説明

積層セラミックコンデンサおよびその製法

【課題】 誘電体層を薄層化して積層数を増加した場合にも、内部電極層の厚みによる段差を無くすことができ、高容量化とともに優れた高温負荷寿命を有する積層セラミックコンデンサおよびその製法を提供する。
【解決手段】 複数の誘電体層と複数の長方形状の内部電極層とが交互に積層されたコンデンサ本体1と、コンデンサ本体1の内部電極層7が露出した対向する一対の端面にそれぞれ設けられた外部電極3とを有する積層セラミックコンデンサであって、内部電極層7が設けられている層間であって、内部電極層7の周囲のうち内部電極層7の外部電極3との接続端と反対側にある非接続端側の領域以外の周囲に、内部電極層7の主成分と同じ成分を含む金属部13が島状に分布している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、積層セラミックコンデンサおよびその製法に関するものである。
【背景技術】
【0002】
近年、電子機器の小型化、高密度実装化に伴い、電子機器の中に実装される積層セラミックコンデンサは小型高容量化が求められ、このため誘電体層や内部電極層の薄層化および多層化が進められている。
【0003】
このような積層セラミックコンデンサでは、誘電体層の薄層化および多層化に伴い、誘電体層間に形成された内部電極層の厚みが大きく影響するようになり、内部電極層が形成されている部分と形成されていない部分との間で内部電極層の厚みによる段差が累積し、内部電極層の形成されていない周囲の誘電体層同士の密着が弱く、デラミネーションやクラックが発生しやすくなる。
【0004】
この対策として、例えば、特許文献1には、積層セラミック電子部品の製法が開示されている。この製法は、図5(a)に示すように、先に、内部電極パターン51に対応する領域が開口されたスクリーン印刷版Aを用いてセラミックグリーンシート53の主面に内部電極パターン51を形成し、次に、図5(b)に示すように、内部電極パターン51に対してネガの状態であり、内部電極パターン51を除いた周囲の領域が開口されたスクリーン印刷版Bを用いて、内部電極パターン51が形成されたセラミックグリーンシート53の主面の内部電極パターン51が形成されていない領域に段差を解消するためのセラミックパターン55を形成するものである(図5(c))。
【0005】
この製法の場合、セラミックグリーンシート53の主面に予め形成された内部電極パターン51を基準にして、その内部電極パターン51の周囲に段差を解消するためのパターンとしてのセラミックパターン55が形成される。
【0006】
また一方で、図6(a)に示すように、内部電極パターン51に対応する領域51Mと、内部電極パターン51に対応する領域を除いた他の領域54Mとを同時に印刷できるように開口したスクリーン印刷版Cを用いることにより、内部電極パターン51とその周囲の段差を解消するための導体パターン54とを同時に形成できる方法が提案されている(例えば、特許文献2を参照)。
【0007】
この製法では、図6(b)に示されるように、段差を解消するための導体パターン54が内部電極パターン51と同じ導体成分であることから、導体パターン54を内部電極パターン51から離して形成し、セラミックグリーンシート53上において、内部電極パターン51と導体パターン54との間に隙間Gが形成される。
【0008】
そして、この製法の場合、内部電極パターン51と導体パターン54との間の隙間Gには、内部電極パターン51と導体パターン54とを形成したセラミックグリーンシート53を複数積層して積層体を形成する際に、セラミックグリーンシート53が入り込むため、焼成後のセラミック積層体は内部電極パターンと段差を解消するための導体パターンとの間の絶縁が確保されることになる(図6(c))。
【0009】
そして、この製法では、内部電極パターン51と段差を解消するための導体パターン54とを形成するのに1回の印刷工程で済む上、スクリーン印刷版も1枚しか用いないことから製造工程において低コスト化が図れるという利点がある。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2000−311831号公報
【特許文献2】特開2003−17362号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
ところが、特許文献1に開示された製法により得られる積層セラミック電子部品では、内部電極パターン51とセラミックパターン55とをそれぞれの印刷工程により形成するものであることから、製造コストの増加を招くという問題を有している。
【0012】
また、この製法では、図5(c)に示したように、内部電極パターン51とセラミックパターン55との位置合わせの困難さから位置ずれが起こりやすいために、内部電極パターン51の端部57にセラミックパターン55が乗り上げる場合があり、このような場合、局部的な厚みの増加によるデラミネーションの発生を防ぎきれないという問題があった。
【0013】
また、特許文献2に開示された製法により得られるセラミック積層体では、セラミックグリーンシート53の厚みが薄くなると、積層数の多い積層体を形成する際の変形が大きいために、隙間Gに入り込むセラミックグリーンシート53のみならず、その表面に形成された内部電極パターン51までも変形しやすくなる。
【0014】
このようなセラミック積層体中における内部電極パターン51の変形は、内部電極パターン51が一層置きに重なるように積層されている内部電極パターン51の長手方向の端部側に比べて、内部電極パターン51の端部が積層方向の全層に渡って揃えられている内部電極パターン51の長辺側で顕著であった。
【0015】
また、この製法により得られるセラミック積層体では、段差を解消するための導体パターン54を内部電極パターン51から離して形成しなければならないため、内部電極パターン51の周囲の段差を解消するための導体パターン54を形成する領域を大きく取る必要がある。このため、セラミックグリーンシート53上に形成される内部電極パターン51の面積を広くすることが困難であり、内部電極層の有効面積を増やすことができないことから、結果的に、高容量化が困難となっていた。
【0016】
従って、本発明は、誘電体層を薄層化して積層数を増加した場合にも、内部電極層の厚みによる段差を無くすことができ、高容量化とともに優れた高温負荷寿命を有する積層セラミックコンデンサおよびその製法を提供することを目的とする。
【課題を解決するための手段】
【0017】
本発明の積層セラミックコンデンサは、複数の誘電体層と複数の長方形状の内部電極層とが交互に積層されたコンデンサ本体と、該コンデンサ本体の前記内部電極層が露出した対向する一対の端面にそれぞれ設けられた外部電極とを有する積層セラミックコンデンサにおいて、前記内部電極層が設けられている層間であって、前記内部電極層の周囲のうち、該内部電極層の前記外部電極との接続端と反対側にある非接続端側の領域以外の周囲に、前記内部電極層の主成分と同じ成分を含む金属部が島状に分布していることを特徴とする。
【0018】
このような構成によれば、コンデンサ本体を構成する内部電極層の前記内部電極層の周囲のうち、該内部電極層の前記外部電極との接続端と反対側にある非接続端側の領域以外の領域に、内部電極層の主成分と同じ成分を含む金属部が島状に分布していることから、内部電極層の厚みによる段差を無くすことができる。
【0019】
また、前記内部電極層の周囲のうち、該内部電極層の前記外部電極との接続端と反対側にある非接続端側の領域以外の周囲に形成された金属部は、上述のように、島状に分布するように形成されており、内部電極層とは絶縁されていることから、積層セラミックコンデンサの機能も十分に発現させることができ、高い静電容量を得ることができる。
【0020】
さらに本発明によれば、複数の誘電体層が積層され一体化された層間に金属部が形成されていることから、誘電体層はその厚みが全体に渡ってほぼ等しくなっている。このため、誘電体層の絶縁性が安定していることから高温負荷寿命を高めることができる。
【0021】
本発明の積層セラミックコンデンサでは、前記内部電極層の平均厚みが、前記誘電体層の平均厚みの40〜80%であることが望ましい。
【0022】
本発明において、前記内部電極層の平均厚みが、誘電体層の平均厚みの40〜80%である場合には、積層セラミックコンデンサに発生するクラックやデラミネーションを低減することができるとともに、高い静電容量を得ることができる。
【0023】
本発明の積層セラミックコンデンサの製法は、(a)セラミックグリーンシートを形成する工程と、(b)該セラミックグリーンシートの一方主面に、長方形状の内部電極パターンに対応する領域のメッシュの開口率を55〜70%、前記内部電極パターンを除いた周囲のうち前記内部電極パターンの長手方向の端部側の領域に対応する領域のメッシュは開口せず、前記内部電極パターンの長手方向に対して垂直な方向の領域に対応する領域のメッシュの開口率を35〜45%としたスクリーン印刷版を用いて、ペースト粘度が10〜50Pa・sの導体ペーストをスキージ速度が200〜400mm/secの条件で印刷して導体膜を形成する工程と、(c)該導体膜が形成されたセラミックグリーンシートを複数積層して積層体を形成する工程と、(d)該積層体を焼成して、複数の誘電体層と複数の長方形状の内部電極層とが交互に積層され、対向する一対の端面に前記内部電極層が露出しているとともに、前記内部電極層が設けられている層間であって、前記内部電極層の周囲のうち、該内部電極層の前記外部電極との接続端と反対側にある非接続端側の領域以外の領域に、前記内部電極層の主成分と同じ成分を含む金属部が島状に分布しているコンデンサ本体を形成する工程と、(e)前記コンデンサ本体の対向する前記一対の端面に外部電極を形成する工程とを備えることを特徴とする。
【0024】
ここで、メッシュの開口率は、スクリーン印刷版の単位面積当たりのメッシュの開口面積の割合を意味する。例えば、メッシュの開口率の低いものは、単位面積当たりの開口の数は等しいが、開口の大きさが小さい場合、あるいは、開口の大きさは等しいが、単位面積当たりの開口の数が少ないものである。
【0025】
本発明の積層セラミックコンデンサの製法によれば、セラミックグリーンシートの表面に導体膜を印刷するにあたり、内部電極パターンを除いた周囲のうち前記内部電極パターンの長手方向の端部側の領域に対応する領域のメッシュは開口せず、前記内部電極パターンの長手方向に対して垂直な方向の領域に対応する領域のメッシュの開口率を35〜45%とし、内部電極パターンに対応する領域のメッシュの開口率を55〜70%にしたスクリーン印刷版を用い、ペースト粘度が5〜20Pa・sの導体ペーストをスキージ速度が200〜400mm/secの条件で印刷して導体膜を形成することにより、内部電極層が設けられている層間であって、この内部電極層の周囲のうち、内部電極層の外部電極との接続端と反対側にある非接続端側の領域以外の周囲に、内部電極層よりも焼成後に空隙率の高い領域を形成することができる。これにより、内部電極層に含まれる金属成分と同じ金属成分を島状に分布させることができる。その結果、段差を解消した積層セラミックコンデンサを容易に製造できる。
【0026】
ここで、ペースト粘度は、回転式粘度計を用いて導体ペーストに対するせん断速度が100〜1000(1/s)の範囲にて測定される値である。スキージとは、スクリーン印刷において、スクリーン印刷板上に塗布された導体ペーストをスクリーン印刷板の一方端から対向する他方端まで移動させるためのゴム状の部材であり、スキージ速度は、スクリーン印刷において、スキージがスクリーン印刷板の一方端から対向する他方端まで移動する速度のことをいう。
【0027】
また、本発明の製法によれば、導体パターンと段差を解消するためのパターンとの位置合わせを必要としないことから、段差を解消するためのパターンの内部電極パターンの端部への乗り上げを容易に防止できる。
【0028】
また、本発明の製法によれば、内部電極パターンを除いた周囲の長手方向の領域であって、内部電極パターンと同じ幅の領域に対応する領域のメッシュを開口せず、この内部電極パターンの長手方向に対して垂直な方向の領域において、内部電極パターンと段差を解消するためのパターンとの間に大きな隙間を有しないことから、積層においてセラミックグリーンシートが入り込むことがなく、このためセラミックグリーンシートおよび内部電極パターンの変形が生じにくく、焼成後において誘電体層に部分的に厚みの薄い部分が形成されにくい。このため誘電体層の絶縁性が保たれ、結果的に高温負荷寿命に優れた積層型電子部品を容易に得ることができる。
【発明の効果】
【0029】
本発明の積層セラミックコンデンサによれば、誘電体層を薄層化して積層数を増加した場合にも、内部電極層の厚みによる段差を無くすことができ、高容量化とともに高温負荷寿命を向上できる。
【0030】
本発明の積層セラミックコンデンサの製法によれば、コンデンサ本体の層間であって、コンデンサ本体を構成する内部電極層の外部電極との接続端側および前記接続端とは反対側に設けられた非接続端側以外の周囲に、内部電極層の主成分と同じ成分を含む金属部が島状に分布するように形成することができ、内部電極層の厚みによる段差を無くすことができるとともに、高容量化とともに優れた高温負荷寿命を有する積層セラミックコンデンサを容易に得ることができる。
【図面の簡単な説明】
【0031】
【図1】本発明の積層セラミックコンデンサの一例を示す斜視図である。
【図2】図1に示した積層セラミックコンデンサのA−A断面図である。
【図3】図1に示した積層セラミックコンデンサのB−B断面図であり、誘電体層上に形成された内部電極層の周囲に分布した金属部を模式的に示すものである。
【図4】図1に示した積層セラミックコンデンサの製法を説明するための斜視図である。
【図5】(a)(b)は、従来の積層セラミック部品の製法を説明するための斜視図であり、(c)は、(a)(b)の製法により得られる積層体の部分的な断面模式図である。
【図6】(a)(b)は、従来のセラミック積層体の製法を説明するための模式図であり、(c)は、(a)(b)の製法により得られる積層体の部分的な断面模式図である。
【発明を実施するための形態】
【0032】
本発明の積層セラミックコンデンサについて以下に詳述する。図1は、本発明の積層セラミックコンデンサの一例を示す斜視図である。図2は、図1に示した積層セラミックコンデンサのA−A断面図である。図3は、図1に示した積層セラミックコンデンサのB−B断面図であり、誘電体層上に形成された内部電極層の周囲に分布した金属部を模式的に示すものである。
【0033】
この実施形態の積層セラミックコンデンサでは、コンデンサ本体1は、誘電体磁器からなる誘電体層5と内部電極層7とが交互に複数積層されて構成されており、このコンデンサ本体1の内部電極層7が露出した対向する一対の端面にそれぞれ外部電極3が設けられている。外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。図2では誘電体層5と内部電極層7との積層状態を単純化して示しているが、この実施形態の積層セラミックコンデンサは誘電体層5と内部電極層7とが数百層にも及ぶ積層体となっている。
【0034】
誘電体層5は、チタン酸バリウムを主成分とする結晶粒子と粒界相とから構成されており、その厚みは2μm以下、特に、1μm以下が望ましく、これにより積層セラミックコンデンサを小型、高容量化することが可能となる。なお、誘電体層5の厚みが0.5μm以上であると、静電容量のばらつきを小さくでき、また容量温度特性を安定化させることが可能になる。
【0035】
内部電極層7は、高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、この実施形態における誘電体層5との同時焼成が図れるという点でニッケル(Ni)がより望ましい。
【0036】
この実施形態の積層セラミックコンデンサは、内部電極層7が設けられている層間9であって、内部電極層7の周囲のうち、内部電極層7の外部電極3との接続端7aと反対側にある非接続端7b側の領域以外の周囲11に、内部電極層7の主成分と同じ成分を含む金属部13が島状に分布していることを特徴とする。
【0037】
本発明によれば、コンデンサ本体1を構成する内部電極層7が設けられている層間9であって、内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の周囲11に、内部電極層7の主成分と同じ成分を含む金属部13がほぼ同じ厚みで島状に形成されていることから、内部電極層7の厚みによる段差を無くすことができ、これによりクラックやデラミネーションの発生を抑制できる。また、内部電極層7の周囲に形成された金属部13は島状に分布して形成されており、内部電極層7とは絶縁されていることから、内部電極層7の周囲に金属部13が形成されていても、積層セラミックコンデンサとしての機能を有し、高い静電容量を得ることができる。
【0038】
また、この実施形態の積層セラミックコンデンサでは、誘電体層5の層間11に形成された金属部13が内部電極層7と同じ厚みで形成されていることが望ましい。内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の周囲11に形成された金属部13が内部電極層7とほぼ同じ厚みであると、コンデンサ本体1の全面に渡って誘電体層5の厚みをほぼ等しいものにできる。その結果、誘電体層5に局部的に薄い部分が形成されることがなく、絶縁性を保つことができるため、高温負荷寿命に優れた積層セラミックコンデンサができる。
【0039】
ここで、金属部13の形状は、誘電体層5の表面の内部電極層7および外部電極3に対して絶縁される距離を有する配置であれば不規則なものであってもよいが、平面視したときに、円形に近い形状のものがほぼ均等に配置されていることが望ましい。
【0040】
また、金属部13のサイズは、金属部13の面積を円と仮定して求めた面積から求められる直径が2〜10μmであるのがよい。この場合、積層セラミックコンデンサの内部の同一平面における内部電極層7および金属部13を平面視したときに、内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の周囲11にある全ての金属部13を観察して求める。
【0041】
平面視したときの金属部13の形状が円形に近いものであり、それらの金属部13がほぼ均等に配置されていると、内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の領域11における誘電体層5と金属部13との間で安定した接合強度を維持できるとともに、絶縁性も安定したものとなる。なお、このような金属部13の形状は、スクリーン印刷版のメッシュの開口部が正方形であるものを用いることにより形成できる。
【0042】
また、この金属部13は、内部電極層7の主成分と同じ成分を含むものである。内部電極層7の主成分とは、上述したNiやCu、またはこれらの合金であるが、この他に、共材として誘電体層5を構成する結晶粒子の成分と同じセラミック成分を主として含んでいることが好ましい。金属部13がセラミック成分を含んでいると、金属部13と誘電体層5との間の接合強度をさらに高められるという利点がある。
【0043】
また、この実施形態の積層セラミックコンデンサでは、誘電体層5が積層された層間9である内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の周囲11の金属部13を除いた領域に樹脂が充填されていることが望ましい。上記のように、平面視したときの金属部13の形状が円形に近いものであると、金属部13の無い部分の層間9に樹脂等などを注入させやすいことから、積層セラミックコンデンサにおいて湿気に対する耐候性を高めることができるという利点がある。層間9に注入する樹脂としては、注入する際には粘度を低くでき、硬化後には耐湿性および耐熱性に優れたものとして、エポキシ樹脂、ポリイミド樹脂およびアクリル樹脂などが好適である。なお、コンデンサ本体1の層間9に樹脂を注入する方法としては、コンデンサ本体1を真空チャンバ中に置き、その中で、樹脂を加熱して溶解させ溶液中に浸して減圧する方法を用いることができる。
【0044】
また、金属部13同士の間隔は、おおよそ30μm以下の間隔で分布していることが好ましい。金属部13同士がおおよそ30μm以下の間隔で分布したものであると、誘電体層5と、内部電極層7および金属部13との接続面積が大きくなるため、これらの部材同士の接合強度が高まることにより、積層セラミックコンデンサのデラミネーションやクラックの発生をより抑制することが可能になる。
【0045】
さらにまた、金属部13と内部電極層7または外部電極3との間隔は、内部電極層7および外部電極3の縁から少なくとも2μm以上離れて分布していることが好ましい。金属部13が、誘電体層5および外部電極3から少なくとも2μm以上離れて分布していると、高い絶縁性を長期間安定して維持できる。
【0046】
ここで、内部電極層7および外部電極3の縁からの距離および金属部13同士の間隔は、積層セラミックコンデンサを誘電体層5および内部電極層7の積層面に平行に研磨して、内部電極層7および内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の周囲11の金属部13をほぼ全面に渡って露出させた試料について、走査型電子顕微鏡または金属顕微鏡の観察を行って測定する。
【0047】
積層セラミックコンデンサでは、内部電極層7の有効面積が大きいほど単位体積あたりの静電容量を高められることが知られているが、この実施形態の積層セラミックコンデンサでは、積層セラミックコンデンサの絶縁性を確保でき、設計値に近い静電容量が得られる範囲として、誘電体層5の幅W0と内部電極層7の幅W1とを同じ方向で比較したときに、誘電体層5の幅W0に対する内部電極層7の幅W1の割合が85〜90%であることが望ましい。これにより、体積が0.5mm以下、特に、0.1mm以下といった超小型の積層セラミックコンデンサにおいても、単位体積あたりの静電容量を高めることが可能になる。
【0048】
なお、誘電体層5の幅W0に対する内部電極層7の幅W1の割合が85〜90%に変更するには、後述するように、スクリーン印刷版の内部電極パターンに対する他の領域の割合を変更することにより行うことができる。また、内部電極層7の幅W1および誘電体層7の幅W0は、図3に示すように、内部電極層7および金属部13を露出させた積層セラミックコンデンサについて、内部電極層7の外部電極3との接続端(M1)、内部電極層7の長さ方向の中央部(M2)および内部電極層7の外部電極3との接続端(M1)とは反対側の非接続端(M3)の3ヶ所を測定し、それらの平均値から求める。
【0049】
また、この実施形態の積層セラミックコンデンサでは、内部電極層7の平均厚みが、前記誘電体層の平均厚みの40〜80%であることが望ましい。本発明において、前記内部電極層7の平均厚みが、誘電体層5の平均厚みの40〜80%である場合には、積層セラミックコンデンサに発生するクラックやデラミネーションを低減することができるとともに、高い静電容量を得ることができる。
【0050】
ここで、この実施形態における積層セラミックコンデンサを構成する誘電体層5の平均厚みは、静電容量を高められるという理由から2μm以下であることが望ましく、誘電体層5の絶縁性を高めるという理由から0.5μm以上であることが望ましい。
【0051】
内部電極層7の平均厚みは、内部電極層7に穴などが少なく静電容量に寄与するための有効面積を確保できるという点で、0.5μm以上であることが望ましく、一方、誘電体層5の表面において段差を小さくできるという点で、その平均厚みは、1μm以下、特に、0.8μm以下であることが好ましい。
【0052】
また、内部電極層7の周囲のうち外部電極3との接続端7aと反対側にある非接続端7b以外の周囲11に形成される金属部13の平均厚みは、誘電体層5の表面上における内部電極層7の段差を低減するという理由から、内部電極層7の平均厚みの1/2以上であればよいが、金属部13および内部電極層7と、誘電体層5との界面において厚み方向の隙間の形成を抑制するという理由から、金属部13の平均厚みは、内部電極層7と実質的に同一となる平均厚みを上限とすることが望ましい。
【0053】
次に、本発明の積層セラミックコンデンサの製法について、図4をもとにして詳細に説明する。(a)工程では、矩形状のセラミックグリーンシートを形成する。まず、チタン酸バリウム粉末に対して特性を制御するための添加剤および焼結助剤を所定量添加し混合した誘電体粉末を、ポリビニルブチラール樹脂などの有機樹脂やトルエンおよびアルコールなどの溶媒とともにボールミルなどを用いてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いて基材上に塗布してセラミックグリーンシート21を形成する。セラミックグリーンシート21の厚みは誘電体層5の高容量化のための薄層化、高絶縁性を維持するという点で0.4〜3μmが好ましい。
【0054】
次に、(b)工程では、セラミックグリーンシート21の一方主面上に、以下に示すスクリーン印刷版23を用いて導体膜25を形成する。この場合、本発明の製法において用いるスクリーン印刷版23は、ペースト粘度が5〜20Pa・sおよびスキージ速度が200〜400mm/secの条件で、内部電極パターンとなる第1の導体膜25aに対応する領域23aのメッシュの開口率を55〜70%とし、前記内部電極パターンを除いた周囲のうち長手方向の領域であって、内部電極パターンと同じ幅の領域に対応する領域のメッシュを開口せず、第1の導体膜25a以外の第2の導体膜25bに対応する領域23bのメッシュの開口率を35〜45%としたものを用いる。
【0055】
本発明の製法では、スクリーン印刷版23において、第2の導体膜25bに対応する領域23bのメッシュの開口率を、第1の導体膜25aに対応する領域23aのメッシュの開口率よりも小さくしたので、焼成後に第2の導体膜25bを第1の導体膜よりも空隙率の高いものにできることから、第2の導体膜25bに含まれる金属成分を島状に分布させて形成することができる。これにより、内部電極層7の長辺の外側11に金属部13を形成しても、内部電極層7および外部電極3との間で絶縁性を有する段差を解消するパターンを量産に適した方法で容易に形成できる。
【0056】
すなわち、スクリーン印刷版のメッシュの開口率が高い部分(23a)からは導体ペーストが相対的に多く吐出されるので、内部電極層7は空隙率が小さくなり緻密になる。従って、内部電極層7の厚みのばらつきが小さくなり、有効面積も高まるため静電容量のばらつきを抑えることができる。ここで、空隙率とは、内部電極層7を平面視した場合に、内部電極層7を形成すべき領域内に、内部電極層7の存在しない領域がスポット的に分布している比率をいう。
【0057】
一方、メッシュの開口率が低い部分からは導電ペーストが相対的に少なく吐出されるので、焼成時における導体膜25の焼成収縮により内部電極層7の周囲は空隙率が大きくなり、金属部13が島状に形成されるのである。
【0058】
そして、かかるスクリーン印刷版として、第1の導体膜25aに対応する領域23aにメッシュの開口率が55〜70%のものを、第2の導体膜25bに対応する領域23bにメッシュの開口率が35〜45%のものを用いると、内部電極層7が設計どおりの静電容量を発現できる厚みを有するとともに、内部電極層7の周囲のうち、この内部電極層7の外部電極3との接続端7aと反対側にある非接続端7b側の領域以外の周囲11に形成される金属部13が島状に分布し、絶縁性を確保できる範囲にできる。
【0059】
これに対して、第1の導体膜25aに対応する領域23aにメッシュの開口率が55%より低いと、第1の導体膜25aの膜密度が低いものとなり、一方、メッシュの開口率が70%より高い場合には、第1の導体膜25aの厚みおよび印刷面積の制御が困難になる。
【0060】
また、第2の導体膜25bに対応する領域23bにメッシュの開口率が35%より低いと、島状の塗膜が少なくなり、第1の導体膜25aとの間で段差が残ってしまう。一方、メッシュの開口率が45%より高いと、島状の塗膜が多くなり、第1の導体膜25aに接触するおそれがある。
【0061】
また、導体ペーストのペースト粘度が5Pa・sよりも低い場合には、導体膜の厚みが薄くなり、それに伴い内部電極層の有効面積が小さくなることから、静電容量が低下する。一方、導体ペーストのペースト粘度が20Pa・sよりも高い場合には、スクリーン印刷時のペーストの抜け性が悪くなるために、この場合も、内部電極層の有効面積が小さくなることから、静電容量が低下する。また、スキージ速度が200mm/secより遅い場合には、印刷厚みが全体的に厚くなることから、島状のパターンを形成することが困難となり、内部電極層と島状パターンとがつながることからショートが発生する。スキージ速度が400mm/secより速い場合には、印刷厚みが薄くなり、この場合も内部電極層の有効面積が小さくなることから静電容量が低下する。
【0062】
なお、本発明の製法に用いるスクリーン印刷版は、厚みが1〜5μmと薄層の内部電極パターンを均一に形成するという理由から、紗厚が10〜30μm、レジスト膜厚が1〜5μmであり、メッシュの開口率が40〜70%であるものを用いるのがよい。
【0063】
また、本発明の製法によれば、内部電極パターンの周囲に、隙間を空けて段差を解消するためのパターンを形成する必要がないことから、セラミックグリーンシート21上に形成される内部電極パターンの面積を大きくすることが容易となり、これにより、積層セラミックコンデンサにおいて内部電極層7の有効面積を増やすことが容易となる。
【0064】
さらに、この製法によれば、内部電極パターンと段差を解消するためのパターンとの位置合わせを必要としないことから、段差を解消するためのパターンの内部電極パターンの端部への乗り上げを防止できる。このため、局部的な厚みの増加によるデラミネーションの発生を無くすことができる。
【0065】
また、本発明の製法では、導体膜25を形成する第1の導体膜25aに対応する領域のメッシュの幅を変化させることによって、誘電体層5の幅に対する内部電極層7の幅を変化させることができる。
【0066】
次に、(c)工程では、導体膜25が形成されたセラミックグリーンシート21を複数積層して母体積層体を形成し、これを焼成後にコンデンサ本体1となる積層体の形状に切断する。
【0067】
この場合、本発明の製法においては、上述のように、セラミックグリーンシート21上において、内部電極パターンの領域と、内部電極パターンの周囲であって、内部電極パターンの長手方向の領域を除いた領域とに導体膜25を形成するため、第1導体膜25aの長辺の外側の領域に段差を解消するための第2導体膜25bとの間に隙間を有しない。このため、積層において、セラミックグリーンシートが入り込む余地がないことから、セラミックグリーンシート21に変形が生じにくく、焼成後において誘電体層5に部分的に薄い部分が形成されにくい。
【0068】
次に、(d)工程では、積層体を脱脂した後、最高温度を1050〜1200℃、保持時間を1〜3時間とし、水素−窒素の雰囲気中にて焼成を行う。これにより、複数の誘電体層5と複数の内部電極層7とが交互に積層され、対向する一対の端面に内部電極層7が露出しているとともに、内部電極層7が設けられている層間9であって、内部電極層7の周囲のうち、この内部電極層7の外部電極3との接続端7aと反対側にある非接続端7b側の領域以外の領域に、内部電極層7の主成分と同じ成分を含む金属部13が島状に分布しているコンデンサ本体1が形成される。このとき導体膜25のうち、スクリーン印刷版23の開口率の低い(OP2)領域23bは、導体膜25が焼成収縮しやすいことから金属部13が島状に分布した状態となる。
【0069】
次に、(e)工程では、焼成後のコンデンサ本体1をバレル研磨する。このときコンデンサ本体1の内部においては、段差を解消するパターン25bが内部電極層7に乗り上げたり、内部電極層7と金属部13との間隔が図6に示した従来の製法のように大きくないために、誘電体層5が各層ともに平行となっていることからクラックやデラミネーション等が発生しにくい。
【0070】
次に、内部電極層7を露出させたコンデンサ本体1の対向する一対の端面に入出力用の外部電極3を形成する。外部電極3は、導体ペーストの塗布焼付、または、比較的低温で硬化する導電性樹脂の塗布などの方法により形成される。
【0071】
なお、積層セラミックコンデンサの湿気に対する耐候性を高めるという理由から、誘電体層5が積層された層間9である内部電極層7の周囲11の金属部13を除いた領域に樹脂を充填してもよい。この場合、外部電極3には注入した樹脂が炭化したり、焼失したりしないという理由から導電性樹脂を用いるのが良い。また、場合によっては、この外部電極3の表面に実装性を高めるためにメッキ膜を形成する。
【実施例】
【0072】
まず、チタン酸バリウム粉末、Y粉末、MnCO粉末、MgO粉末およびガラス粉末を用意し、チタン酸バリウム粉末を100モルに対して、Y粉末を1モル、MnCO粉末およびMgO粉末をそれぞれ0.5モル添加した後、これらの混合粉末100質量部に対してガラス粉末を1質量部添加して誘電体粉末を調製した。
【0073】
この後、誘電体粉末を、ポリビニルブチラールをトルエンおよびアルコールの混合溶媒中に溶解させた有機ビヒクルと混合してセラミックスラリを調製し、ドクターブレード法により厚み1.5μmのセラミックグリーンシートを作製した。
【0074】
次に、このセラミックグリーンシートの一方主面に、表1に示した図4、図5および図6の方法および印刷条件(ペースト粘度およびスキージ速度)を用いて、Niを主成分とする導体ペーストを印刷し、導体パターン(図5の方法ではセラミックパターンの形成も行った。)を複数形成した。導体パターンを形成するための導体ペーストは、平均粒径が0.2μmのNi粉末100質量部に対して、セラミックグリーンシートの作製に用いたチタン酸バリウム粉末を15質量部添加し、これにセルロース系のバインダを加えて調製した。このとき、金属部を形成する第2の導体膜に対応する領域のメッシュの開口率は40%とし、内部電極層となる第1の導体膜に対応する領域のメッシュの開口率は60%であるものを用いた。また、内部電極パターンの平均厚みはメッシュの紗厚を変えて調整した。スクリーン印刷版は紗厚が21μm、レジスト膜厚が1〜3mであり、メッシュの開口率が60%であり、開口部の形状が正方形であるものを用いた。焼成後の内部電極層の平均厚みを表1に示すようにした。
【0075】
また、導体膜を形成する第1の導体膜に対応する領域のメッシュの幅を変化させることによって、誘電体層の幅に対する内部電極層の幅を変化させた(表1)。
【0076】
次に、導体パターン(図5の方法の場合にはセラミックパターンが形成されている。)を印刷したセラミックグリーンシートを230枚積層し、その上下面に導体パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で密着させて積層体を作製し、しかる後、この積層体を、所定の寸法に切断してコンデンサ本体となる積層体を形成した。
【0077】
次に、積層体を大気中で脱脂した後、水素−窒素中、1100℃で焼成した。作製したコンデンサ本体は、続いて、窒素雰囲気中1000℃で4時間再酸化処理を行った。このコンデンサ本体の大きさは1mm×0.5mm×0.5mm、誘電体層の平均厚みは1μm、有効面積は0.3mmであった。なお、有効面積とは、コンデンサ本体の異なる端面にそれぞれ露出するように積層方向に交互に形成された内部電極層同士の重なる部分の面積のことである。
【0078】
次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスとを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行って外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。
【0079】
試料No.7および8については、コンデンサ本体の誘電体層間に樹脂(エポキシ樹脂)を注入したものを作製した。樹脂の注入はコンデンサ本体を真空チャンバ中に置き、その中で、樹脂を加熱して溶解させた溶液中に浸して減圧する方法を用いた。樹脂を注入したコンデンサ本体については、コンデンサ本体の内部電極層が露出した端面に銀を主成分とする導電性樹脂を塗布して外部電極を形成した。
【0080】
次に、作製した積層セラミックコンデンサについて以下の評価を行った。静電容量はLCRメータ(ヒューレットパッカード社製)を用いて、温度25℃、周波数1.0kHz、測定電圧を1Vrmsとして測定し、コンデンサ本体の体積から単位体積あたりの静電容量を求めた。試料数は10個とした。
【0081】
高温負荷試験は、温度85℃、直流電圧10Vの条件で1000時間放置して評価した。表1において○となっているものは不良無しという意味である。なお、高温負荷試験における不良は絶縁抵抗が1MΩ以下となったものである。
【0082】
湿中負荷試験は、温度65℃、直流電圧10V、湿度90%RHの条件で48時間放置して評価した。表1において○となっているものは不良無しという意味であり、×となっているのは不良有りという意味である。なお、湿中負荷試験においても不良は絶縁抵抗が1MΩ以下となったものである。
【0083】
デラミネーション・クラックの評価は、300℃に加熱したハンダ槽に積層セラミックコンデンサを約1秒間浸漬させた後の外観を実体顕微鏡にて40〜100倍の倍率で観察して行った。表1に結果を示す。
【0084】
誘電体層の幅に対する内部電極層の幅は、図3に示すように、内部電極層および金属部を露出させた積層セラミックコンデンサについて、内部電極層の外部電極との接続端(M1)、内部電極層7の長さ方向の中央部(M2)および内部電極層7の外部電極3との接続端(M1)とは反対側の非接続端(M3)の3ヶ所を測定し、それらの平均値から求めた。
【0085】
試料No.5〜13における内部電極層と金属部との間隔、試料No.3、4における内部電極層と段差を解消するためのパターンの間隔は、得られた積層セラミックコンデンサを積層方向に研磨し、内部電極層および金属部、または段差を解消するためのパターンを表面に露出させた研磨面を走査型電子顕微鏡を用いて観察し測定して求めた。この場合、表1には内部電極層の縁から最も近い値を記している。
【0086】
【表1】

【0087】
【表2】

【0088】
表1、2の結果から明らかなように、内部電極層の周囲のうち、当該内部電極層の外部電極との接続端と反対側にある非接続端側の領域以外の周囲に、金属部を島状に分布させた本発明の積層セラミックコンデンサである試料No.5〜13、15,16、19および20では、内部電極パターンと段差を解消するためのパターンとを1回の印刷工程で形成することができ、静電容量が2.0μF以上、単位体積あたりの静電容量が9.09μF/mm以上であり、高温負荷試験での不良が無かった。
【0089】
また、誘電体層の幅に対する内部電極層の幅の割合を90%まで高めてもショートが無く、高温負荷試験においても不良が無く、単位体積あたりの静電容量を10μF/mmに高めることができた。また、コンデンサ本体の誘電体層間に樹脂を注入した試料No.8および9では、65℃、90%RH、直流電圧10V、48時間放置の条件の湿中負荷寿命を満足するものであった。
【0090】
さらに、誘電体層の幅に対する内部電極層の幅の比率を85〜90%とした試料において、内部電極層7の平均厚みが0.4〜0.8μmであり、誘電体層の平均厚みの40〜80%である試料No.5〜9,11,12,15,16,19および20では、静電容量が2.1μF以上、単位体積あたりの静電容量が9.54μF/mm以上であり、高温負荷試験での不良が無く、デラミネーションおよびクラックが発生した試料も無かった。
【0091】
これに対して、段差を解消するためのパターンとしてセラミックパターンを形成する図5の方法は2回の印刷工程を必要とすることから製造コストが高く、また、段差を解消するためのパターンを内部電極パターンから離して形成する図6の方法および導体ペーストの粘度が5〜20Pa・sおよびスキージ速度が200〜400mm/secの範囲に入らない条件では、低い静電容量しか得られないか、または、ショートが発生するものとなった。
【符号の説明】
【0092】
1 コンデンサ本体
3 外部電極
5 誘電体層
7 内部電極層
7a 内部電極層の外部電極との接続端
7b 外部電極との接続端と反対側にある非接続端
9 層間
11 内部電極層の周囲のうち外部電極との接続端と反対側にある非接続端以外
の周囲
13 金属部
21、53 セラミックグリーンシート
23 スクリーン印刷版
25 導体パターン
25a、51 内部電極パターン
25b、54 段差を解消するためのパターン
55 セラミックパターン

【特許請求の範囲】
【請求項1】
複数の誘電体層と複数の長方形状の内部電極層とが交互に積層されたコンデンサ本体と、該コンデンサ本体の前記内部電極層が露出した対向する一対の端面にそれぞれ設けられた外部電極とを有する積層セラミックコンデンサにおいて、前記内部電極層が設けられている層間であって、前記内部電極層の周囲のうち該内部電極層の前記外部電極との接続端と反対側にある非接続端側の領域以外の領域に、前記内部電極層の主成分と同じ成分を含む金属部が島状に分布していることを特徴とする積層セラミックコンデンサ。
【請求項2】
前記内部電極層の平均厚みが、前記誘電体層の平均厚みの40〜80%であることを特徴とする請求項1に記載の積層セラミックコンデンサ。
【請求項3】
(a)セラミックグリーンシートを形成する工程と、
(b)該セラミックグリーンシートの一方主面に、長方形状の内部電極パターンに対応する領域のメッシュの開口率を55〜70%、前記内部電極パターンを除いた周囲のうち前記内部電極パターンの長手方向の端部側の領域に対応する領域のメッシュは開口せず、前記内部電極パターンの長手方向に対して垂直な方向の領域に対応する領域のメッシュの開口率を35〜45%としたスクリーン印刷版を用いて、ペースト粘度が10〜50Pa・sの導体ペーストをスキージ速度が200〜400mm/secの条件で印刷して導体膜を形成する工程と、
(c)該導体膜が形成されたセラミックグリーンシートを複数積層して積層体を形成する工程と、
(d)該積層体を焼成して、複数の誘電体層と複数の長方形状の内部電極層とが交互に積層され、対向する一対の端面に前記内部電極層が露出しているとともに、前記内部電極層が設けられている層間であって、前記内部電極層の周囲のうち、該内部電極層の前記外部電極との接続端と反対側にある非接続端側の領域以外の領域に、前記内部電極層の主成分と同じ成分を含む金属部が島状に分布しているコンデンサ本体を形成する工程と、
(e)前記コンデンサ本体の対向する前記一対の端面に外部電極を形成する工程と
を備えることを特徴とする積層セラミックコンデンサの製法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−134832(P2011−134832A)
【公開日】平成23年7月7日(2011.7.7)
【国際特許分類】
【出願番号】特願2009−292035(P2009−292035)
【出願日】平成21年12月24日(2009.12.24)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】