説明

発泡成形用エチレン系樹脂および発泡体

【課題】直鎖状低密度ポリエチレンの有する衝撃強度を過度に低下させることなく発泡倍率を高めた発泡成形体を得ることができる発泡成形用エチレン系樹脂を提供する。
【解決手段】以下の条件を全て満足する発泡成形用エチレン系樹脂。
(a)密度が890〜930kg/m3
(b)メルトフローレート(MFR)が0.1〜10g/10分
(c)流動の活性化エネルギー(Ea)が50kJ/mol未満
(d)Mz/Mwが3.5以上
(e)(Mz/Mw)/(Mw/Mn)≧2.0
(f)温度上昇溶離分別法によって測定される100℃以上での溶出樹脂量の割合が1重量%未満(ただし、エチレン系樹脂の重量を100重量%とする)
(g)150℃における溶融張力が4〜30cN

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発泡成形用エチレン系樹脂および発泡体に関するものである。
【背景技術】
【0002】
直鎖状低密度ポリエチレンや高圧法低密度ポリエチレン等のエチレン系樹脂からなる発泡体は、柔軟性、断熱性に優れるため、緩衝材あるいは断熱材として種々の用途に利用されている。これら発泡体の成形方法としては押出機での樹脂の混練溶融中にブタンガスや炭酸ガスなどの物理発泡剤を注入し、押出し時に圧が開放されることで発泡せしめる無架橋発泡や、樹脂、熱分解型発泡剤および過酸化物を、発泡剤と過酸化物とが分解しない温度で溶融混合しシ−トに成形した後、過酸化物が分解する温度まで加熱してシートを架橋し、次いで発泡剤の分解温度以上にシートを加熱して発泡させる方法、あるいは樹脂と発泡剤とを、発泡剤が分解しない温度で溶融混合し、シ−トに成形した後、該シートに電子線を照射してシートを架橋し、次いで発泡剤の分解温度以上にシートを加熱して発泡させるいわゆる架橋発泡が知られている。
直鎖状低密度ポリエチレンは高圧法低密度ポリエチレンよりも強度に優れるが、発泡倍率の高い発泡成形体を得ることが高圧法低密度ポリエチレンよりも難しい。そのため直鎖状低密度ポリエチレンと高圧法低密度ポリエチレンをブレンドし発泡させることが提案されている(特許文献1、2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開昭60−222222号公報
【特許文献2】特開平5−247247号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記樹脂組成物では、高圧法低密度ポリエチレンを配合することによって、発泡倍率は改良されるものの、衝撃強度が大きく低下することがあり、必ずしも十分満足のいくものではなかった。
かかる状況のもと、本発明は、上述したような問題点を解決し、直鎖状低密度ポリエチレンの有する衝撃強度を過度に低下させることなく発泡倍率を高めた発泡成形体を得ることができる発泡成形用エチレン系樹脂、および、該樹脂を発泡せしめてなる発泡体を提供するものである。
【発明の効果】
【0005】
本発明により、直鎖状低密度ポリエチレンの有する衝撃強度を過度に低下させることなく、発泡倍率を高めた発泡体を得ることができる発泡成形用エチレン系樹脂、および、該樹脂を発泡せしめてなる発泡体を提供することができる。
【課題を解決するための手段】
【0006】
本発明の第一は、以下の条件を全て満足する発泡成形用エチレン系樹脂にかかるものである。
(a)密度が890〜930kg/m3
(b)メルトフローレート(MFR)が0.1〜10g/10分
(c)流動の活性化エネルギー(Ea)が50kJ/mol未満
(d)Mz/Mwが3.5以上
(e)(Mz/Mw)/(Mw/Mn)≧2.0
(f)温度上昇溶離分別法によって測定される100℃以上での溶出樹脂量の割合が1重量%未満(ただし、エチレン系樹脂の重量を100重量%とする)
(g)150℃における溶融張力が4〜30cN
【0007】
本発明の第二は、上記のエチレン系樹脂を発泡せしめてなる発泡体にかかるものである。
【発明を実施するための形態】
【0008】
本発明のエチレン系樹脂は、エチレンに基づく単量体単位とα−オレフィンに基づく単量体単位とを含む共重合体樹脂である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは、炭素原子数3〜20のα−オレフィンであり、より好ましくは、炭素原子数4〜8のα−オレフィンであり、更に好ましくは、1−ブテン、1−ヘキセン、4−メチル−1−ペンテンから選ばれる少なくとも1種のα−オレフィンである。
【0009】
エチレン系樹脂は、上記のエチレンに基づく単量体単位およびα−オレフィンに基づく単量体単位に加え、本発明の効果を損なわない範囲において、他の単量体に基づく単量体単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、アクリル酸、アクリル酸エステル(例えばアクリル酸メチルやアクリル酸エチル)、メタクリル酸、メタクリル酸エステル(例えばメタクリル酸メチルやメタクリル酸エチル)、酢酸ビニル等があげられる。
【0010】
エチレン系樹脂としては、例えば、エチレン−1−ブテン共重合体樹脂、エチレン−1−ヘキセン共重合体樹脂、エチレン−4−メチル−1−ペンテン共重合体樹脂、エチレン−1−オクテン共重合体樹脂、エチレン−1−ブテン−1−ヘキセン共重合体樹脂、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体樹脂、エチレン−1−ブテン−1−オクテン共重合体樹脂等があげられる。好ましくは、エチレン−1−ブテン共重合体樹脂、エチレン−1−ヘキセン共重合体樹脂、エチレン−4−メチル−1−ペンテン共重合体樹脂、エチレン−1−ブテン−1−ヘキセン共重合体樹脂である。
【0011】
エチレン系樹脂における、エチレンに基づく単量体単位の含有量は、エチレン系樹脂の全重量(100重量%)に対して、通常、50〜99.5重量%であり、好ましくは、80〜99重量%である。また、α−オレフィンに基づく単量体単位の含有量は、エチレン系樹脂の全重量(100重量%)に対して、通常、0.5〜50重量%であり、好ましくは、1〜20重量%である。
【0012】
エチレン系樹脂の密度は、890〜930kg/m3である(条件(a))。エチレン系樹脂の密度は、剛性を高める観点から、好ましくは890kg/m3以上であり、より好ましくは900kg/m3以上である。また、発泡体の軽量性を高める観点から、好ましくは930kg/m3以下であり、より好ましくは925kg/m3以下である。密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に規定された水中置換法に従って測定される。
【0013】
エチレン系樹脂のメルトフローレート(MFR)は、0.1〜10g/10分である(条件(b))。エチレン系樹脂のMFRは、成形加工時の押出負荷を低減する観点から、好ましくは0.5g/10分以上であり、より好ましくは0.7g/10分以上である。また、発泡体の衝撃強度を高める観点から、好ましくは5g/10分以下であり、より好ましくは4g/10分以下である。メルトフローレートは、JIS K7210−1995に規定された方法に従い、温度190℃、荷重21.18Nの条件で、A法により測定される値である。
【0014】
エチレン系樹脂の流動の活性化エネルギー(Ea)は、50kJ/mol未満である(条件(c))。エチレン系樹脂のEaは、衝撃強度を高める観点から、好ましくは40kJ/mol以下であり、より好ましくは35kJ/mol以下である。
【0015】
流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃、190℃、210℃の温度の中から、190℃を含む4つの温度について、夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
【0016】
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。
【0017】
また、130℃、150℃、170℃、190℃、210℃の中から190℃を含む4つの温度でのシフトファクターと温度から得られる一次近似式(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
【0018】
上記の溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.2〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm)を配合することが好ましい。
【0019】
エチレン系樹脂のZ平均分子量(以下、「Mz」と記載することがある。)と重量平均分子量(以下、「Mw」と記載することがある。)との比(以下、「Mz/Mw」と記載することがある。)は、3.5以上である(条件(d))。衝撃強度の観点から、Mz/Mwは、好ましくは4.5以上である。また加工性や、衝撃強度の観点からMz/Mwは25以下が好ましく、20以下がより好ましく、15以下がさらに好ましい。
【0020】
エチレン系樹脂の重量平均分子量(以下、「Mw」と記載することがある。)と数平均分子量(以下、「Mn」と記載することがある。)との比(以下、「Mw/Mn」と記載することがある。)は、押出加工性を向上させる観点から好ましくは3以上であり、さらに好ましくは4以上である。また衝撃強度の観点から、Mw/Mnは、好ましくは15以下であり、より好ましくは10以下であり、さらに好ましくは8以下である。なお、Mw/Mn、Mz/Mwとは、ゲル・パーミエイション・クロマトグラフ(GPC)法により測定される数平均分子量(Mn)、重量平均分子量(Mw)およびZ平均分子量(Mz)より求められる値である。
【0021】
エチレン系樹脂のMw/MnやMz/Mwは、次のような方法で制御することができる。例えば分子量の高い成分を製造する工程と分子量の低い成分を製造する工程とを連続して行なうことにより、本発明のエチレン系樹脂を製造する場合には、それぞれの製造工程における水素濃度または重合温度を変更する方法である。具体的には、分子量の高い成分を製造する条件を同一にした場合、分子量の低い成分を製造する際の水素濃度または重合温度を高くすると、得られるエチレン系樹脂のMw/Mnは大きくなる。同様にエチレン系樹脂のMz/Mwは、分子量の高い成分を製造する時の水素濃度を下げるか、または重合温度を低下させると、大きくすることができる。またエチレン系樹脂のMz/Mwは、分子量の高い成分を製造する工程の時間を長くし、エチレン系樹脂における超高分子量成分の含有量を増やすことによっても、大きくすることができる。
【0022】
Mz/Mwは、エチレン系樹脂に含まれる高分子量成分の分子量分布を表すものであり、Mw/Mnに比してMz/Mwが小さいことは、高分子量成分の分子量分布が狭く、非常に分子量の高い成分割合が少ないことを意味し、Mw/Mnに比してMz/Mwが大きいことは高分子量成分の分子量分布が広く、非常に分子量の高い成分割合が多いことを意味する。本発明のエチレン系樹脂は、(Mz/Mw)/(Mw/Mn)≧2.0である(条件(e))。発泡倍率および衝撃強度を高める観点から、好ましくは(Mz/Mw)/(Mw/Mn)≧2.5である。
【0023】
本発明のエチレン系樹脂は、該エチレン系樹脂の重量を100重量%とする場合、温度上昇溶離分別法によって測定される100℃以上での溶出樹脂量の割合が1重量%未満である(ただし、140℃までに溶出したエチレン系樹脂の重量の和を100重量%とする)(条件(f))。
エチレン系樹脂における温度上昇溶離分別法における100℃以上での溶出樹脂成分とは、高密度の成分を意味する。エチレン系樹脂が高密度の成分と低密度の成分とを含む場合、これらは結晶化開始温度が異なるため、製膜時に肌荒れを起こしてしまい、結果、得られるフィルムは透明性に劣るものとなる。温度上昇溶離分別法における100℃以上での溶出樹脂量の割合は、好ましくは0.5重量%未満であり、より好ましくは0.1重量%未満である。
【0024】
温度上昇溶離分別法によって測定されるエチレン系樹脂の100℃以上での溶出樹脂量の割合は、次のように制御することができる。例えば分子量の高い成分を製造する工程と分子量の低い成分を製造する工程とを連続して行なうことにより、本発明のエチレン系樹脂を製造する場合には、それぞれの製造工程における、エチレン濃度に対するα−オレフィン濃度を変更する方法である。具体的には、重合反応器内部において、エチレン濃度に対するα−オレフィン濃度の割合を高くすることにより、高分子鎖に導入される短鎖分岐構造の割合を高めることができる。このように短鎖分岐の割合の多い分子構造を有するポリマーは結晶厚みの薄い結晶構造であるため、より低い温度で溶解させることができる。また、エチレン濃度に対するα−オレフィン濃度の割合を制御する以外に、2種類の錯体を用いて分子量の高い成分、低い成分を製造することにより、本発明のエチレン系樹脂を製造することもできる。この場合、エチレンに対するα−オレフィンの共重合性がより高い錯体を選択することで、より低い温度で融解するエチレン系樹脂を与えることができる。
【0025】
本発明のエチレン系樹脂は、150℃における溶融張力が4〜30cNである(条件(g))。
エチレン系樹脂における溶融張力とは、溶融状態における分子の絡み合いの多少を意味し、絡み合いが多くなれば溶融張力が高くなる。エチレン系樹脂の分子量が大きいものは絡み合い易く、分子量が低いものは絡み合いが少なくなる。
エチレン系樹脂の溶融張力は、次のような方法で制御することができる。例えば分子量の高い成分を製造する工程と分子量の低い成分を製造する工程とを連続して行なうことにより、本発明のエチレン系樹脂を製造する場合には、それぞれの製造工程における水素濃度または重合温度あるいは重合時間を変更する方法である。具体的には、分子量の高い成分の製造を行う場合、水素濃度を低くする、重合温度を低くする、重合時間を長くする、ことで溶融張力を高くすることができ、分子量の低い成分の製造を行う場合は、水素濃度を低くする、重合温度を低くする、重合時間を短くすることで溶融張力を高くすることができる。また分子量の高い成分の割合が分子量の低い成分より多い場合、溶融張力を高くすることができる。
本発明のエチレン系樹脂の150℃における溶融張力は、4〜30cNである。溶融張力が低すぎる場合、発泡成形時に破泡が発生するため発泡倍率の高い成形体を得ることが困難になる傾向があるため、エチレン系樹脂の溶融張力は好ましくは4.5cN以上であり、より好ましくは5cN以上である。一方、溶融張力が高すぎると、ガスの流入による気泡成長の際に、膨らみにくくなり発泡倍率の高い成形体を得ることが困難になる傾向があるため、好ましくは20cN以下であり、より好ましくは15cN以下である。
【0026】
本発明のエチレン系樹脂は、スウェル比(SR)が1.4〜1.9であることが、発泡倍率の高い発泡体を得る観点から好ましい。SRとは、JIS K7210−1995に規定された方法に従い、荷重21.18Nおよび温度190℃の条件で、A法によりメルトフローレートを測定する際、押出したストランドの直径Dを測定し、該Dとオリフィスの直径D0との比D/D0である。
スウェル比(SR)は、樹脂の溶融弾性の指標でメルトフローレート測定の際、測定機から押出されたストランドの径が、オリフィスのノズル径よりどれだけ膨張するかを示すものである。分子構造的には、分子量分布と長鎖分岐に関連が強く、分子量分布が広く、長鎖分岐数が多いものほど、SRは大きくなる。
【0027】
本発明のエチレン系樹脂は、チーグラー系触媒、メタロセン系触媒等の中から任意の触媒を選択し、各触媒を用いて同一重合条件下でエチレンとα−オレフィンとを重合して得られるポリマーの分子量を比較した場合に、その分子量が大きく異なるような、公知のオレフィン重合用触媒を2種以上組み合わせて製造することができる。また、高分子量のエチレン・α−オレフィン共重合体を製造することができる、公知のオレフィン重合用触媒を一つ用いて、高分子量のエチレン・α−オレフィン共重合体を製造する工程と、低分子量のエチレン・α−オレフィン共重合体を製造する工程とを含む複数の反応器を用いた液相重合法、スラリー重合法、気相重合法、高圧イオン重合法等の公知の重合方法によって、エチレンとα−オレフィンとを共重合することにより製造することもできる。これらの重合法は、回分重合法、連続重合法のいずれでもよい。
【0028】
本発明のエチレン系樹脂を、複数の反応器を用いて製造する場合には、高分子量成分と低分子量成分をそれぞれ異なる反応器で連続して製造する。このように連続プロセスで重合する場合、重合粒子の中には、一部の反応器を非常に短時間で通過してしまう重合粒子(以下、ショートパス重合粒子と呼ぶことがある。)が存在する。このようなショートパス重合粒子の発生を防ぐため、本発明のエチレン系樹脂を複数の反応器を用いて連続プロセスで製造する場合には、1つ目の重合反応器で高分子量成分を製造し、その後、2つ以上の反応器を連結して、低分子量成分を製造することが好ましい。一方、回分重合で本発明のエチレン系樹脂を製造する場合、2つの反応器でそれぞれ低分子量成分・高分子量成分を製造することができる。
【0029】
本発明のエチレン系樹脂を回分重合にて製造する場合、複数の反応器を使用せず、1つの反応器を用い、反応器内の水素濃度を経時で変化させて、高分子量成分と低分子量成分を順次製造することもできる。
【0030】
2種類以上のオレフィン重合用触媒を用いて本発明のエチレン系樹脂を製造する場合、使用するオレフィン重合用触媒としては、各触媒を用いて同一重合条件下でエチレンとα−オレフィンとを重合して得られるポリマーの分子量を比較した場合に、その分子量が大きく異なるような触媒を組み合わせて用いることが好ましい。また、重合用触媒としては、高分子量成分を製造するための触媒、低分子量成分を製造するための触媒のいずれの触媒としても、流動の活性化エネルギーが50kJ/mol未満であるような、長鎖分岐構造の少ないエチレン系樹脂を製造可能な触媒を選定することが重要である。高分子量成分に長鎖分岐構造が多く存在すると、緩和時間の長い成分によって、成形体表面に肌荒れが生じ、外観が悪化する傾向がある。また、低分子量成分に長鎖分岐構造が存在すると、衝撃強度の低下が引き起こされる傾向がある。
【0031】
本発明のエチレン系樹脂を1種類の重合触媒で製造する場合、適切な触媒としては、例えば、0.8〜1.4重量%のチタン原子、マグネシウム原子、ハロゲン原子および15−50重量%エステル化合物を含有し、BET法による比表面積が80m2/g以下である固体触媒成分を挙げることができる。該固体触媒成分に含まれるエステル化合物としては、重合活性の観点からフタル酸ジアルキルであることが好ましい。該固体触媒成分は、Si−O結合を有する有機ケイ素化合物(i)の存在下に、下記一般式[I]で表されるチタン化合物(ii)を、有機マグネシウム化合物(iii)で還元して得られる固体成分(a)、ハロゲン化化合物(b)およびフタル酸誘導体(c)の接触生成物として得ることができる。

【0032】
また、1種類の重合触媒を用い、複数の反応器を用いて多段重合する場合には、複数の各反応器のうち、少なくとも1つの反応器での重合条件は、該反応器の重合条件で使用する触媒を用いた重合を実施したときに得られるエチレン系樹脂の極限粘度が3以上となる重合条件であることが、発泡倍率を高める観点から好ましい。また、高分子量成分を与える重合反応条件において重合された高分子量成分が、本発明のエチレン系樹脂中に占める割合が、0.5重量%以上、かつ10重量%以下となるように重合することが、発泡倍率および表面平滑性の観点から好ましい。
【0033】
さらに、1種類の重合触媒を用いて多段重合する場合には、高分子量成分を与える重合槽で得られる樹脂成分の短鎖分岐度(1000炭素当たりの分岐数)は6個以上20個以下であることが、本発明のエチレン系樹脂を用いて得られる成形体の軽量性の観点から好ましい。
【0034】
本発明のエチレン系樹脂を、高分子量成分を与える重合触媒と、低分子量成分を与える重合触媒を含む2種類以上の重合触媒で製造する場合、それぞれの適切な触媒としては、以下のものが挙げられる。
高分子量成分を与える重合触媒としては、例えば、下記一般式(II)で表される遷移金属化合物重合触媒などを挙げることができる。


[式中、M2は元素周期律表の第4族の遷移金属原子を表し、X2、R3およびR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1〜20の置換されていてもよいハイドロカルビル基、炭素原子数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素原子数1〜20の置換シリル基または炭素原子数1〜20の置換アミノ基であり、複数のX2は互いに同じであっても異なっていてもよく、複数のR3は互いに同じであっても異なっていてもよく、複数のR4は互いに同じであっても異なっていてもよく、Q2は、下記一般式(III)で表される架橋基を表す。

(式中、nは1〜5の整数であり、J2は元素周期律表の第14族の原子を表し、R5は、水素原子、ハロゲン原子、炭素原子数1〜20の置換されていてもよいハイドロカルビル基、炭素原子数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素原子数1〜20の置換シリル基または炭素原子数1〜20の置換アミノ基であり、複数のR5は互いに同じであっても異なっていてもよい。)]
【0035】
一方、低分子量成分を与える重合触媒としては、例えば、置換基を持つシクロペンタジエン形アニオン骨格を有する基を2個有し、かつ、このシクロペンタジエン形アニオン骨格を有する基が互いに結合しておらず、中心金属が第4族の遷移金属原子である遷移金属化合物重合触媒などを挙げることができる。シクロペンタジン形アニオン骨格が互いに結合している重合触媒成分を使用すると、得られる重合体は長鎖分岐を有するものとなり、強度が低下する傾向がある。
【0036】
また、高分子量成分を与える重合触媒(Cat1)と低分子量成分を与える重合触媒(Cat2)の混合比Cat1:Cat2=x:yについては、以下の条件を満足することが好ましい。混合した触媒成分を用いて重合する重合条件と同一の重合条件下で、各触媒を単独で用いて重合を実施したときのCat1、Cat2各1gあたりの重合活性(g/g)をそれぞれACat1、ACat2とした時、得られるエチレン系樹脂の発泡倍率を向上させる観点からACat1・x/ACat2・yが0.005以上であることが好ましい。また、混練負荷低減の観点から、ACat1・x/ACat2・yは0.12以下であることが好ましい。
【0037】
高分子量成分を与える重合触媒(Cat1)と低分子量成分を与える重合触媒(Cat2)とを用いて本発明のエチレン系樹脂を製造する際の条件は、混合した触媒成分を用いて重合する重合条件と同一の重合条件下で、Cat1を用いて重合を実施したときに得られるエチレン系樹脂の極限粘度[η]が3以上となる条件であることが、溶融張力を高める観点から好ましい。
【0038】
重合触媒成分として、メタロセン触媒を用いる場合には、公知の活性化用助触媒成分、担体などを組み合わせて使用することができる。
【0039】
本発明のエチレン系樹脂は、必要に応じて、他の樹脂とともに各種成形に使用することができる。他の樹脂としては、本発明のエチレン系樹脂とは異なるエチレン系樹脂が挙げられる。
【0040】
発泡成形体製造時に用いる発泡剤は特に限定されるものではなく、公知の物理発泡剤や熱分解型発泡剤が使用できる。また複数の発泡剤を併用してもよい。
【0041】
物理発泡剤としては、空気、酸素、チッソ、二酸化炭素、エタン、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n−ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、エチレン、プロピレン、水、石油エーテル、塩化メチル、塩化エチル、モノクロルトリフルオルメタン、ジクロルジフルオルメタン、ジクロテトラフルオロエタン等が挙げられる。この中でも二酸化炭素、窒素、n-ブタン、イソブタン、n-ペンタンまたはイソペンタンを用いることが経済性、安全性の観点から好ましい。
【0042】
熱分解型発泡剤としては、炭酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等の無機系発泡剤;アゾジカルボンアミド、アゾジカルボン酸バリウム、アゾビスブチロニトリル、ニトロジグアニジン、N,N-ジニトロペンタメチレンテトラミン、N,N'-ジメチル-N,N'-ジニトロソテレフタルアミド、p-トルエンスルホニルヒドラジド、p-トルエンスルホニルセルカルバジド、p,p'-オキシビスベンゼンスルホニルヒドラジド、アゾビスイソブチロニトリル、p,p'-オキシビスベンゼンスルホニルセミカルバジッド、5-フェニルテトラゾール、トリヒドラジノトリアジン、ヒドラゾジカルボンアミド等の有機系発泡剤等が挙げられる。これらの中でもアゾジカルボンアミド、炭酸水素ナトリウム、p'-オキシビスベンゼンスルホニルヒドラジドを用いることが経済性、安全面の観点から好ましい。成形温度範囲が広いことや、気泡が微細な押出発泡成形体が得られることから、アゾジカルボンアミドおよび炭酸水素ナトリウムを含有する発泡剤を用いることが特に好ましい。
【0043】
熱分解型発泡剤を用いる場合、通常は分解温度が120〜240℃である熱分解型発泡剤が用いられる。分解温度が200℃より高い熱分解型発泡剤を使用する場合には、発泡助剤を併用することにより分解温度を200℃以下に下げ使用することが好ましい。発泡助剤としては、酸化亜鉛、酸化鉛などの金属酸化物;炭酸亜鉛等の金属炭酸塩;塩化亜鉛等の金属塩化物;尿素;ステアリン酸亜鉛、ステアリン酸鉛、二塩基性ステアリン酸鉛、ラウリン酸亜鉛、2−エチルヘキソイン酸亜鉛、二塩基性フタル酸鉛等の金属石鹸;ジブチル錫ジラウレート、ジブチル錫ジマレート等の有機錫化合物;三塩基性硫酸鉛、二塩基性亜リン酸鉛、塩基性亜硫酸鉛等の無機塩類をあげることができる。
【0044】
熱分解型発泡剤を用いる場合、通常は熱分解型発泡剤、発泡助剤および樹脂から構成されるマスターバッチが用いられる。マスターバッチに用いられる樹脂の種類は本発明の効果が阻害されなければ特に限定はされないが、本発明の発泡体を構成するエチレン−α−オレフィン共重合体、または高圧法低密度ポリエチレンであることが好ましい。マスターバッチに含有される熱分解型発泡剤および発泡助剤の合計量の樹脂に対する配合比率は通常5〜90重量%である。
【0045】
発泡剤を用いる場合には発泡核剤を併用することによって、より微細な気泡を有する発泡体を得ることが出来る。発泡核剤としてはタルク、シリカ、マイカ、ゼオライト、炭酸カルシウム、珪酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、硫酸バリウム、アルミノシリケート、クレー、石英粉、珪藻土類の無機充填剤;ポリメチルメタクリレート、ポリスチレンからなる粒径100μm以下のビーズ;ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、安息香酸ナトリウム、安息香酸カルシウム、安息香酸アルミニウム、酸化マグネシウム等の金属塩を例示することができ、これらを2種類以上組み合わせてもよい。
【0046】
発泡剤の添加量は用いる発泡剤の種類や製造する成形体の発泡倍率によって適宜設定されるが、発泡体を構成する樹脂100重量部に対して通常1〜100重量部である。
【0047】
本発明のエチレン系樹脂は、必要に応じ、架橋剤、耐熱安定剤、耐候安定剤、顔料、充填剤、滑剤、帯電防止剤、難燃剤などの公知の添加剤を含有していてもよい。
【0048】
本発明のエチレン系樹脂は、必要に応じ配合される他の成分とを、予め混練して樹脂組成物として用いることができる。混練においては公知の方法、例えば、タンブラーブレンダー、ヘンシェルミキサーなどで混合した後、更に単軸押出機や多軸押出機などにより溶融混練する方法、またはニーダーやバンバリーミキサーなどで溶融混練する方法などがあり、これらにより樹脂組成物を得ることができる。
【0049】
本発明の発泡体の製造方法は特に限定されるものではない。例えば無架橋発泡体の製造方法の場合は発泡成形用エチレン系樹脂、または該樹脂と熱分解型発泡剤を含む発泡成形用エチレン系樹脂組成物を、単軸スクリュウ押出機、二軸スクリュウ押出機等の公知の成形機にて溶融混練し、前記成形機の先端に取り付けられたダイから大気中に押し出す方法である。押出機の温度は通常120−280℃であり、ダイの温度は通常100−260℃である。ダイから押出された直後の溶融状態の押出成形体は発泡している。該溶融状態の押出発泡成形体を冷却ロール、冷却マンドレル、冷却エア、冷却水等により冷却することにより、最終製品としての押出発泡体を得ることができる。ダイとしてはスリット型、サーキュラースリット型、円型、異型などから目的に応じて選択できる。成形機とダイとの間には押出量安定化の為にギヤポンプを設けてもよい。また、樹脂と発泡剤を混練する目的でスタティックミキサーなどを押出機とダイの間に設置してもよい。物理発泡剤を用いる場合には、発泡成形用エチレン系樹脂、または該樹脂と熱分解型発泡剤を含む発泡成形用エチレン系樹脂組成物を溶融した後に、成形機の物理発泡剤供給口より物理発泡剤を注入する。
【0050】
例えば架橋発泡体を製造する場合には、本発明のエチレン系樹脂および熱分解型発泡剤を含む発泡成形用エチレン系樹脂組成物に電離性放射線を照射する。電離性照射線としては、α線、β線、γ線、電子線、中性子線、X線などが用いられる。このうちコバルト−60のγ線、電子線が好ましい。
電離性放射線の照射は、公知の電離性放射線照射装置を用いて行われ、照射量は、通常10〜200kGyであり、好ましくは10〜100kGyである。
前記樹脂組成物は、通常、電離性放射線を照射する前に、熱分解性発泡剤の分解温度未満の温度で所望の形状に成形する。例えば、シートに成形する方法としては、カレンダーロールでシート状に成形する方法、プレス成形機でシート状に成形する方法、Tダイまたは環状ダイから溶融押出ししてシート状に成形する方法などがあげられる。
【0051】
電離性放射線を照射してなる樹脂組成物を加熱発泡する方法としては、公知の方法をいずれも適用することができ、縦型熱風発泡法、横型熱風発泡法、横型薬液発泡法等のエチレン系樹脂組成物からなるシートを連続的に加熱発泡処理できる方法の適用が好ましい。加熱温度は、熱分解性発泡剤の分解温度以上の温度であり、好ましくは、熱分解性発泡剤の分解温度から5〜50℃高い温度である。また、加熱時間は、オーブンで加熱する場合、通常3〜5分である。
【0052】
電離性放射線以外にたとえばラジカル発生剤などの架橋剤を用いることでも、架橋発泡体を製造することができる。該架橋剤としては、当該共重合体の流動開始温度以上の分解温度を有する有機過酸化物が好適に用いられ、例えば、ジクミルパーオキサイド、1,1−ジターシャリーブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキシン、α,α−ジターシャリーブチルパーオキシイソプロピルベンゼン、ターシャリーブチルパーオキシケトン、ターシャリーブチルパーオキシベンゾエートなどをあげることができる。
【0053】
架橋剤を用いる場合、エチレン系樹脂、熱分解型発泡剤および架橋剤を、前記熱分解型発泡剤および架橋剤が分解しない温度で溶融混練して得られるエチレン系樹脂組成物を、加熱・加圧して発泡体を得ることができる。
【0054】
電離性放射線または架橋剤によって架橋させる場合、架橋助剤を使用することで発泡倍率および強度を高めることができる。架橋助剤とは、架橋タイプの熱可塑性樹脂組成物の架橋度を高め、熱可塑性樹脂組成物の機械的特性を向上するためのものであり、分子内に二重結合を複数持つ化合物が好ましく用いられる。架橋助剤としては、例えば、N,N’−m−フェニレンビスマレイミド、トルイレンビスマレイミド、トリアリルイソシアヌレート、トリアリルシアヌレート、p−キノンジオキシム、ニトロベンゼン、ジフェニルグアニジン、ジビニルベンゼン、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、アリルメタクリレート等を挙げることができる。また、これらの架橋助剤は、複数を組み合せて使用してもよい。
【0055】
架橋助剤の添加量は、熱可塑性樹脂の合計100質量部に対して、0.01〜4.0質量部の範囲で選ぶことができる。好ましくは0.05〜2.0質量部である。0.01質量部未満では架橋助剤を添加する効果が現れ難く、4質量部超えることは経済的に有利ではない。
【0056】
本発明の組成物には、必要に応じて、高圧法低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ酢酸ビニル、ポリブテン等の樹脂・ゴム成分を本発明の性能が損なわれない範囲で配合してもよい。
【0057】
本発明のエチレン系樹脂は、発泡倍率および衝撃強度に優れる発泡体の製造に適しており、該エチレン系樹脂を成形してなる発泡体は、緩衝材、断熱材、遮音材、保温保冷材等に用いられる。
【実施例】
【0058】
以下、実施例および比較例により本発明を説明する。
実施例および比較例での物性は、次の方法に従って測定した。
【0059】
(1)密度(単位:Kg/m3
JIS K7112−1980に規定された水中置換法に従い密度を測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
【0060】
(2)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法に従い、荷重21.18Nおよび温度190℃の条件で、A法により、メルトフローレートを測定した。
【0061】
(3)スウェル比(SR)
JIS K7210−1995に規定された方法に従い、荷重21.18Nおよび温度190℃の条件で、A法によりメルトフローレートを測定する際、押出したストランドの直径Dを測定し、該Dとオリフィスの直径D0との比D/D0をSRとした。SRが1.4〜1.9程度であると、発泡性が良好であると推測される。
【0062】
(4)極限粘度([η]、単位:dl/g)
2,6−ジ−t−ブチル−p−クレゾール(BHT)を0.5g/Lの濃度で溶解したテトラリン溶液(以下、ブランク溶液と記す。)と、樹脂を濃度が1mg/mlとなるようにブランク溶液に溶解した溶液(以下、サンプル溶液と記す。)とを調製した。ウベローデ型粘度計により、135℃におけるブランク溶液とサンプル溶液の降下時間を測定した。降下時間から下記式により極限粘度[η]を求めた。
[η]=23.3×log(ηrel)
ηrel=サンプル溶液の降下時間/ブランク溶液の降下時間
【0063】
(5)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定した。次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、流動の活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
【0064】
(6)分子量分布(Mw/Mn、Mz/Mw)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(8)により、z平均分子量(Mz)、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、Mw/MnとMz/Mwを求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT 2本
(3)測定温度:152℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
【0065】
(7)温度上昇溶離分別法によって測定される100℃以上の溶出樹脂量の測定
下記の装置を用いて、下記の条件で測定した。
装置:三菱化学社製 CFC T150A型
検出器:ニコレ−ジャパン(株)社製 Magna−IR550
波長:データ範囲 2982〜2842cm-1 カラム:昭和電工(株)社製 UT−806M 2本
溶媒:オルトジクロルベンゼン
流速:60ml/時間
試料濃度:100mg/25ml
試料注入量:0.8ml
担持条件:1℃/1分の速度で140℃から0℃まで降温した後、30分間放置して、0℃フラクションから溶出を開始した。
データ取得条件:85℃−105℃の温度範囲では、1℃刻みで溶出量のデータを取得し、その後は140℃まで昇温してから溶出量のデータを取得した。
【0066】
(8)溶融張力(MT、単位:cN)
東洋精機製作所製 メルトテンションテスターを用いて、150℃の条件で、9.5mmφのバレルに充填した溶融樹脂を、ピストン降下速度5.5mm/分で、径が2.09mmφ、長さ8mmのオリフィスから押出し、該押し出された溶融樹脂を、径が150mmφの巻き取りロールを用い、40rpm/分の巻き取り上昇速度で巻き取り、溶融樹脂が破断する直前における張力値を溶融張力の値とした。
【0067】
(9)引張衝撃強度(単位:kJ/m2
引張衝撃強度の測定は、ASTM D1822−61Tに従い、S型ダンベル形状で、23℃で行った。試料片は、150℃の熱プレスにより成形し、温度23℃、湿度50%の恒温室に24時間以上保管した後、測定に用いた。
この値が高いほど発泡体の衝撃強度が高いとされる。
【0068】
実施例1
(1−1)固体触媒成分の調製
窒素置換した撹拌機、邪魔板を備えた200L反応器に、ヘキサン80L、テトラエトキシシラン20.6kgおよびテトラブトキシチタン2.2kgを投入し、撹拌した。次に、前記攪拌混合物に、ブチルマグネシウムクロリドのジブチルエーテル溶液(濃度2.1モル/L)50Lを反応器の温度を5℃に保ちながら4時間かけて滴下した。滴下終了後、5℃で1時間、更に20℃で1時間撹拌し、濾過し、固体成分を得た。次に得られた固体成分をトルエン70Lで3回洗浄し、固体成分にトルエン63Lを加えて、スラリーとした。
撹拌機を備えた内容積210Lの反応器を窒素で置換し、固体成分のトルエンスラリーを該反応器に仕込み、テトラクロロシラン14.4kg、フタル酸ジ(2−エチルヘキシル)9.5kgを投入し、105℃で2時間攪拌した。次いで、固液分離し、得られた固体を、95℃にて、トルエン90Lで3回洗浄した。固体にトルエン63Lを加え、70℃に昇温し、TiCl4 13.0kgを投入し、105℃で2時間攪拌した。次いで、固液分離し、得られた固体を、95℃にて、トルエン90Lでの6回洗浄し、更に、室温にて、ヘキサン90Lで2回洗浄した。洗浄後の固体を乾燥して、固体触媒成分を得た。
(1−2)予備重合触媒(XA−1)の調製
内容積3Lの撹拌機付きオートクレーブを十分乾燥し、オートクレーブを真空にし、ブタン490gおよび1−ブテン260gを仕込み、55℃に昇温した。次に、エチレンを分圧で1.0MPaとなるように加えた。トリエチルアルミニウム1.7ミリモル、(1−1)で生成した固体触媒成分194.4mgをアルゴンによって圧入して重合を開始した。圧力が一定となるようにエチレンをボンベより連続して供給し、ボンベの重量減少量が70.0gになるまで55℃で重合を行った。重合後、エチレンの供給を停止し、系内をパージした後、アルゴンガスで加圧状態にし、予備重合パウダーを窒素置換したアンプルに回収し、封入した。回収した予備重合パウダーの一部について、極限粘度[η]を測定し、短鎖分岐度をIRで調べたところ、[η]=12.5、1000炭素当たりの短鎖分岐度は6.9であった。
【0069】
(1−3)本重合
内容積3Lの撹拌機付きオートクレーブを十分乾燥し、オートクレーブを真空にし、ブタン620gおよび1−ブテン130gを仕込み、70℃に昇温した。次に、エチレンを分圧で0.6MPaとなるように、水素を分圧で0.25MPaとなるように加えた。トリエチルアルミニウム1.7ミリモル、(1−2)で生成した予備重合触媒(XA−1)を5.40g、アルゴンによって圧入して重合を開始した。圧力が一定となるようにエチレンをボンベより連続して供給し、70℃で3.5時間重合を行った。重合により、エチレン−1−ブテン共重合体(以下、エチレン系樹脂(A1)と記す。)を92g得た。エチレン系樹脂(A1)の物性値を表1および表2に示した。
【0070】
比較例1
(2−1)予備重合触媒(XA−2)の調製
内容積3Lの撹拌機付きオートクレーブを十分乾燥し、オートクレーブを真空にし、ブタン550gおよび1−ブテン200gを仕込み、55℃に昇温した。次に、エチレンを分圧で0.6MPaとなるように加えた。トリエチルアルミニウム1.7ミリモル、実施例1(1−1)で生成した固体触媒成分193.7mgをアルゴンによって圧入して重合を開始した。圧力が一定となるようにエチレンをボンベより連続して供給し、ボンベの重量減少量が19.0gになるまで55℃で重合を行った。重合後、エチレンの供給を停止し、系内をパージした後、アルゴンガスで加圧状態にし、予備重合パウダーを窒素置換したアンプルに回収し、封入した。回収した予備重合パウダーの一部について、極限粘度[η]を測定し、短鎖分岐度をIRで調べたところ、[η]=8.1、1000炭素当たりの短鎖分岐度は11.5であった。
【0071】
(2−2)本重合
内容積3Lの撹拌機付きオートクレーブを十分乾燥し、オートクレーブを真空にし、ブタン530gおよび1−ブテン105gを仕込み、70℃に昇温した。次に、エチレンを分圧で0.5MPaとなるように、水素を分圧で0.2MPaとなるように加えた。トリエチルアルミニウム1.7ミリモル、(2−1)で生成した予備重合触媒(XA−2)を4.44g、アルゴンによって圧入して重合を開始した。圧力が一定となるようにエチレンをボンベより連続して供給し、70℃で2時間重合を行った。重合により、エチレン−1−ブテン共重合体(以下、エチレン系樹脂(A2)と記す。)を208.5g得た。エチレン系樹脂(A2)の物性値を表1に示した。
【0072】
比較例2
(3−1)予備重合触媒(XA−3)の調製
内容積3Lの撹拌機付きオートクレーブを十分乾燥し、オートクレーブを真空にし、ブタン490gおよび1−ブテン260gを仕込み、55℃に昇温した。次に、エチレンを分圧で1.0MPaとなるように加えた。トリエチルアルミニウム5.4ミリモル、実施例1(1−1)で生成した固体触媒成分326.4mgをアルゴンによって圧入して重合を開始した。圧力が一定となるようにエチレンをボンベより連続して供給し、ボンベの重量減少量が48.9gになるまで55℃で重合を行った。重合後、エチレンの供給を停止し、系内をパージした後、アルゴンガスで加圧状態にし、予備重合パウダーを窒素置換したアンプルに回収し、封入した。回収した予備重合パウダーの一部について、極限粘度[η]を測定し、短鎖分岐度をIRで調べたところ、[η]=9.1、1000炭素当たりの短鎖分岐度は10.4であった。
【0073】
(3−2)本重合
内容積3Lの撹拌機付きオートクレーブを十分乾燥し、オートクレーブを真空にし、ブタン620gおよび1−ブテン130gを仕込み、70℃に昇温した。次に、エチレンを分圧で0.6MPaとなるように、水素を分圧で0.2MPaとなるように加えた。トリエチルアルミニウム1.7ミリモル、(3−1)で生成した予備重合触媒(XA−3)を3.75g、アルゴンによって圧入して重合を開始した。圧力が一定となるようにエチレンをボンベより連続して供給し、70℃で3時間重合を行った。重合により、エチレン−1−ブテン共重合体(以下、エチレン系樹脂(A3)と記す。)を197g得た。重合体(A3)の物性値を表1に示した。
【0074】
比較例3
直鎖状低密度ポリエチレン(住友化学(株)製 スミカセン−L FS240;以下、エチレン系樹脂(A4)と記す。)の物性値を表1および表2に示した。
【0075】
【表1】

【0076】
【表2】


【特許請求の範囲】
【請求項1】
以下の条件を全て満足する発泡成形用エチレン系樹脂。
(a)密度が890〜930kg/m3
(b)メルトフローレート(MFR)が0.1〜10g/10分
(c)流動の活性化エネルギー(Ea)が50kJ/mol未満
(d)Mz/Mwが3.5以上
(e)(Mz/Mw)/(Mw/Mn)≧2.0
(f)温度上昇溶離分別法によって測定される100℃以上での溶出樹脂量の割合が1重量%未満(ただし、エチレン系樹脂の重量を100重量%とする)
(g)150℃における溶融張力が4〜30cN
【請求項2】
請求項1に記載の発泡成形用エチレン系樹脂および熱分解型発泡剤を含む発泡成形用エチレン系樹脂組成物。
【請求項3】
さらに架橋剤を含む請求項2に記載の発泡成形用エチレン系樹脂組成物。
【請求項4】
請求項1に記載の発泡成形用エチレン系樹脂を発泡せしめてなる発泡体。
【請求項5】
請求項2または3に記載の発泡成形用エチレン系樹脂組成物を発泡せしめてなる発泡体。

【公開番号】特開2010−150525(P2010−150525A)
【公開日】平成22年7月8日(2010.7.8)
【国際特許分類】
【出願番号】特願2009−262893(P2009−262893)
【出願日】平成21年11月18日(2009.11.18)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】