度を画像消去可能なエネルギー密度範囲で且つ前記エネルギー密度範囲の中心値以下で画像消去を行なうことで、繰返し画像の記録および画像の消去を行ない、記録材料の劣化、記録媒体表面に凹部が生じても、記録媒体の状態によらずも完全に画像を消去することができ、かつ画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止することが可能となる。
【0020】
ここで、本発明における画像消去工程で照射するレーザ光のエネルギー密度とは、前記画像消去工程でレーザ光を所定の照射間隔でずらして重複させながら走査させて画像消去する場合、画像消去工程でのレーザ光の出力をP、画像消去工程でのレーザ光の走査線速度をV、画像消去工程でのレーザ光の照射間隔をIとしたときに、P/(V*I)で表され、
また、前記画像消去工程でレーザ光を重複させずに画像消去する場合、画像消去工程でのレーザ光の出力をP、画像消去工程でのレーザ光の走査線速度をV、画像消去工程でのレーザ光の走査方向に対して垂直方向の該媒体上におけるスポット径をrとしたときに、P/(V*r)で表される。
【0021】
画像消去工程におけるエネルギー密度を変更する方法としては、Pのみを変更する、Vのみを変更する、Iのみを変更する、またはrのみを変更するなどが挙げられるが、これらに限定されるものではない。これらの中でも、照射するレーザ光の走査線速度を、画像消去可能なエネルギー密度範囲の中心値以下のエネルギー密度値となる走査線速度にする方法が消去時間を短縮化できることから好ましい。またこれらの方法は単独で用いても良いし、組み合わせて用いても良い。
【0022】
該画像形成部及び又は非画像形成部に対してレーザ光を照射して消去する場合において、該レーザ光のエネルギー密度を変更し、該画像形成部において画像消去可能となる最小エネルギー密度を画像消去エネルギー密度範囲の下限値とし、画像消去可能となる最大エネルギー密度を画像消去エネルギー密度範囲の上限値とし、画像消去可能なエネルギー密度範囲を求めることができる。
ここで画像消去可能なエネルギー密度範囲の中心値は、前記下限値と前記上限値の平均値で表される。
【0023】
前記画像消去工程で照射するレーザ光のエネルギー密度の下限値としては、前記画像消去可能となる最小エネルギー密度値を0、画像消去可能となる最大エネルギー密度値を10としたとき、0.5となるエネルギー密度値が好ましく、より好ましくは1となるエネルギー密度値であり、さらに好ましくは、1.5以上となるエネルギー密度値である。
画像消去工程で用いる照射レーザ光のエネルギー密度の上限値としては、同様に、前記画像消去可能となる最小エネルギー密度値を0、画像消去可能となる最大エネルギー密度値を10としたとき、5となるエネルギー密度値が好ましく、より好ましくは4.5となるエネルギー密度値であり、さらに好ましくは、4以下となるエネルギー密度値である。
【0024】
前記照射するレーザ光のエネルギー密度を前記下限エネルギー密度以下にすると均一に画像が消去できなくなる。また画像消去可能なエネルギー密度範囲の中心値より大きいエネルギー密度にすると熱可逆記録媒体の画像消去の繰返しによる地肌カブリが大きくなり、明瞭なコントラストの画像が得難くなる。
【0025】
本発明において、画像消去の繰返しによる熱可逆記録媒体の地肌カブリの評価は、画像処理前の地肌部の反射濃度値と繰返し消去を行なった部分の地肌部の反射濃度値との差を地肌カブリ値とし、地肌カブリ値の大きさにより評価する。地肌カブリ値としては、+0.04以下が好ましく、+0.03以下がより好ましく、+0.02以下がさらに好ましい。地肌カブリ値が0.04より大きくなると、明瞭なコントラストの画像が得難くなる。
【0026】
本発明で用いられるレーザ光は、発振波長が前記熱可逆記録層及び前記保護層の吸収領域であるレーザ光であれば特に制限はないが、前記熱可逆記録層及び前記保護層にバインダー樹脂として含有されている樹脂成分は、一般的に2.6〜18μmの赤外波長領域に吸収を有することから、発振波長が2.6〜18μmであるレーザ光が好ましく、例えばHFレーザ(発振波長:2.6〜3.3μm)、Xeレーザ(発振波長:3.5μm)、He−Neレーザ(発振波長:3.4〜5.4μm)、COレーザ(発振波長:5〜7μm)、N2−COレーザ(発振波長:4.8〜6.7μm)、COレーザ(発振波長:9.3〜10.6μm)、NOレーザ(発振波長:10.3〜11.1μm)、HBr励起COレーザ(発振波長:16μm)などのレーザより出射されるレーザ光を用いることができる。
【0027】
例えば、熱可逆記録層のバインダー樹脂として用いられる樹脂の中で塩化ビニル系共重合体の赤外吸収スペクトルを図1に示す。
その赤外吸収領域は、2.8〜3.1μm、3.3〜3.6μm、5.6〜5.9μm、6.7〜12.5μm、12.8〜17.9μmであるから、これらの吸収領域の中心値、または中心近傍に合致する発振波長のレーザ光を用いればよい。
さらに、多くの樹脂が7〜12μmに強い吸収を有することから、発振波長が7〜12μmであるレーザ光が好ましく、中でも比較的安価で数Wから数十KWに及ぶ高出力化が可能であることから、発振波長が9.3〜10.6μmであるCOレーザより出射されるレーザ光を用いることが特に好ましい。
【0028】
COレーザより出射されるレーザ光は、前記熱可逆記録層や保護層の樹脂に吸収されることから、熱可逆記録媒体に対する画像記録及び消去のために、レーザ光を吸収して発熱させるための光熱変換材料を添加することが不要となる。また、保護層側から主に加熱されるために熱拡散により前記記録層中の温度分布が均一化されやすくなるという利点もある。
【0029】
本発明の画像処理方法は、前記画像記録工程で照射される前記レーザ光の光強度分布において、照射レーザ光の中心位置における光照射強度Iと、照射レーザ光の全照射エネルギーの80%面での光照射強度Iとが、次式、0.40≦I/I≦2.00を満たすことが好ましい。
ここで、前記照射レーザ光の中心位置とは、各位置の光照射強度と、各位置座標の積の総和を、各位置の光照射強度の総和で割って得ることができる位置であり、以下の式で示すことができる。
Σ(ri×Ii)/ΣIi
ただし、rは各位置座標、Iは各位置の光照射強度、ΣIiは全光照射強度を表す。
前記全照射エネルギーとは、熱可逆記録媒体上に照射されるレーザ光の全エネルギーを指す。
【0030】
従来より、レーザを用いて何らかのパターンを形成する場合には、熱可逆記録媒体上をレーザ光が走査される進行方向(以下、「進行方向」という)の直交断面の光分強度布はガウス分布となっており、光照射の中心部は周辺部に比して光照射強度が極端に強いものであった。
【0031】
このガウス分布のレーザ光を前記熱可逆記録媒体に照射すると、前記中心部では温度が上がりすぎて画像の形成と消去とを繰り返すとその部分が劣化し、繰り返し回数が低下することとなり、また中心部の温度を劣化する温度まで上げないようにレーザ照射エネルギーを低下させると、画像のサイズが小さくなり、画像コントラストの低下や画像形成に時間がかかってしまうという問題があった。
【0032】
そこで、前記画像記録工程で照射されるレーザ光の進行方向直交断面の光分強度布において、ガウス分布に比べて、前記中心部の光照射強度が前記周辺部の光照射強度に対して小さくなるようにすることにより、画像の形成及び消去の繰返しによる前記熱可逆記録媒体の劣化を抑制しながら画像のサイズを小さくすることなく、画像コントラストを維持することが可能となる。
【0033】
ここで、前記照射レーザ光の全照射エネルギーの80%面とは、前記照射レーザ光の全照射エネルギーの80%となるときの面における光強度を指し、例えば図2に示すように、レーザ光の光照射強度を高感度焦電式カメラを用いたハイパワー用ビームアナライザーを用いて測定し、得られた光照射強度を三次元グラフ化し、Z=0となる面に対して水平な面とZ=0の面で囲まれた全照射エネルギーの80%が含まれるように光強度分布を分割した時の水平な面を指す。
【0034】
前記レーザ光として、COレーザを用いる場合、前記レーザ光の光強度分布を測定する方法としては、レーザ光の強度分布を測定できれば特に制限はなく適宜選択することができるが、光強度分布測定の精度を高めるために解像度が100μm以下で測定できるものが好ましい。例えばビームスプリッタとパワーメータとを組合せたもの、高感度焦電式カメラを用いたハイパワー用ビームアナライザーなどを用いて測定する。更に小さいスポット径の分布を測定する場合には、レーザ光を拡大するような光学系をビームアナライザーに取り付けたり、少し手前で測定するようにする。
【0035】
レーザ光の強度分布を変化させたときの光強度分布曲線の例を図3〜図6に示す。図3はガウス分布を示し、このような中心位置の光照射強度が強い光強度分布では、I/I値は大きくなる(ガウス分布の時、比I/I=2.3)。
また、図4のような図3の光強度分布より中心位置の光照射強度が弱い光強度分布では、前記比I/Iは図3の光強度分布よりも小さくなる。
図5のようなトップハット形状に近い光強度分布では、前記比I/Iは、図4の光強度分布よりも更に小さくなる。
図6のような中心位置の光照射強度が弱く、周辺部の光照射強度が強い光強度分布では、前記比I/Iは図5の光強度分布よりも更に小さくなる。よって、前記比I/Iは前記レーザ光の光照射強度分布の形状を表していることになる。
【0036】
前記比I/Iが、1.59以下であると、トップハット形状あるいは中央部の光照射強度が周辺部の光照射強度に対して弱い強度分布となる。
前記比I/Iが2.00を超えると、中心位置の光強度が強くなり、熱可逆記録媒体に過剰なエネルギーが加わり、繰返し画像記録を行ったときに熱可逆記録媒体の劣化による消え残りが発生することがある。一方、前記比I/Iが0.40を下回ると、周辺部に対して中心位置にエネルギーが加わらなくなり、画像を記録した時に線の中央部が発色せずに線が2本に割れることがあり、線の中央部を発色させるように照射エネルギーを上げると周辺部の光強度が強くなり過ぎて熱可逆記録媒体に過剰なエネルギーが加わり、繰返し記録及び消去を行ったときに線の周辺部に熱可逆記録媒体の劣化による消え残りが発生することがある。
【0037】
更に、前記比I/Iが1.59より大きいと、中心位置の光照射強度が周辺部の光照射強度に対して強い光強度分布となることから、画像の記録及び消去の繰り返しによる前記熱可逆記録媒体の劣化を抑制しながら、照射パワーを調整することにより照射距離を変更しなくても描画線の太さを変えることができる。
本発明において、前記光強度比I/Iは、0.40以上とすることが好ましく、より好ましくは0.50以上、更に好ましくは0.60以上で、特に好ましくは、0.70以上とすることである。また、光強度比は、2.00以下とすることが好ましく、より好ましくは1.90以下、更に好ましくは1.80以下で、特に好ましくは、1.70以下とすることである。
【0038】
前記レーザ光の光強度分布を、前記ガウス分布から、照射レーザ光の中心位置における光照射強度Iと、照射レーザ光の全照射エネルギーの80%面での光照射強度Iとが、次式、0.40≦I/I≦2.00を満たすように変化させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、光照射強度調整手段を好適に用
【0039】
前記光照射強度調整手段としては、レンズ、フィルタ、マスク、ミラーなどが好適に挙げられるが、これらに限定されるものではない。中でもエネルギーロスが少ないレンズが好ましく、レンズとしては、カライドスコープ、インテグレータ、ビームホモジナイザー、非球面ビームシェイパー(強度変換レンズと位相補正レンズとの組合せ)、非球面素子レンズ、回折光学素子などを好適に使用することができ、特に、非球面素子レンズ、回折光学素子が好ましい。
フィルタ、マスクなどを用いる場合、前記レーザ光の中心部を物理的にカットすることにより光照射強度を調整することができる。また、ミラーを用いる場合、コンピュータと連動して機械的に形状が変えられるディフォーマブルミラー、反射率あるいは表面凹凸が部分的に異なるミラーなどを用いることにより光照射強度を調整することができる。
【0040】
前記画像記録工程で照射されるレーザ光の出力としては、特に制限はなく、目的に応じて適宜選択することができるが、1W以上が好ましく、3W以上がより好ましく、5W以上が更に好ましい。前記レーザ光の出力が、1W未満であると、画像記録に時間がかかり、画像記録時間を短くしようとすると出力が不足して高濃度の画像が得られない。また、前記レーザ光の出力の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、200W以下が好ましく、150W以下がより好ましく、100W以下が更に好ましい。前記レーザ光の出力が、200Wを超えると、レーザ装置の大型化を招くことがある。
【0041】
前記画像記録工程で照射されるレーザ光の走査線速度としては、特に制限はなく、目的に応じて適宜選択することができるが、300mm/s以上が好ましく、500mm/s以上がより好ましく、700mm/s以上が更に好ましい。前記走査線速度が、300mm/s未満であると、画像記録に時間がかかる。また、前記レーザ光の走査線速度の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、15,000mm/s以下が好ましく、10,000mm/s以下がより好ましく、8,000mm/s以下が更に好ましい。前記走査線速度が、15,000mm/sを超えると、均一な画像が記録しにくくなる。
【0042】
前記画像記録工程で照射されるレーザ光のスポット径としては、特に制限はなく目的に応じて適宜選択することができるが、0.02mm以上が好ましく、0.1mm以上がより好ましく、0.15mm以上が更に好ましい
また、前記レーザ光のスポット径の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、3.0mm以下が好ましく、2.5mm以下がより好ましく、2.0mm以下が更に好ましい。
前記スポット径が小さいと、画像の線幅が細くなり、コントラストが小さくなって視認性が低下する。また、スポット径が大きくなると、画像の線幅が太くなり、隣接する線が重なり、小さな文字の印字が不可能となる。
【0043】
また、前記画像消去工程で照射されるレーザ光の出力としては、特に制限はなく、目的に応じて適宜選択することができるが、5W以上が好ましく、7W以上がより好ましく、10W以上が更に好ましい。前記レーザ光の出力が、5W未満であると、画像消去に時間がかかり、画像消去時間を短くしようとすると出力が不足して画像の消去不良が発生する。また、前記レーザ光の出力の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、200W以下が好ましく、150W以下がより好ましく、100W以下が更に好ましい。前記レーザ光の出力が、200Wを超えると、レーザ装置の大型化を招くおそれがある。
【0044】
前記画像消去工程で照射されるレーザ光の走査線速度としては、特に制限はなく、目的に応じて適宜選択することができるが、100mm/s以上が好ましく、200mm/s以上がより好ましく、300mm/s以上が更に好ましい。前記走査線速度が、100mm/s未満であると、画像消去に時間がかかる。また、前記レーザ光の走査線速度の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、20,000mm/s以下が好ましく、15,000mm/s以下がより好ましく、12,000mm/s以下が更に好ましい。前記走査線速度が、20,000mm/sを超えると、均一な画像消去がしにくくなることがある。
【0045】
前記画像消去工程で照射されるレーザ光のスポット径としては、特に制限はなく目的に応じて適宜選択することができるが、0.2mm以上が好ましく、0.5mm以上がより好ましく、1.0mm以上が更に好ましい。また、前記レーザ光のスポット径の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、14.0mm以下が好ましく、10.0mm以下がより好ましく、7.0mm以下が更に好ましい。
前記スポット径が小さいと、画像消去に時間がかかる。また、スポット径が大きくなると、出力が不足して画像の消去不良が発生することがある。
【0046】
<画像記録及び画像消去メカニズム>
前記画像記録及び画像消去メカニズムには、第一の特定温度で透明状態となり、該第一の特定温度よりも高温の第二の特定温度で白濁状態となる透明度が可逆的に変化する態様と、第二の特定温度で発色状態となり、該第二の特定温度よりも低温の第一の特定温度で消色状態となる色調が可逆的に変化する態様とがある。
前記透明度が可逆的に変化する態様では、前記熱可逆記録層が、有機低分子物質が樹脂中に粒子状に分散されてなり、透明度が、透明状態と白濁状態とに熱により可逆的に変化する。
【0047】
前記透明度の変化の視認は、下記現象に由来する。即ち、(1)透明状態の場合、樹脂中に分散された前記有機低分子物質の粒子と、前記樹脂とは隙間なく密着しており、また、前記粒子内部にも空隙が存在しないため、片側から入射した光は散乱することなく反対側に透過し、透明に見える。一方、(2)白濁状態の場合、前記有機低分子物質の粒子は、前記有機低分子物質の微細な結晶で形成されており、該結晶の界面又は前記粒子と前記樹脂との界面に隙間(空隙)が生じ、片側から入射した光は前記空隙と前記結晶との界面、あるいは前記空隙と前記樹脂との界面において屈折し散乱するため、白く見える。
【0048】
まず、図7に、前記樹脂中に前記有機低分子物質が分散されてなる熱可逆記録層(以下、「記録層」と称することがある)を有する熱可逆記録媒体について、その温度−透明度変化曲線の一例を示す。
【0049】
前記記録層は、例えば、T0以下の常温では、白濁不透明状態(A)である。これを加熱していくと、温度T1から徐々に透明になり始め、温度T2〜T3に加熱すると透明(B)となり、この状態で再びT0以下の常温に戻しても透明(D)のままである。これは、温度T1付近から前記樹脂が軟化し始め、軟化が進むにつれて該樹脂が収縮し、該樹脂と前記有機低分子物質粒子との界面、あるいは前記粒子内の空隙を減少させるため、徐々に透明度が上がり、温度T2〜T3では、前記有機低分子物質が半溶融状態となり、残った空隙を、前記有機低分子物質が埋めることにより透明となり、種結晶が残ったまま冷却されると比較的高温で結晶化し、その際、前記樹脂がまだ軟化状態にあるため、結晶化に伴う粒子の堆積変化に前記樹脂が追随し、前記空隙が生じず、透明状態が維持されるためであると考えられる。
【0050】
更にT4以上の温度に加熱すると、最大透明度と最大不透明度との中間の半透明状態(C)になる。次に、この温度を下げていくと、再び透明状態になることなく、最初の白濁不透明状態(A)に戻る。これは、温度T4以上で前記有機低分子物質が完全に溶融した後、過冷却状態となり、T0より少し高い温度で結晶化し、その際、前記樹脂が結晶化に伴う体積変化に追随することができず、空隙が発生するためであると考えられる。
ここで、図7において、前記記録層を温度T4を大きく超えた温度T5に繰返し昇温すると、消去温度に加熱しても消去できない消去不良が発生したりする場合がある。これは、加熱されることによって溶融した前記有機低分子物質が前記樹脂中を移動することにより記録層の内部構造が変化するためと思われる。繰返しによる前記熱可逆記録媒体の劣化を抑えるためには、前記熱可逆記録媒体を加熱する際に図7の前記温度T4と前記温度T5の差を小さくする必要があり、前記加熱手段がレーザ光である場合、該レーザ光の強度分布において前記光強度比I/Iは2.00以下が好ましい。
ただし、図7に示す温度−透明度変化曲線は、前記樹脂、前記有機低分子物質等の種類を変えると、その種類に応じて、各状態の透明度に変化が生じることがある。
【0051】
また、透明状態と白濁状態とが熱により可逆的に変化する前記熱可逆記録媒体の透明度変化メカニズムを図8に示す。
図8では、1つの長鎖低分子粒子と、その周囲の高分子とを取り出し、加熱及び冷却に伴う空隙の発生及び消失変化を図示している。白濁状態(A)では、高分子と低分子粒子との間(又は粒子内部)に空隙が生じ、光散乱状態となっている。これを加熱し、前記高分子の軟化点(Ts)を超えると、空隙は減少して透明度が増加する。更に加熱し、前記低分子粒子の融点(Tm)近くになると、該低分子粒子の一部が溶融し、溶融した低分子粒子の体積膨張のため、空隙に前記低分子粒子が充満して空隙が消失し、透明状態(B)となる。ここから冷却すると、融点直下で前記低分子粒子は結晶化し、空隙は発生せず、室温でも透明状態(D)が維持される。
【0052】
次に、前記低分子粒子の融点以上に加熱すると、溶融した低分子粒子と周囲の高分子との屈折率にズレが生じ、半透明状態(C)となる。ここから室温まで冷却すると前記低分子粒子は過冷却現象を生じ高分子の軟化点以下で結晶化し、このとき前記高分子はガラス状態となっているため、前記低分子粒子の結晶化に伴う体積減少に、周囲の高分子が追随できず、空隙が発生して元の白濁状態(A)に戻る。
【0053】
次に、前記色調が可逆的に変化する態様では前記熱可逆記録層が、樹脂、ロイコ染料及び可逆性顕色剤(以下、「顕色剤」と称することがある)を含有し、前記色調が、発色状態と消色状態とに熱により可逆的に変化する。
図9に、前記樹脂中に前記ロイコ染料及び前記顕色剤を含んでなる熱可逆記録層を有する熱可逆記録媒体について、その温度−発色濃度変化曲線の一例を示し、図10に、消色状態と発色状態とが熱により可逆的に変化する前記熱可逆記録媒体の発消色メカニズムを示す。
【0054】
まず、初め消色状態(A)にある前記記録層を昇温していくと、溶融温度T1にて、前記ロイコ染料と前記顕色剤とが溶融混合し、発色が生じ溶融発色状態(B)となる。溶融発色状態(B)から急冷すると、発色状態のまま室温に下げることができ、発色状態が安定化されて固定された発色状態(C)となる。この発色状態が得られたかどうかは、溶融状態からの降温速度に依存しており、徐冷では降温の過程で消色が生じ、初期と同じ消色状態(A)、あるいは急冷による発色状態(C)よりも相対的に濃度の低い状態となる。
一方、発色状態(C)から再び昇温していくと、発色温度よりも低い温度T2にて消色が生じ(DからE)、この状態から降温すると、初期と同じ消色状態(A)に戻る。
【0055】
溶融状態から急冷して得た発色状態(C)は、前記ロイコ染料と前記顕色剤とが分子同士で接触反応し得る状態で混合された状態であり、これは固体状態を形成していることが多い。この状態では、前記ロイコ染料と前記顕色剤との溶融混合物が結晶化して発色を保持した状態であり、この構造の形成により発色が安定化していると考えられる。一方、消色状態は、両者が相分離した状態である。この状態は、少なくとも一方の化合物の分子が集合してドメインを形成したり、結晶化した状態であり、凝集あるいは結晶化することにより前記ロイコ染料と前記顕色剤とが分離して安定化した状態であると考えられる。多くの場合、このように、両者が相分離して前記顕色剤が結晶化することにより、より完全な消色が生じる。
【0056】
なお、図9に示す、溶融状態から徐冷による消色、及び発色状態からの昇温による消色はいずれもT2で凝集構造が変化し、相分離や前記顕色剤の結晶化が生じている。
更に、図9において、前記記録層を溶融温度T1以上の温度T3に繰返し昇温すると消去温度に加熱しても消去できない消去不良が発生したりする場合がある。これは、前記顕色剤が熱分解を起こし、凝集あるいは結晶化しにくくなってロイコ染料と分離しにくくなるためと思われる。繰返しによる前記熱可逆記録媒体の劣化を抑えるためには、前記熱可逆記録媒体を加熱する際に図9の前記溶融温度T1と前記温度T3の差を小さくすることにより、繰返しによる前記熱可逆記録媒体の劣化を抑えられる。
【0057】
ここで、本発明において画像消去の繰返しによる熱可逆記録媒体の地肌カブリが防止できるということに関しては、その詳細な理由は定かではないが以下のように推測される。熱可逆記録媒体に記録された画像の消去を消去可能なエネルギー密度範囲の高エネルギー側で何度も繰返すと、記録層中のロイコ染料と顕色剤が徐々に共融化するようになって、図9の温度T1より低い温度でロイコ染料と顕色剤が溶融混合するようになり、本来溶融混合が起こらない消去可能なエネルギー密度範囲の高エネルギー側で発色が起こるためと考えられる。
【0058】
[熱可逆記録媒体]
本発明の前記画像処理方法に用いられる前記熱可逆記録媒体は、支持体上に少なくとも、熱可逆記録層と保護層を積層してなり、更に必要に応じて適宜選択した、中間層、アンダーコート層、バック層、接着層、粘着層、着色層、空気層、光反射層等のその他の層を有してなる。これら各層は、単層構造であってもよいし、積層構造であってもよい。
【0059】
−支持体−
前記支持体としては、その形状、構造、大きさ等については、特に制限はなく、目的に応じて適宜選択することができ、前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記熱可逆記録媒体の大きさ等に応じて適宜選択することができる。
【0060】
前記支持体の材料としては、例えば、無機材料、有機材料などが挙げられる。
前記無機材料としては、例えば、ガラス、石英、シリコン、酸化シリコン、酸化アルミニウム、SiO、金属などが挙げられる。
前記有機材料としては、例えば、紙、三酢酸セルロース等のセルロース誘導体、合成紙、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート等のフィルムなどが挙げられる。
前記無機材料及び前記有機材料は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、有機材料が好ましく、ポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート等のフィルムが好ましく、ポリエチレンテレフタレートが特に好ましい。
【0061】
前記支持体には、塗布層の接着性を向上させることを目的として、コロナ放電処理、酸化反応処理(クロム酸等)、エッチング処理、易接着処理、帯電防止処理、などを行うことにより表面改質するのが好ましい。
また、前記支持体に、酸化チタン等の白色顔料などを添加することにより、白色にするのが好ましい。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、10μm〜2,000μmが好ましく、50μm〜1,000μmがより好ましい。
【0062】
−熱可逆記録層−
前記熱可逆記録層(以下、単に「記録層」と称することがある)は、第一の特定温度で第一の色の状態となり、該第一の特定温度よりも高温の第二の特定温度で第二の色の状態となる材料を少なくとも含み、更に必要に応じてその他の成分を含んでなる。
前記第一の特定温度で第一の色の状態となり、該第一の特定温度よりも高温の第二の特定温度で第二の色の状態となる材料は、温度変化により、目に見える変化を可逆的に生じる現象を発現可能な材料であり、加熱温度及び加熱後の冷却速度の違いにより、相対的に発色した状態と消色した状態とに変化可能である。
この場合、目に見える変化は、色の状態の変化と形状の変化とに分けられる。該色の状態の変化は、例えば、透過率、反射率、吸収波長、散乱度などの変化に起因し、前記熱可逆記録媒体は、実際には、これらの変化の組合せにより色の状態が変化する。
【0063】
例としては、第一の特定温度で透明状態となり、該第一の特定温度よりも高温の第二の特定温度で白濁状態となるもの(特開昭55−154198号公報参照)、第二の特定温度で発色し、該第二の特定温度よりも低温の第一の特定温度で消色するもの(特開平4−224996号公報、特開平4−247985号公報、特開平4−267190号公報等参照)などが挙げられる。
これらの中でも、樹脂母材と該樹脂母材中に分散させた高級脂肪酸等の有機低分子物質とからなる熱可逆記録媒体は、第二の特定温度及び第一の特定温度が比較的低く、低エネルギーでの消去記録が可能な点で有利である。また、発消色メカニズムが、樹脂の固化と有機低分子物質の結晶化とに依存する物理変化であるため、耐環境性に強い特性がある。
また、後述するロイコ染料と可逆性顕色剤とを用いた、第二の特定温度で発色し、該第二の特定温度よりも低温の第一の特定温度で消色する熱可逆記録媒体は、透明状態と発色状態とを可逆的に示し、発色状態では、黒、青、その他の色を示すため、高コントラストな画像を得ることができる。
【0064】
前記熱可逆記録媒体における前記有機低分子物質(樹脂母材中に分散され、第一の特定温度で透明状態となり、該第一の特定温度よりも高温の第二の特定温度で白濁状態となるもの)としては、前記録層中で、熱により多結晶から単結晶に変化するものであれば、特に制限はなく、目的に応じて適宜選択することができ、一般に、融点が30℃〜200℃程度のものを使用することができ、融点が50℃〜150℃のものが好適である。
このような有機低分子物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカノール、アルカンジオール、ハロゲンアルカノール又はハロゲンアルカンジオール、アルキルアミン、アルカン、アルケン、アルキン、ハロゲンアルカン、ハロゲンアルケン、ハロゲンアルキン、シクロアルカン、シクロアルケン、シクロアルキン、飽和又は不飽和モノ若しくはジカルボン酸及びこれらのエステル、アミド又はアンモニウム塩、飽和又は不飽和ハロゲン脂肪酸及びこれらのエステル、アミド又はアンモニウム塩、アリールカルボン酸及びそれらのエステル、アミド又はアンモニウム塩、ハロゲンアリルカルボン酸及びそれらのエステル、アミド又はアンモニウム塩、チオアルコール、チオカルボン酸及びそれらのエステル、アミン又はアンモニウム塩、チオアルコールのカルボン酸エステルなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
【0065】
これらの化合物の炭素数としては、10〜60が好ましく、10〜38がより好ましく、10〜30が特に好ましい。エステル中のアルコール基部分は、飽和していてもよいし飽和していなくてもよく、ハロゲン置換されていてもよい。
また、前記有機低分子物質は、その分子中に、酸素、窒素、硫黄及びハロゲンから選択される少なくとも1種、例えば、−OH、−COOH、−CONH−、−COOR、−NH−、−NH2、−S−、−S−S−、−O−、ハロゲン原子等を含んでいるのが好ましい。
更に具体的には、これらの化合物としては、例えば、ラウリン酸、ドデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、ステアリン酸、ベヘン酸、ノナデカン酸、アラギン酸、オレイン酸等の高級脂肪酸、ステアリン酸メチル、ステアリン酸テトラデシル、ステアリン酸オクタデシル、ラウリン酸オクタデシル、パルミチン酸テトラデシル、ベヘン酸ドデシル等の高級脂肪酸のエステルなどが挙げられる。これらの中でも、前記画像処理方法で用いられる有機低分子物質としては、高級脂肪酸が好ましく、パルミチン酸、ステアリン酸、ベヘン酸、リグノセリン酸等の炭素数16以上の高級脂肪酸がより好ましく、炭素数16〜24の高級脂肪酸が更に好ましい。
【0066】
前記熱可逆記録媒体を透明化することができる温度範囲の幅を拡げるためには、上述した各種有機低分子物質を適宜組み合わせて使用してもよいし、該有機低分子物質と融点の異なる他の材料とを組み合わせて使用してもよい。これらは、例えば、特開昭63−39378号公報、特開昭63−130380号公報、特許第2615200号公報などに開示されているが、これらに限定されるものではない。
【0067】
前記樹脂母材は、前記有機低分子物質を均一に分散保持した層を形成すると共に、最大透明時の透明度に影響を与える。このため、該樹脂母材としては、透明性が高く、機械的安定性を有し、かつ成膜性の良好な樹脂であるのが好ましい。
このような樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニル−マレイン酸共重合体、塩化ビニル−アクリレート共重合体等の塩化ビニル系共重合体、ポリ塩化ビニリデン、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−アクリロニトリル共重合体等の塩化ビニリデン系共重合体、ポリエステル、ポリアミド、ポリアクリレート又はポリメタクリレート若しくはアクリレート−メタクリレート共重合体、シリコーン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの樹脂は赤外領域に吸収を有し、例えばポリ塩化ビニルでは3.3〜3.4μm、6.8〜7.1μm、7.1〜8.7μm、8.7〜12.5μm、塩化ビニル−酢酸ビニル−ビニルアルコール共重合体では2.8〜3.1μm、3.3〜3.6μm、5.6〜5.9μm、6.7〜12.5μm、12.8〜17.9μm、ポリメタクリレートでは3.3〜3.8μm、5.6〜6.1μm、6.7〜12.0μmに吸収領域を有する。
【0068】
前記記録層における、前記有機低分子物質と前記樹脂(樹脂母材)との割合は、質量比で2:1〜1:16程度が好ましく、1:2〜1:8がより好ましい。
前記樹脂の比率が、2:1よりも小さいと、前記有機低分子物質を前記樹脂母材中に保持した膜を形成することが困難となることがあり、1:16よりも大きくなると、前記有機低分子物質の量が少ないため、前記記録層の不透明化が困難になることがある。
【0069】
前記記録層には、前記有機低分子物質及び前記樹脂のほか、透明画像の記録を容易にするために、高沸点溶剤、界面活性剤等のその他の成分を添加することができる。
【0070】
前記記録層の作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記樹脂母材及び前記有機低分子物質の2成分を溶解した溶液、又は、前記樹脂母材の溶液(溶剤としては、前記有機低分子物質から選択される少なくとも1種を不溶なもの)に前記有機低分子物質を微粒子状に分散させた分散液を、例えば、前記支持体上に塗布及び乾燥させることにより行うことができる。
前記記録層の作製用溶剤としては、特に制限はなく、前記樹脂母材及び前記有機低分子物質の種類に応じて適宜選択することができ、例えば、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、クロロホルム、四塩化炭素、エタノール、トルエン、ベンゼンなどが挙げられる。なお、前記分散液を使用した場合はもちろん、前記溶液を使用した場合も、得られる記録層中では前記有機低分子物質は微粒子として析出し、分散状態で存在する。
【0071】
前記熱可逆記録媒体における前記熱可逆記録層は、前記樹脂、前記ロイコ染料及び前記可逆性顕色剤からなり、第二の特定温度で発色し、該第二の特定温度よりも低温の第一の特定温度で消色するものであってもよい。前記ロイコ染料は、それ自体無色又は淡色の染料前駆体である。前記ロイコ染料としては、特に制限はなく、公知のものの中から適宜選択することができるが、例えば、トリフェニルメタンフタリド系、トリアリルメタン系、フルオラン系、フェノチアジン系、チオフェルオラン系、キサンテン系、インドフタリル系、スピロピラン系、アザフタリド系、クロメノピラゾール系、メチン系、ローダミンアニリノラクタム系、ローダミンラクタム系、キナゾリン系、ジアザキサンテン系、ビスラクトン系等のロイコ化合物が好適に挙げられる。これらの中でも、発消色特性、色彩、保存性等に優れる点で、フルオラン系又はフタリド系のロイコ染料が特に好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよく、異なる色調に発色する層を積層することにより、マルチカラー、フルカラーに対応させることもできる。
【0072】
前記可逆性顕色剤としては、熱を因子として発消色を可逆的に行うことができるものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)前記ロイコ染料を発色させる顕色能を有する構造(例えば、フェノール性水酸基、カルボン酸基、リン酸基等)、及び、(2)分子間の凝集力を制御する構造(例えば、長鎖炭化水素基が連結した構造)、から選択される構造を分子内に1つ以上有する化合物が好適に挙げられる。なお、連結部分にはヘテロ原子を含む2価以上の連結基を介していてもよく、また、長鎖炭化水素基中にも、同様の連結基及び芳香族基の少なくともいずれかが含まれていてもよい。
【0073】
前記(1)ロイコ染料を発色させる顕色能を有する構造としては、フェノールが特に好ましい。
前記(2)分子間の凝集力を制御する構造としては、炭素数8以上の長鎖炭化水素基が好ましく、該炭素数は11以上がより好ましく、また炭素数の上限としては、40以下が好ましく、30以下がより好ましい。

前記可逆性顕色剤の中でも、下記一般式(1)で表されるフェノール化合物が好ましく、下記一般式(2)で表されるフェノール化合物がより好ましい。
【0074】
【化1】

【0075】
【化2】

前記一般式(1)及び(2)中、R1は、単結合又は炭素数1〜24の脂肪族炭化水素基を表す。R2は、置換基を有していてもよい炭素数2以上の脂肪族炭化水素基を表し、該炭素数としては、5以上が好ましく、10以上がより好ましい。R3は、炭素数1〜35の脂肪族炭化水素基を表し、該炭素数としては、6〜35が好ましく、8〜35がより好ましい。これらの脂肪族炭化水素基は、1種単独で有していてもよいし、2種以上を併用して有していてもよい。
前記R1、前記R2、及び前記R3の炭素数の和としては、特に制限はなく、目的に応じて適宜選択することができるが、下限としては、8以上が好ましく、11以上がより好ましく、上限としては、40以下が好ましく、35以下がより好ましい。
前記炭素数の和が8未満であると、発色の安定性や消色性が低下することがある。
前記脂肪族炭化水素基は、直鎖であってもよいし、分枝鎖であってもよく、不飽和結合を有していてもよいが、直鎖であるのが好ましい。また、前記炭化水素基に結合する置換基としては、例えば、水酸基、ハロゲン原子、アルコキシ基等が挙げられる。
X及びYは、それぞれ同一であってもよいし、異なっていてもよく、N原子又はO原子を含む2価の基を表し、具体例としては、酸素原子、アミド基、尿素基、ジアシルヒドラジン基、シュウ酸ジアミド基、アシル尿素基等が挙げられる。これらの中でも、アミド基、尿素基が好ましい。
nは、0〜1の整数を示す。
【0076】
前記可逆性顕色剤は、消色促進剤として分子中に−NHCO−基、−OCONH−基を少なくとも一つ以上有する化合物を併用することにより、消色状態を形成する過程において消色促進剤と顕色剤の間に分子間相互作用が誘起され、発消色特性が向上するので好ましい。
前記消色促進剤としては、特に制限はなく、目的に応じて適宜選択することができる。
【0077】
前記熱可逆記録層には、バインダー樹脂、更に必要に応じて記録層の塗布特性や発色消色特性を改善したり、制御するための各種添加剤を用いることができる。これらの添加剤としては、例えば、界面活性剤、導電剤、充填剤、酸化防止剤、光安定化剤、発色安定化剤、光熱変換材、消色促進剤などが挙げられる。
【0078】
前記バインダー樹脂としては、支持体上に記録層を結着することができれば特に制限はなく、目的に応じて適宜選択することができるが、従来から公知の樹脂の中から1種又は2種以上を混合して用いることができる。これらの中でも、繰り返し時の耐久性を向上させるため、熱、紫外線、電子線などによって硬化可能な樹脂が好ましく用いられ、特にイソシアネート系化合物などを架橋剤として用いた熱硬化性樹脂が好適である。該熱硬化性樹脂としては、例えば、水酸基やカルボキシル基等の架橋剤と反応する基を持つ樹脂、又は水酸基やカルボキシル基等を持つモノマーとそれ以外のモノマーを共重合した樹脂などが挙げられる。このような熱硬化性樹脂としては、例えばポリビニルブチラール樹脂、セルロースアセテートプロピオネート樹脂、セルロースアセテートブチレート樹脂、アクリルポリオール樹脂、ポリエステルポリオール樹脂、ポリウレタンポリオール樹脂、ポリビニルアルコール等が挙げられる。これらの樹脂は赤外領域に吸収を有し、例えばポリビニルブチラール樹脂では2.9〜3.8μm、6.8〜7.7μm、8.3〜11.1μm、アクリルポリオール樹脂では2.8〜3.1μm、3.3〜3.8μm、5.6〜6.1μm、6.7〜12.0μm、ポリエステルポリオール樹脂では2.8〜3.1μm、3.3〜3.6μm、5.6〜6.1μm、6.8〜10.8μm、ポリウレタンポリオール樹脂では2.8〜3.1μm、2.8〜4.0μm、5.6〜10.3μm、10.5〜11.1μmに吸収領域を有する。これらの中でも、アクリルポリオール樹脂、ポリエステルポリオール樹脂、ポリウレタンポリオール樹脂が特に好ましい。
【0079】
前記記録層中における前記発色剤とバインダー樹脂との混合割合(質量比)は、発色剤1に対して0.1〜10が好ましい。バインダー樹脂が少なすぎると、前記記録層の熱強度が不足することがあり、一方、バインダー樹脂が多すぎると、発色濃度が低下して問題となることがある。
【0080】
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イソシアネート類、アミノ樹脂、フェノール樹脂、アミン類、エポキシ化合物等が挙げられる。これらの中でも、イソシアネート類が好ましく、イソシアネート基を複数持つポリイソシアネート化合物が特に好ましい。
【0081】
前記架橋剤のバインダー樹脂に対する添加量は、バインダー樹脂中に含まれる活性基の数に対する架橋剤の官能基の比は0.01〜2が好ましい。これ以下では熱強度が不足してしまい、また、これ以上添加すると発色及び消色特性に悪影響を及ぼす。
更に、架橋促進剤としてこの種の反応に用いられる触媒を用いてもよい。
【0082】
前記熱架橋した場合の熱硬化性樹脂のゲル分率は、30%以上が好ましく、50%以上がより好ましく、70%以上が更に好ましい。前記ゲル分率が30%未満であると、架橋状態が十分でなく耐久性に劣ることがある。
【0083】
前記バインダー樹脂が架橋状態にあるのか非架橋状態にあるのかを区別する方法としては、例えば、塗膜を溶解性の高い溶媒中に浸すことによって区別することができる。即ち、非架橋状態にあるバインダー樹脂は、溶媒中に該樹脂が溶けだし溶質中には残らなくなる。
【0084】
なお、記録層用塗布液は前記分散装置を用いて各材料を溶媒中に分散してもよいし、各々単独で溶媒中に分散して混ぜ合わせてもよい。更に加熱溶解して急冷又は徐冷によって析出させてもよい。
【0085】
前記記録層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)前記樹脂、前記電子供与性呈色化合物及び電子受容性化合物を溶媒中に溶解乃至分散させた記録層用塗布液を支持体上に塗布し、該溶媒を蒸発させてシート状等にするのと同時に又はその後に架橋する方法、(2)前記樹脂のみを溶解した溶媒に前記電子供与性呈色化合物及び電子受容性化合物を分散させた記録層用塗布液を支持体上に塗布し、該溶媒を蒸発させてシート状等にすると同時に又はその後に架橋する方法、(3)溶媒を用いず、前記樹脂と前記電子供与性呈色化合物及び電子受容性化合物とを加熱溶融して互いに混合し、この溶融混合物をシート状等に成形して冷却した後に架橋する方法、などが好適に挙げられる。なお、これらにおいて、前記支持体を用いることなく、シート状の熱可逆記録媒体として成形することもできる。
【0086】
前記(1)又は(2)において用いる溶剤としては、前記樹脂、前記電子供与性呈色化合物及び電子受容性化合物の種類等によって異なり一概には規定することはできないが、例えば、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、クロロホルム、四塩化炭素、エタノール、トルエン、ベンゼン、水などが挙げられる。
なお、前記電子受容性化合物は、前記記録層中では粒子状に分散して存在している。
【0087】
前記記録層用塗布液には、コーティング材料用としての高度な性能を発現させる目的で、各種顔料、消泡剤、顔料、分散剤、スリップ剤、防腐剤、架橋剤、可塑剤等を添加してもよい。
【0088】
前記記録層の塗工方法としては、特に制限はなく、目的に応じて適宜選択することができ、ロール状で連続して、又はシート状に裁断した支持体を搬送し、該支持体上に、例えば、ブレード塗工、ワイヤーバー塗工、スプレー塗工、エアナイフ塗工、ビード塗工、カーテン塗工、グラビア塗工、キス塗工、リバースロール塗工、ディップ塗工、ダイ塗工等公知の方法で塗布する。
【0089】
前記記録層用塗布液の乾燥条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、室温〜140℃の温度で、10秒間〜10分間程度、などが挙げられる。
【0090】
前記記録層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、例えば、1μm〜20μmが好ましく、3μm〜15μmがより好ましい。前記記録層の厚みが薄すぎると発色濃度が低くなるため画像のコントラストが低くなることがあり、一方、厚すぎると層内での熱分布が大きくなり、発色温度に達せず発色しない部分が発生し、希望とする発色濃度を得ることができなくなることがある。
【0091】
前記熱可逆記録媒体は、前記記録層の他に、更に必要に応じて適宜選択した中間層、アンダーコート層、着色層、空気層、光反射層、接着層、バック層、接着剤層、粘着層等のその他の層を有していてもよい。これら各層は、単層構造であってもよいし、積層構造であってもよい。
【0092】
<保護層>
本発明の熱可逆記録媒体には、前記記録層を保護する目的で該記録層上に保護層を設ける。該保護層は、特に制限はなく、目的に応じて適宜選択することができ、例えば、1層以上に形成してもよく、露出している最表面に設けることが好ましい。
【0093】
前記保護層はバインダー樹脂、更に必要に応じて、無機顔料(フィラー)、滑剤、着色顔料等のその他の成分を含有してなる。
【0094】
前記保護層の樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性樹脂、紫外線(UV)硬化性樹脂、電子線硬化性樹脂等が好ましく、これらの中でも、紫外線(UV)硬化性樹脂、熱硬化性樹脂が特に好ましい。
【0095】
前記UV硬化性樹脂は、硬化後非常に硬い膜を形成することができ、表面の物理的な接触によるダメージやレーザ加熱による媒体変形を抑止することができるため繰り返し耐久性に優れた熱可逆記録媒体が得られる。
【0096】
また、前記熱硬化性樹脂は、前記UV硬化性樹脂にはやや劣るが同様に表面を硬くすることができ、繰り返し耐久性に優れる。
【0097】
前記UV硬化性樹脂としては、特に制限はなく、公知のものの中から目的に応じて適宜選択することができ、例えば、ウレタンアクリレート系、エポキシアクリレート系、ポリエステルアクリレート系、ポリエーテルアクリレート系、ビニル系、不飽和ポリエステル系のオリゴマーや各種単官能、多官能のアクリレート、メタクリレート、ビニルエステル、エチレン誘導体、アリル化合物等のモノマーが挙げられる。これらの中でも、4官能以上の多官能性のモノマー又はオリゴマーが特に好ましい。これらのモノマー又はオリゴマーを2種類以上混合することで樹脂膜の硬さ、収縮度、柔軟性、塗膜強度等を適宜調節することができる。これらのUV硬化性樹脂は赤外領域に吸収を有し、例えば多官能のアクリレートモノマーをUV硬化させた樹脂では、3.3〜3.6μm、5.6〜6.1μm、7.1〜11.8μmに吸収領域を有する。
【0098】
また、前記モノマー又はオリゴマーを紫外線を用いて硬化させるためには、光重合開始剤、光重合促進剤を用いる必要がある。
【0099】
前記光重合開始剤又は光重合促進剤の添加量は、前記保護層の樹脂成分の全質量に対し0.1質量%〜20質量%が好ましく、1質量%〜10質量%がより好ましい。
【0100】
前記紫外線硬化樹脂を硬化させるための紫外線照射は、公知の紫外線照射装置を用いて行うことができ、該装置としては、例えば、光源、灯具、電源、冷却装置、搬送装置等を備えたものが挙げられる。
【0101】
前記光源としては、例えば、水銀ランプ、メタルハライドランプ、カリウムランプ、水銀キセノンランプ、フラッシュランプなどが挙げられる。該光源の波長は、前記熱可逆記録媒体用組成物に添加されている光重合開始剤及び光重合促進剤の紫外線吸収波長に応じて適宜選択することができる。
【0102】
前記紫外線照射の条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記樹脂を架橋するために必要な照射エネルギーに応じてランプ出力、搬送速度等を決めればよい。
【0103】
また、油等の付着による汚れ防止のために、重合性基を持つシリコーン、シリコーングラフトをした高分子、ワックス、ステアリン酸亜鉛等の離型剤、シリコーンオイル等の滑剤を添加することができる。これらの添加量としては、保護層の樹脂成分全質量に対して0.01質量%〜50質量%が好ましく、0.1質量%〜40質量%がより好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0104】
前記無機顔料の粒径としては、例えば、0.01μm〜10.0μmが好ましく、0.05μm〜8.0μmがより好ましい。前記無機顔料の添加量としては、前記保護層の樹脂成分1質量部に対し、0.001質量部〜2質量部が好ましく、0.005質量部〜1質量部がより好ましい。
【0105】
更に、前記保護層には、添加剤として従来公知の界面活性剤、レベリング剤、帯電防止剤等を含有していてもよい。
【0106】
また、熱硬化性樹脂としては例えば、前記記録層で用いられたバインダー樹脂と同様なものを好適に用いることができる。
【0107】
更に紫外線吸収構造を持つポリマー(以下、「紫外線吸収ポリマー」と称することもある)を用いてもよい。
【0108】
ここで、前記紫外線吸収構造を持つポリマーとは、紫外線吸収構造(例えば、紫外線吸収性基)を分子中に有するポリマーを意味する。該紫外線吸収構造としては、例えば、サリシレート構造、シアノアクリレート構造、ベンゾトリアゾール構造、ベンゾフェノン構造などが挙げられ、これらの中でも、耐光性が良好である点でベゾトリアゾール構造、ベンゾフェノン構造が特に好ましい。
【0109】
前記紫外線吸収構造を持つポリマーは架橋されていることが好ましい。従って紫外線吸収構造を持つポリマーとしては、例えば水酸基、アミノ基、カルボキシル基等のような、硬化剤と反応する基を有しているものを用いることが好ましく、特に水酸基を有しているポリマーが好ましい。該紫外線吸収構造を持つポリマー含有層の強度を向上させるためには該ポリマーの水酸基価が10mgKOH/g以上のポリマーを用いると十分な塗膜強度が得られ、より好ましくは30mgKOH/g以上であり、更に好ましくは40mgKOH/g以上である。十分な塗膜強度を持たせることで繰り返し消去印字を行っても記録媒体の劣化が抑えることができる。
【0110】
前記硬化剤としては例えば、前記記録層で用いられた硬化剤と同様なものを好適に用いることができる。
【0111】
前記保護層の塗液に用いられる溶媒、塗液の分散装置、保護層の塗工方法、乾燥方法等は前記記録層で用いられた公知の方法を用いることができる。紫外線硬化樹脂を用いた場合には塗布して乾燥を行った紫外線照射による硬化工程が必要となるが、紫外線照射装置、光源、照射条件については前記の通りである。
【0112】
前記保護層の厚みは、0.1μm〜20μmが好ましく、0.5μm〜10μmがより好ましく、1.5μm〜6μmが更に好ましい。前記厚みが、0.1μm未満であると、熱可逆記録媒体の保護層としての機能を十分に果たすことができず、熱による繰り返し履歴によりすぐに劣化し、繰り返し使用することができなくなってしまうことがあり、20μmを超えると、保護層の下層にある感熱に十分な熱を伝えることができなくなり、熱による画像の印字と消去が十分にできなくなってしまうことがある。
【0113】
<中間層>
本発明においては、前記記録層と前記保護層の接着性向上、保護層の塗布による記録層の変質防止、保護層中の添加剤の記録層への移行、または記録層中の添加剤の保護層への移行を防止する目的で、両者の間に中間層を設けることが好ましく、これによって発色画像の保存性が改善できる。
【0114】
前記中間層は、少なくともバインダー樹脂を含有し、更に必要に応じて、フィラー、滑剤、着色顔料等のその他の成分を含有してなる。
【0115】
前記バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、前記記録層のバインダー樹脂や熱可塑性樹脂、熱硬化性樹脂等の樹脂成分を用いることができ、中でも7〜12μmの赤外領域に吸収を有する樹脂を用いると、照射されるレーザ光を効率よく吸収することができるようになる。
【0116】
前記中間層には、紫外線吸収剤を含有させることが好ましい。該紫外線吸収剤としては、有機系及び無機系化合物のいずれでも用いることができる。
また、前記紫外線吸収構造を持つポリマーを用いてもよく、架橋剤により硬化してもよい。これらは前記保護層で用いられたものと同様のものを好適に用いることができる。
【0117】
前記中間層の厚みは、0.1μm〜20μmが好ましく、0.5μm〜5μmがより好ましい。前記中間層の塗液に用いられる溶媒、塗液の分散装置、中間層の塗工方法、中間層の乾燥・硬化方法等は、前記記録層または前記保護層で用いられた公知の方法を用いることができる。
【0118】
<アンダー層>
本発明においては、印加した熱を有効に利用し高感度化するため、又は支持体と記録層の接着性の改善や支持体への記録層材料の浸透防止を目的として、前記記録層と前記支持体の間にアンダー層を設けてもよい。
前記アンダー層は、少なくとも中空粒子を含有してなり、バインダー樹脂、更に必要に応じてその他の成分を含有してなる。
【0119】
前記中空粒子としては、中空部が粒子内に一つ存在する単一中空粒子、中空部が粒子内に多数存在する多中空粒子、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0120】
前記中空粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、熱可塑性樹脂などが好適に挙げられる。前記中空粒子は、適宜製造したものであってもよいし、市販品であってもよい。該市販品としては、例えば、マイクロスフェアーR−300(松本油脂社製);ローペイクHP1055、ローペイクHP433J(いずれも、日本ゼオン社製);SX866(JSR社製)などが挙げられる。
【0121】
前記中空粒子の前記アンダー層における添加量は、特に制限はなく、目的に応じて適宜選択することができ、例えば、10質量%〜80質量%が好ましい。
【0122】
前記バインダー樹脂としては、前記記録層、又は前記紫外線吸収構造を持つポリマーを含有する層と同様の樹脂を用いることができる。
【0123】
前記アンダー層には、炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化ケイ素、水酸化アルミニウム、カオリン、タルクなどの無機フィラー及び各種有機フィラーの少なくともいずれかを含有させることができる。
【0124】
なお、前記アンダー層には、その他、滑剤、界面活性剤、分散剤などを含有させることもできる。
【0125】
前記アンダー層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、0.1μm〜50μmが好ましく、2μm〜40μmがより好ましく、12μm〜30μmが更に好ましい。
【0126】
<バック層>
本発明においては、前記熱可逆記録媒体のカールや帯電防止のために支持体の記録層を設ける面と反対側にバック層を設けてもよい。
前記バック層は、少なくともバインダー樹脂を含有し、更に必要に応じて、フィラー、導電性フィラー、滑剤、着色顔料等のその他の成分を含有してなる。
【0127】
前記バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性樹脂、紫外線(UV)硬化性樹脂、電子線硬化性樹脂等が挙げられ、これらの中でも、紫外線(UV)硬化性樹脂、熱硬化性樹脂が特に好ましい。
【0128】
前記紫外線硬化樹脂、前記熱硬化性樹脂、前記フィラー、前記導電性フィラー、及び前記滑剤については、前記記録層、前記保護層、又は前記中間層で用いられたものと同様なものを好適に用いることができる。
【0129】
<接着層又は粘着層>
本発明においては、支持体の記録層形成面の反対面に接着剤層又は粘着剤層を設けて熱可逆記録ラベルとすることができる。前記接着剤層又は粘着剤層の材料は一般的に使われているものが使用可能である。
【0130】
前記接着剤層又は粘着剤層の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばユリア樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、酢ビ系樹脂、酢酸ビニル−アクリル系共重合体、エチレン−酢酸ビニル共重合体、アクリル系樹脂、ポリビニルエーテル系樹脂、塩化ビニル−酢酸ビニル系共重合体、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、塩素化ポリオレフィン系樹脂、ポリビニルブチラール系樹脂、アクリル酸エステル系共重合体、メタクリル酸エステル系共重合体、天然ゴム、シアノアクリレート系樹脂、シリコーン系樹脂などが挙げられる。
【0131】
前記接着剤層又は粘着剤層の材料はホットメルトタイプでもよい。剥離紙を用いてもよいし、無剥離紙タイプでもよい。このように接着剤層又は粘着剤層を設けることにより、記録層の塗布が困難な磁気ストライプ付塩化ビニルカードなどの厚手の基板の全面若しくは一部に貼ることができる。これにより磁気に記憶された情報の一部を表示することができる等、この媒体の利便性が向上する。このような接着剤層又は粘着剤層を設けた熱可逆記録ラベルは、ICカード、光カード等の厚手カードにも適用できる。
【0132】
前記熱可逆記録媒体には、前記支持体と前記記録層との間に視認性を向上させる目的で、着色層を設けてもよい。前記着色層は、着色剤及び樹脂バインダーを含有する溶液、又は分散液を対象面に塗布し、乾燥するか、あるいは単に着色シートを貼り合せることにより形成することができる。
【0133】
前記熱可逆記録媒体には、カラー印刷層を設けることもできる。前記カラー印刷層における着色剤としては、従来のフルカラー印刷に使用されるカラーインク中に含まれる各種の染料及び顔料等が挙げられ、前記樹脂バインダーとしては各種の熱可塑性、熱硬化性、紫外線硬化性又は電子線硬化性樹脂等が挙げられる。該カラー印刷層の厚みとしては、印刷色濃度に対して適宜変更されるため、所望の印刷色濃度に合わせて選択することができる。
【0134】
前記熱可逆記録媒体は、非可逆性記録層を併用しても構わない。この場合、それぞれの記録層の発色色調は同じでも異なってもよい。また、本発明の熱可逆記録媒体の記録層と同一面の一部もしくは全面、又は/もしくは反対面の一部分に、オフセット印刷、グラビア印刷などの印刷、又はインクジェットプリンター、熱転写プリンター、昇華型プリンターなどによって任意の絵柄などを施した着色層を設けてもよく、更に着色層上の一部分もしくは全面に硬化性樹脂を主成分とするOPニス層を設けてもよい。前記任意の絵柄としては、文字、模様、図柄、写真、赤外線で検知する情報などが挙げられる。また、単純に構成する各層のいずれかに染料や顔料を添加して着色することもできる。
【0135】
更に、本発明の熱可逆記録媒体には、セキュリティのためにホログラムを設けることもできる。また、意匠性付与のためにレリーフ状、インタリヨ状に凹凸を付けて人物像や社章、シンボルマーク等のデザインを設けることもできる。
【0136】
前記熱可逆記録媒体は、その用途に応じて所望の形状に加工することができ、例えば、カード状、タグ状、ラベル状、シート状、ロール状などに加工される。また、カード状に加工されたものについてはプリペイドカード、ポイントカード、更にはクレジットカードなどへの応用が挙げられる。カードサイズよりも小さなタグ状のサイズでは値札等に利用できる。また、カードサイズよりも大きなタグ状のサイズでは工程管理や出荷指示書、チケット等に使用できる。ラベル状のものは貼り付けることができるために、様々な大きさに加工され、繰り返し使用する台車や容器、箱、コンテナ等に貼り付けて工程管理、物品管理等に使用することができる。また、カードサイズよりも大きなシートサイズでは印字する範囲が広くなるため一般文書や工程管理用の指示書等に使用することができる。
【0137】
<熱可逆記録部材 RF−IDとの組み合わせ例>
前記熱可逆記録媒体を用いた熱可逆記録部材は、前記可逆表示可能な記録層と情報記憶部とを、同一のカードやタグに設け(一体化させ)、該情報記憶部の記憶情報の一部を記録層に表示することにより、特別な装置がなくてもカードやタグを見るだけで情報を確認することができ、利便性に優れる。また、情報記憶部の内容を書き換えた時には熱可逆記録部の表示を書き換えることで、熱可逆記録部材を繰り返し何度も使用することができる。
【0138】
前記情報記憶部としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、磁気記録層、磁気ストライプ、ICメモリー、光メモリー、RF−IDタグなどが好ましく用いられる。工程管理や物品管理等に使用する場合には特にRF−IDタグが好ましく用いられる。なお、前記RF−IDタグはICチップと、該ICチップに接続したアンテナとから構成されている。
【0139】
前記熱可逆記録部材は、前記可逆表示可能な記録層と情報記憶部とを有し、該情報記憶部の好適なものとしてRF−IDタグが挙げられる。
【0140】
前記RF−IDタグはラベル状又はカード状に加工されており、RF−IDタグを前記熱可逆記録媒体に貼り付けることができる。RF−IDタグは記録層面又はバック層面に貼ることができるが、バック層面に貼ることが好ましい。RF−IDタグと熱可逆記録媒体を貼り合わせるためには公知の接着剤又は粘着剤を使用することができる。
また、熱可逆記録媒体とRF−IDをラミネート加工等で一体化してカード状やタグ状に加工してもよい。
【0141】
(画像処理装置)
本発明の画像処理装置は、本発明の前記画像処理方法に用いられ、レーザ光出射手段を少なくとも有してなり、更に必要に応じて適宜選択したその他の部材を有してなる。
【0142】
−レーザ光出射手段−
前記レーザ光出射手段としては、発振波長が前記熱可逆記録層及び前記保護層の吸収領域であれば特に制限はないが、発振波長が2.6〜18μmであるレーザが好ましく、より好ましくは発振波長が7〜12μmであるレーザであり、中でも比較的安価で数Wから数十KWに及ぶ高出力化が可能であることから、発振波長が9.3〜10.6μmであるCOレーザを用いることが特に好ましい。COレーザ光は前記熱可逆記録媒体を構成する記録層や保護層等の樹脂で吸収されることから、前記熱可逆記録媒体に対する画像の記録及び消去のために、レーザ光を吸収して発熱させるための光熱変換材料を添加することが不要となり、光熱変換材料が可視光をも吸収して画像コントラストを低下させるということがないので、画像コントラストの低下を防ぐことができるという利点がある。更に、COレーザ光は樹脂で主に吸収されることから、熱可逆記録媒体全体が加熱されることになり、蓄熱効果が大きく、徐冷となり、消去しやすくなるという利点がある。なお、前記画像記録工程及び前記画像消去工程で用いられるレーザ光出射手段は同じであってもよく、異なっていてもよい。
【0143】
本発明の前記画像処理装置は、前記レーザ光出射手段を少なくとも有している以外、前記光強度分布調整手段、光学ユニット、電源制御ユニット、及びプログラムユニットを備えていてもよい。
【0144】
前記光照射強度分布調整手段は、前記レーザ光の光照射強度分布を変化させる機能を有する。
前記光照射強度調整手段の配置態様としては、前記レーザ光照射手段から出射されるレーザ光の光路上に配置される限り特に制限はなく、前記レーザ光出射手段との距離等については、目的に応じて適宜選択することができるが、前記レーザ光出射手段と後述するガルバノミラーの間に配置することが好ましく、後述するビームエキスパンダと前記ガルバノミラーの間に配置することがより好ましい。
前記光照射強度分布調整手段は、照射レーザ光の中心位置における光照射強度(I)と、照射レーザ光の全照射エネルギーの80%面での光照射強度(I)の比(I/I)が0.40≦I/I≦2.00となるように変化させる機能を有する。そのため、画像の記録及び消去の繰返しによる前記熱可逆記録媒体の劣化を抑制し、画像コントラストを維持したまま、繰返し耐久性を向上させることができる。
【0145】
前記光学ユニットは、ビームエキスパンダ、スキャンニングユニット、fθレンズなどで構成されている。
【0146】
前記ビームエキスパンダは、複数のレンズを並設してなる光学部材であり、前記レーザ光出射手段であるレーザ発振器と後述するガルバノミラーの間に配置され、レーザ発振器から出射されるレーザ光を径方向に拡大してほぼ平行光としている。前記レーザ光の拡大率は1倍から50倍の範囲が好ましく、その時のレーザ光のビーム径は3〜50mmが好ましい。
前記スキャンニングユニットは、ガルバノメータと、該ガルバノメータに取り付けられたガルバノミラーとで構成されている。そして、前記レーザ発振器から出力されたレーザ光を、前記ガルバノメータに取り付けられたX軸方向とY軸方向との2枚のガルバノミラーで高速回転走査することにより、熱可逆記録媒体上に、画像の記録又は消去を行うことができる。高速での光走査を可能にするには、ガルバノミラー走査が好ましい。前記ガルバノミラーのサイズは前記ビームエキスパンダで拡大された平行光のビーム径に依存し、3mmから60mmの範囲が好ましく、6mmから40mmの範囲がより好ましい。
平行光のビーム径を小さくし過ぎると、fθレンズで集光後のスポット径を小さくすることが出来なくなり、平行光のビーム径を大きくし過ぎると、ガルバノミラーのサイズが大きくなり高速での光走査が出来なくなる。
前記fθレンズは、前記ガルバノメータに取り付けられたガルバノミラーによって等角速度で回転走査されたレーザ光を、前記熱可逆記録媒体の平面上で等速度運動させるレンズである。
【0147】
前記電源制御ユニットは、放電用電源、ガルバノメータの駆動電源、ペルチェ素子などの冷却用電源、画像処理装置全体の制御を司る制御部等などで構成されている。
【0148】
前記プログラムユニットは、タッチパネル入力やキーボード入力により、画像の記録又は消去のために、レーザ光の強さ、レーザ走査の速度等の条件入力や、記録する文字等の作成及び編集を行うユニットである。
【0149】
ここで、図11に、本発明の画像処理装置の一例を示す。
図11に示す画像処理装置は、レーザ光源としてCOレーザ発振器(例えばシンラッド社製、firestar t100)を用い、その光路中に、前記光照射強度分布調整手段として、例えば図12に示すような非球面素子レンズを組み込み、照射レーザ光の中心位置における光照射強度(I)と、照射レーザ光の全照射エネルギーの80%面での光照射強度(I)の比(I/I)が変化するように調整可能としている。
【0150】
図11中(10)はCOレーザ発振器、(2)はビームエキスパンダ、(5)はスキャンニングユニット、(3)はミラー、(8)はマスク、レンズ、(6)はfθレンズ、をそれぞれ表す。
前記COレーザ発振器(10)は、光強度が強く、指向性の高いレーザ光を得るために必要なものであり、例えば、レーザ媒質の両側にミラーを配置し、該レーザ媒質をポンピング(エネルギー供給)し、励起状態の原子数を増やし反転分布を形成させて誘導放出を起こさせる。そして、光軸方向の光のみが選択的に増幅されることにより、光の指向性が高まり出力ミラーからレーザ光が放出される。
前記スキャンニングユニット(5)は、ガルバノメータ(4)と、該ガルバノメータ(4)に取り付けられたミラーとで構成されている。そして、前記レーザ発振器(10)から出力されたレーザ光を、前記ガルバノメータ(4)に取り付けられたX軸方向とY軸方向との(2)枚のミラーで高速回転走査することにより、熱可逆記録媒体(7)上に、画像の記録又は消去を行うようになっている。
【0151】
本発明の前記画像処理方法は、ダンボールやプラスチックコンテナ等の容器に貼付したラベル等の熱可逆記録媒体に対して、非接触式にて、高いコントラストの画像を高速で繰返し記録及び消去可能で、しかも画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止することが可能である。このため、物流・配送システムに特に好適に使用可能である。この場合、例えば、ベルトコンベアに載せた前記ダンボールやプラスチックコンテナを移動させながら、前記ラベルに画像を記録及び消去することができ、ラインの停止が不要な点で、出荷時間の短縮を図ることができる。また、前記ラベルが貼付されたダンボールやプラスチックコンテナは、該ラベルを剥がすことなく、そのままの状態で再利用し、再度、画像の消去及び記録を行うことができる。
【実施例】
【0152】
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
【0153】
(製造例1)
<熱可逆記録媒体の作製>
熱により色調が可逆的(透明状態−発色状態)に変化する熱可逆記録媒体を、以下のようにして作製した。

−支持体−
支持体として、厚み125μmの白ポリエステルフィルム(帝人デュポン社製、テトロンフィルムU2L98W)を用いた。

−アンダー層−
スチレン−ブタジエン系共重合体(日本エイアンドエル社製、PA−9159)30質量部、ポリビニルアルコール樹脂(クラレ社製、ポバールPVA103)12質量部、中空粒子(松本油脂社製、マイクロスフェアーR−300)20質量部、及び水40質量部を添加し、均一状態になるまで約1時間撹拌して、アンダー層塗布液を調製した。
次に、得られたアンダー層塗布液を前記支持体上に、ワイヤーバーにて塗布し、80℃にて2分間加熱及び乾燥して、厚み20μmのアンダー層を形成した。

−熱可逆記録層(記録層)−
下記構造式(1)で表される可逆性顕色剤15質量部、下記構造式(2)及び(3)で表される2種類の消色促進剤をそれぞれ3質量部ずつ、アクリルポリオール50質量%溶液(水酸基価=108mgKOH/g)50質量部、及びメチルエチルケトン300質量部を、ボールミルを用いて平均粒径が約1μmになるまで粉砕分散した。
〔可逆性顕色剤〕
【0154】
【化3】

〔消色促進剤〕
【0155】
【化4】

【0156】
【化5】


次に、前記可逆性顕色剤を粉砕分散させた分散液に、前記ロイコ染料としての2−アニリノ−3−メチル−6ジエチルアミノフルオラン4.5質量部、及びイソシアネート(日本ポリウレタン社製、コロネートHL)35質量部を加え、よく撹拌させて記録層用塗布液を調製した。
次に、得られた記録層用塗布液を、前記アンダー層形成済みの支持体上に、ワイヤーバーを用いて塗布し、100℃にて2分間乾燥した後、60℃にて24時間キュアーを行って、厚み10μmの記録層を形成した。

−中間層−
アクリルポリオール樹脂50質量%溶液(三菱レーヨン社製、LR327)3質量部、酸化亜鉛微粒子30質量%分散液(住友セメント社製、ZS303)7質量部、イソシアネート(日本ポリウレタン社製、コロネートHL)1.5質量部、及びメチルエチルケトン7質量部を加え、よく攪拌して中間層用塗布液を調製した。
次に、前記アンダー層、及び前記記録層が形成された支持体上に、前記中間層用塗布液をワイヤーバーにて塗布し、90℃にて1分間加熱及び乾燥した後、60℃にて2時間加熱し、厚み2μmの中間層を形成した。

−保護層−
ペンタエリスルトールヘキサアクリレート(日本化薬社製、KAYARAD DPHA)3質量部、ウレタンアクリレートオリゴマー(根上工業社製、アートレジンUN−3320HA)3質量部、ジペンタエリスリトールカプロラクトンのアクリル酸エステル(日本化薬社製、KAYARAD DPCA−120)3質量部、シリカ(水澤化学工業社製、P−526)1質量部、光重合開始剤(日本チバガイギー社製、イルガキュア184)0.5質量部、及びイソプロピルアルコール11質量部を加え、ボールミルにてよく攪拌して平均粒径が約3μmになるまで分散し、保護層用塗布液を調製した。
次に、前記アンダー層、前記記録層、及び前記中間層が形成された支持体上に、前記保護層用塗布液をワイヤーバーにて塗布し、90℃にて1分間加熱及び乾燥した後、80W/cmの紫外線ランプで架橋させて、厚み4μmの保護層を形成した。

−バック層−
ペンタエリスリトールヘキサアクリレート(日本化薬社製、KAYARAD DPHA)7.5質量部、ウレタンアクリレートオリゴマー(根上工業社製、アートレジンUN−3320HA)2.5質量部、針状導電性酸化チタン(石原産業社製、FT−3000、長軸=5.15μm、短軸=0.27μm、構成:アンチモンドープ酸化スズ被覆の酸化チタン)2.5質量部、光重合開始剤(日本チバガイギー社製、イルガキュア184)0.5質量部、及びイソプロピルアルコール13質量部を加え、ボールミルにてよく攪拌してバック層用塗布液を調製した。
次に、前記記録層、前記中間層、及び前記保護層が形成された支持体における、これらの層が形成されていない側の面上に、前記バック層用塗布液をワイヤーバーにて塗布し、90℃にて1分間加熱及び乾燥した後、80W/cmの紫外線ランプで架橋させて、厚み4μmのバック層を形成した。以上により、製造例1の熱可逆記録媒体を作製した。
【0157】
(製造例2)
<熱可逆記録媒体の作製>
熱により透明度が可逆的(透明状態−白濁状態)に変化する熱可逆記録媒体を、以下のようにして作製した。

−支持体−
支持体として、厚み188μmの透明PETフィルム(東レ社製、ルミラー188−T60)を用いた。

−熱可逆記録層(記録層)−
塩化ビニル系共重合体(日本ゼオン社製、MR110)26質量部を、メチルエチルケトン210質量部に溶解させた樹脂溶解液中に、下記構造式(4)で表される有機低分子物質3質量部、及びベヘン酸ドコシル7質量部を加え、ガラス瓶中に直径2mmのセラミックビーズを入れて、ペイントシェーカー(浅田鉄工社製)を用い48時間分散し、均一な分散液を調製した。
【0158】
【化6】

次に、得られた分散液に、イソシアネート化合物(日本ポリウレタン社製、コロネート2298−90T)4質量部を添加し、記録層液を調製した。
次に、前記支持体上に、得られた記録層液を塗布し、加熱及び乾燥した後、更に65℃環境下に24時間保存して樹脂を架橋させて、厚み10μmの記録層を設けた。

−保護層−
ウレタンアクリレート系紫外線硬化性樹脂の75質量%酢酸ブチル溶液10質量部(大日本インキ化学工業社製、ユニディックC7−157)、及びイソプロピルアルコール10質量部よりなる溶液を、ワイヤーバーで前記記録層上に塗布し、加熱及び乾燥した後、80W/cmの高圧水銀灯で紫外線を照射して硬化させて、厚み3μmの保護層を形成した。以上により、製造例2の熱可逆記録媒体を作製した。
【0159】
(評価方法)
<レーザ光強度分布測定>
レーザ光の強度分布測定は、以下の手順で行った。
まず、照射距離が熱可逆記録媒体に記録するときと同じ位置になるようにハイパワー用レーザビームアナライザー(Spiricon社製、LPK−CO2−16)を設置し、レーザ出力が0.05%となるようにZn−Seウエッジ(Spiricon社製、LBS−100−IR−W)、及びCaF2フィルター(Spiricon社製、LBS−100−IR−F)を用いて減光し、該ハイパワー用レーザビームアナライザーでレーザ光強度を測定した。次に、得られたレーザ光強度を三次元グラフ化してレーザ光の強度分布を得た。
【0160】
<反射濃度の測定>
反射濃度の測定は、グレースケール(Kodak社製)をスキャナー(キャノン社製、Canoscan4400)で取り込み、得られたデジタル階調値と反射濃度計(マウベス社製、マクベスRD−914)で測定した濃度値との間で相関を取り、記録した画像を消去した消去部及び地肌部を前記スキャナーで取り込んで得られたデジタル階調値を濃度値に変換して反射濃度値とした。
本発明において、消去部の濃度が、前記熱可逆記録層が樹脂及び有機低分子物質を含有する熱可逆記録媒体では、濃度が1.50以上、前記熱可逆記録層が樹脂、ロイコ染料及び可逆性顕色剤を含有する熱可逆記録媒体では、濃度が0.15以下である場合に、画像の消去が可能であるとした。この時、地肌部の濃度は、前記熱可逆記録層が樹脂及び有機低分子物質を含有する熱可逆記録媒体では1.60、前記熱可逆記録層が樹脂、ロイコ染料及び可逆性顕色剤を含有する熱可逆記録媒体では0.10であった。なお、前記熱可逆記録層が樹脂及び有機低分子物質を含有する熱可逆記録媒体では、背面に黒色紙(O.D.値=1.70)を敷いて測定した。
また、本発明において、画像処理前の地肌部の反射濃度値と繰返し消去を行なった部分の地肌部の反射濃度値との差を地肌カブリ値とし、地肌カブリ値が0.04以下である場合に地肌カブリがないものとした。
【0161】
(実施例1)
レーザとして、集光光学系fθレンズ(焦点距離:185mm)を装備した出力100WのCOレーザ発振器(シンラッド社製、firestar t100、発振波長:10.6μm)からなるCOレーザ装置を用い、レーザ光の光路中に、図126に示すような非球面素子レンズ(住友電工ハードメタル株式会社製)を組み込んだ。そして、このときの照射レーザ光の中心位置における光照射強度(I)が、照射レーザ光の全照射エネルギーの80%面での光照射強度(I)の1.7倍になるように調整した。
次いで前記レーザ装置を用い、製造例1の熱可逆記録媒体にレーザ出力40W、照射距離198mm、スポット径0.65mm、走査線速度3,000mm/sとなるように調整して、製造例1で作成した熱可逆記録媒体に画像を記録した。

次に、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、レーザ出力を40.0W〜65.0Wまで1.0W刻みで0.5mmの間隔で直線状にレーザ光を走査して画像を消去し、消去部の反射濃度を測定した。この際、反射濃度が0.15以下である時の範囲を消去可能エネルギー密度範囲とし、その範囲は15.0〜19.4mJ/mmであり、消去可能エネルギー密度範囲の中心値は17.2mJ/mmであった。
次に、前記画像記録条件にて画像を記録し、続いて、レーザ出力45.7W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は15.2mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0162】
(実施例2)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力46.3W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は15.4mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0163】
(実施例3)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力47.0W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は15.7mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0164】
(実施例4)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力51.6W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は17.2mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0165】
(実施例5)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力51.0W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は17.0mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0166】
(実施例6)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力50.3W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は16.8mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0167】
(実施例7)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力60.0W、照射距離224mm、スポット径3mmとなるように調整し、走査線速度を5,000〜9,000mm/sまで100mm/s刻みで0.5mmの間隔で直線状にレーザ光を走査して画像を消去し、消去部の反射濃度を測定した。この際、反射濃度が0.15以下である時の範囲を消去可能エネルギー密度範囲とし、その範囲は15.0〜19.4mJ/mmであり、消去可能エネルギー密度範囲の中心値は17.2mJ/mmであった。
次に、前記画像記録条件にて画像を記録し、続いて、レーザ出力60.0W、照射距離224mm、スポット径3mm、走査線速度7,900mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は15.2mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0168】
(実施例8)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力60.0W、照射距離224mm、スポット径3mm、走査線速度7,100mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は16.9mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0169】
(実施例9)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力65.0W、照射距離224mm、スポット径3mm、走査線速度7,000mm/sとなるように調整し、レーザ光走査間隔を0.4〜0.7mmまで0.01mm刻みで直線状にレーザ光を走査して画像を消去し、消去部の反射濃度を測定した。この際、反射濃度が0.15以下である時の範囲を消去可能エネルギー密度範囲とし、その範囲は15.0〜19.4mJ/mmであり、消去可能エネルギー密度範囲の中心値は17.2mJ/mmであった。
次に、前記画像記録条件にて画像を記録し、続いて、レーザ出力65.0W、照射距離224mm、スポット径3mm、走査線速度7,000mm/sとなるように調整し、0.61mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は15.2mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリ値を測定した結果を表1に示す。
【0170】
(実施例10)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力65.0W、照射距離224mm、スポット径3mm、走査線速度7,000mm/sとなるように調整し、0.55mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は16.9mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0171】
(比較例1)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力57.0W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は19.0mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
なお、画像記録と画像消去を300回繰返した後の消去部を消去エネルギー密度が17.0mJ/mmになるように調整して消去すると、その時の消去部の濃度は0.12となり、消去可能であった。
【0172】
(比較例2)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力53.0W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は17.7mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
なお、画像記録と画像消去を300回繰返した後の消去部を消去エネルギー密度が17.0mJ/mmになるように調整して消去すると、その時の消去部の濃度は0.11となり、消去可能であった。
【0173】
(比較例3)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力60.0W、照射距離224mm、スポット径3mm、走査線速度6,200mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は19.4mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
なお、画像記録と画像消去を300回繰返した後の消去部を消去エネルギー密度が17.0mJ/mmになるように調整して消去すると、その時の消去部の濃度は0.13となり、消去可能であった。
【0174】
(比較例4)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体に実施例1と同様に画像を記録した。
次に、レーザ出力65.0W、照射距離224mm、スポット径3mm、走査線速度7,000mm/sとなるように調整し、0.49mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は19.0mJ/mmであり、消去部の濃度は0.10であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
なお、画像記録と画像消去を300回繰返した後の消去部を消去エネルギー密度が17.0mJ/mmになるように調整して消去すると、その時の消去部の濃度は0.12となり、消去可能であった。
【0175】
(比較例5)
製造例1の熱可逆記録媒体1に松下電子部品社製EUX−ET8A9AS1端面型サーマルヘッド(抵抗値1152オーム)を用いた八城製作所製感熱印字シミュレーター(パルス幅2ms、ライン周期2.86ms、速度43.10mm/s、副走査密度8dot/mm)を用いて、印加エネルギー密度が28.0mJ/mmとなるように調整して画像を記録した。
次に、印加エネルギー密度を9.6〜33.3mJ/mmの範囲で変化させて画像を消去した。その時の消去可能エネルギー密度範囲は14.1〜21.1mJ/mmであり、消去可能エネルギー密度範囲の中心値は17.6mJ/mmであり、印加エネルギー密度が16.8mJ/mmとなるように調整して画像を消去した。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、摺擦により、凹部が生じていた。
1回目、100回目、300回目の消去部の濃度及び地肌カブリを測定した結果を表1に示す。
【0176】
【表1】

【0177】
(実施例11)
実施例1と同じCOレーザ装置を用い、製造例2で作製した熱可逆記録媒体にレーザ出力27.0W、照射距離198mm、スポット径0.65mm、走査線速度3,000mm/sとなるように調整して、画像を記録した。
次に、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、レーザ出力を20.0W〜40.0Wまで1W刻みで0.5mmの間隔で直線状にレーザ光を走査して画像を消去し、消去部の反射濃度を測定した。この際、反射濃度が1.5以上である時の範囲を消去可能エネルギー密度範囲とし、その範囲は9.0〜11.6mJ/mmであり、消去可能エネルギー密度範囲の中心値は10.3mJ/mmであった。
次に、前記画像記録条件にて画像を記録し、続いて、レーザ出力30.5W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は10.2mJ/mmであり、消去部の濃度は1.60であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度を測定した結果を表2に示す。
【0178】
(実施例12)
実施例1と同じCOレーザ装置を用い、製造例2の熱可逆記録媒体に実施例11と同様に画像を記録した。
次に、レーザ出力28.0W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は9.3mJ/mmであり、消去部の濃度は1.60であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度を測定した結果を表2に示す。
【0179】
(比較例6)
実施例1と同じCOレーザ装置を用い、製造例2の熱可逆記録媒体に実施例11と同様に画像を記録した。
次に、レーザ出力34.0W、照射距離224mm、スポット径3mm、走査線速度6,000mm/sとなるように調整し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。その時の消去エネルギー密度は11.3mJ/mmであり、消去部の濃度は1.60であった。
上記条件で画像記録と画像消去を100回及び300回繰返した。300回繰返した後の熱可逆記録媒体の表面を観察したところ、凹部が生じていた。1回目、100回目、300回目の消去部の濃度を測定した結果を表2に示す。
なお、画像記録と画像消去を300回繰返した後の消去部を消去エネルギー密度が10.3mJ/mmになるように調整して消去すると、その時の消去部の濃度は1.58となり、消去可能であった。
【0180】
【表2】

【0181】
(実施例13)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体をプラスチックの箱に貼り付け、コンベアに載せて20m/分の搬送速度で移動させながら、実施例1の記録条件で「A」〜「Z」までの全文字を記録した。
次に、上記で「A」〜「Z」までの全文字が記録された熱記録可逆媒体を貼り付けたプラスチックの箱をベルトコンベアに載せて20m/分の搬送速度で移動させながら、実施例7の消去条件で「A」〜「Z」までの全文字を消去した。
上記条件で記録と消去を繰り返し行ったところ、実施例7と同様な結果が得られた。
【0182】
(実施例14)
実施例1と同じCOレーザ装置を用い、製造例1の熱可逆記録媒体をプラスチックの箱に貼り付け、コンベアに載せて20m/分の搬送速度で移動させながら、実施例1の記録条件で「A」〜「Z」までの全文字を記録した。
次に、上記で「A」〜「Z」までの全文字が記録された熱記録可逆媒体を貼り付けたプラスチックの箱をベルトコンベアに載せて20m/分の搬送速度で移動させながら、実施例1の消去条件で画像を消去したところ、消去に時間がかかり、「A」〜「Z」までの全文字を完全に消去することはできなかった。
【産業上の利用可能性】
【0183】
本発明の画像処理方法は、ダンボールやプラスチックコンテナ等の容器に貼付したラベル等の熱可逆記録媒体に対して、非接触式にて、高コントラストの画像を高速で繰返し記録成及び消去可能で、しかも繰返し画像の記録および画像の消去を行なっても完全に画像を消去することができ、かつ画像消去の繰返しによる熱可逆記録媒体の地肌カブリを防止することができ、物流・配送システムに特に好適に使用可能である。
【図面の簡単な説明】
【0184】
【図1】図1は、本発明の熱可逆記録媒体で用いられるバインダー樹脂の赤外吸収スペクトルの一例を示す図である。
【図2】図2は、本発明で用いられる照射レーザ光の強度分布の一例を示す概略説明図である。
【図3】図3は、通常のレーザ光の光強度分布(ガウス分布)を示す概略説明図である。
【図4】図4は、レーザ光の光強度分布を変えたときの光強度分布の一例を示す概略説明図である。
【図5】図5は、レーザ光の光強度分布を変えたときの光強度分布の一例を示す概略説明図である。
【図6】図6は、レーザ光の光強度分布を変えたときの光強度分布の一例を示す概略説明図である。
【図7】図7は、熱可逆記録媒体の透明−白濁特性を示すグラフである。
【図8】図8は、熱可逆記録媒体の透明−白濁変化のメカニズムを表す概略説明図である。
【図9】図9は、熱可逆記録媒体の発色−消色特性を示すグラフである。
【図10】図10は、熱可逆記録媒体の発色−消色変化のメカニズムを表す概略説明図である。
【図11】図11は、本発明の画像処理装置の一例を説明する図である。
【図12】図12は、本発明で用いた非球面素子レンズの一例を説明する図である。
【図13】図13は、レーザ記録において熱可逆記録媒体の表面層が薄くなる様子の一例を示す図である。
【符号の説明】
【0185】
2 ビームエキスパンダ
3 ミラー
4 ガルバノミラー
5 スキャニングユニット
6 fθレンズ
7 熱可逆記録媒体
8 マスク、レンズ
10 COレーザ発振器

【特許請求の範囲】
【請求項1】
レーザ光が照射され、熱可逆記録媒体に記録された画像を、レーザ光を照射し、消去する画像消去工程を含む画像処理方法であって、前記熱記録媒体は、支持体上に少なくとも、熱可逆記録層と保護層とを積層してなるものであり、前記熱可逆層は、第一の温度で第一の色の状態となり、該第一の温度よりも高温の第二の温度で第二の色の状態となるものであり、前記照射するレーザ光の発振波長を前記熱可逆記録層及び前記保護層の吸収領域にし、前記レーザ光のエネルギー密度を、画像消去可能なエネルギー密度範囲で且つ前記エネルギー密度範囲の中心値以下のエネルギー密度で画像消去を行なうことを特徴とする画像処理方法。
【請求項2】
前記レーザ光の発振波長が前記熱可逆記録層及び前記保護層に含有される樹脂の吸収領域であることを特徴とする請求項1に記載の画像処理方法。
【請求項3】
前記レーザ光の発振波長が2.6〜18μmであることを特徴とする請求項1または2に記載の画像処理方法。
【請求項4】
前記レーザ光の発振波長が7〜12μmであることを特徴とする請求項1から3のいずれか1に記載の画像処理方法。
【請求項5】
前記レーザ光の出射手段がCOレーザであることを特徴とする請求項1から4のいずれか1に記載の画像処理方法。
【請求項6】
前記画像消去工程で照射するレーザ光のエネルギー密度の変更手段として、レーザ光の走査線速度を変更することを特徴とする請求項1から5のいずれか1に記載の画像処理方法。
【請求項7】
前記画像消去工程で照射するレーザ光のエネルギー密度の変更手段として、レーザ光の出力を変更することを特徴とする請求項1から5のいずれか1に記載の画像処理方法。
【請求項8】
前記画像消去工程で照射するレーザ光のエネルギー密度の変更手段として、レーザ光の照射間隔を変更することを特徴とする請求項1から5のいずれか1に記載の画像処理方法。
【請求項9】
熱可逆記録層が、樹脂及び有機低分子物質を含有する請求項1から8のいずれか1に記載の画像処理方法。
【請求項10】
熱可逆記録層が、樹脂、ロイコ染料及び可逆性顕色剤を含有する請求項1から8のいずれか1に記載の画像処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−69665(P2010−69665A)
【公開日】平成22年4月2日(2010.4.2)
【国際特許分類】
【出願番号】特願2008−237966(P2008−237966)
【出願日】平成20年9月17日(2008.9.17)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】